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Differential-algebraic equation DAE systems

Linear Nonlinear

Eẋ = Hx E(x)ẋ = F (x)

If E is square and invertible, then

Eẋ = Hx ⇒ ẋ = E−1Hx.
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Differential-algebraic equation DAE systems

Linear Nonlinear

Eẋ = Hx E(x)ẋ = F (x)

Example 1

[
0 0
0 1

] [
ẋ1

ẋ2

]
=

[
1 0
1 1

] [
x1

x2

]
. (1)

Solutions exist only on {x1 = 0}. (Existence)[
1 0

] [ẋ1

ẋ2

]
=

[
0 1

] [x1

x2

]
. (2)

There exist infinite solutions. (Uniqueness)
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Differential-algebraic equation DAE systems

Linear Nonlinear

Eẋ = Hx+Lu E(x)ẋ = F (x)+G(x)u

Example 1

[
0 0
0 1

] [
ẋ1

ẋ2

]
=

[
1 0
1 1

] [
x1

x2

]
. (1)

Solutions exist only on {x1 = 0}. (Existence)[
1 0

] [ẋ1

ẋ2

]
=

[
0 1

] [x1

x2

]
. (2)

There exist infinite solutions. (Uniqueness)
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A mechanical system modeled by DAEs

Example 2

β

x

y θ

mg

ϕ

Figure: A rolling disk on a slope

The Lagrangian:

L = mgx sinβ +
1

2
m(ẋ2 + ẏ2) +

1

2
Jϕ2.

(3)

The Euler-Lagrange dynamical equations:{
ẍ= sinβ − λ sinϕ
ÿ= λ cosϕ

(4)

Nonholonomic constrains:{
0 = − sinϕdx+ cosϕdy
0 = cosϕdx+ sinϕdy − dθ. (5)

The “generalized” states:

ξ = (x, ẋ, y, ẏ, ϕ, θ, β, λ),

and controls u = (u1, u2) = (θ̇, β̇), we get
a DAE control system DAECS

E(ξ)ẋ = F (ξ) +G(ξ)u.
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A mechanical system modeled by DAEs

Example 2

β

x

y θ

mg

ϕ

Figure: A rolling disk on a slope

Let the “generalized” states be

ξ = (x, ẋ, y, ẏ, ϕ, θ, β, λ),

and u = (u1, u2), we get a DAE control
system

E(ξ)ξ̇ = F (ξ) +G(ξ)u.

E(ξ)ẋ = F (ξ) +G(ξ)u,

where

E(ξ) =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

− sinϕ 0 cosϕ 0 0 0 0 0
cosϕ 0 sinϕ 0 0 −1 0 0

 ,

F (ξ) =


ẋ

sin β−λ sinϕ
ẏ

λ cosϕ
0
0
0
0

 ,

G(ξ) =


0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0

 .
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A simple electrical circuit modeled by DAEs

Example 3 (Rabier2013)

+
−Vs

L1 il1

C

ic

Is

D

id

L2

il2

Figure: A simple electrical circuit

Characteristics of the capacitor and
inductors: 

C(vc)v̇c = ic
L1(il1 )i̇l1 = vl1
L2(il2 )i̇l2 = vl2 ,

(3)

The Kirchhoff’s laws give{
Ai= 0
v = AT e

(4)

where e are the node potentials and where

A =

[
−1 0 0 1 0 0
0 1 0 −1 1 0
0 0 1 0 −1 1

]
.

The characteristic of the diode:

id = f(ud). (5)

The combination of (3), (4) and (5) gives a DAE of the form Ξse :

{
R(x)ẋ= a(x)

0 = c(x)
, or

more general, Ξ : E(x)ẋ = F (x).
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Outline

1 Linear DAEs versus linear ODE control systems

2 Linear DAE control system and its feedback canonical form

3 Internal (feedback) equivalence and explicitation of nonlinear DAE
systems

4 Normal forms and (feedback) linearization of nonlinear DAE
systems

5 Conclusions
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Linear DAEs and ODE control systems

We consider a linear DAE:

∆ : Eẋ = Hx, (6)

where x ∈ Rn, E ∈ Rl×n, H ∈ Rl×n.

Denoted by ∆l,n = (E,H).

External equivalence: ∆
ex∼ ∆̃ if ∃ invertible Q and P s.t.

Ẽ = QEP−1

H̃ = QHP−1.
(7)

P changes coordinate and Q combines equations.
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External equivalence of DAEs and Morse of ODECSs

A linear control system

Λ :

{
ż = Az +Bu
y = Cz +Du,

(8)

where z ∈ Rq , u ∈ Rm, y ∈ Rp, denoted Λq,m,p = (A,B,C,D).

Morse equivalence (Morse1973,Molinari1978): Λ
M∼ Λ̃, if ∃ invertible matrices Ts,Ti,To

and matrices F ,K s.t.[
Ã B̃

C̃ D̃

]
=

[
Ts TsK
0 To

] [
A B
C D

][
T−1
s 0

FT−1
s T−1

i

]
(9)

The prolongation of Λ:

Λ :

{
ż = Az + Bv
y = Cz,

(10)

where u̇ = v,

z =

[
z
u

]
, A =

[
A B
0 0

]
, B =

[
0
Im

]
, C =

[
C D

]
.
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Implicitation of linear ODE control systems

From an ODE control system towards a DAE:

Definition 1 (Implicitation of linear ODE control systems)

For a linear control system Λq,m,p = (A,B,C,D), set the output y = Cx+Du to be zero,
we define the following DAE with “generalized” states (z, u) in Rq+m:

∆Impl :

[
Iq 0
0 0

] [
ż
u̇

]
=

[
A B
C D

] [
z
u

]
. (11)

The DAE given by (11) is called the implicitation of Λ and denoted by ∆Impl = Impl(Λ).

Can we also go the other way around: DAEs ⇒ control systems ?

Constructing a control system Λ requires to identify states, controls, and outputs.
How?

9 / 47



Explicitation: from linear DAEs towards linear ODECSs

Consider ∆l,n = (E,H). Denote rankE = q, define p = l − q and m = n− q. Choose
a map

P =

[
P1

P2

]
∈ Gl(n,R),

where P1 ∈ Rq×n, P2 ∈ Rm×n such that kerP1 = kerE.

Define coordinates transformation[
z
u

]
=

[
P1x
P2x

]
=

[
P1

P2

]
x = Px.

Choose Q such that QEP−1 =

[
Iq 0
0 0

]
and denote QHP−1 =

[
A B
C D

]
,

Let y = 0 = Cx+Du, we attach an ODECS Λ = (A,B,C,D) to ∆, that is,
∆
ex∼∆Impl = Impl(Λ).

Definition 2 (Explicitation of linear control systems)

We call the just defined ODECS Λq,m,p = (A,B,C,D) the (Q,P )-explicitation of ∆.

10 / 47



Our construction is not unique: it depends on the choice of P and Q:

Non-uniqueness of the choice of coordinates: choose other coordinates (z′, u′){
z′ = Tsz
u′ = F ′z + Tiu,

(12)

where Ts and Ti are invertible. Clearly, z′ = Tsz is another set of coordinates on the
state space and u′ = F ′z + Tiu is a state feedback transformation.

Non-uniqueness of the choice of Q: a triangular transformation (output injection and
multiplication) of the system[

ż′

y′

]
=

[
Ts K′

0 To

] [
ż
y

]
=

[
Ts K′

0 To

] [
A B
C D

] [
z
u

]
(13)

where K′ ∈ Rn×p, To ∈ Gl(p,R).

The explicitation is a class of control systems!!!

The class of all (Q,P )-explicitations will be denoted by Expl(∆) and we will write
Λ ∈ Expl(∆).
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Theorem 1 (Theorem 2.3.4)

(i) Given two DAEs ∆ = (E,H) and ∆̃ = (Ẽ, H̃), choose two control systems

Λ ∈ Expl(∆) and Λ̃ ∈ Expl(∆̃). Then ∆
ex∼ ∆̃ if and only if Λ

M∼ Λ̃.

(ii) Consider two control systems Λ and Λ̃. Then Λ
M∼ Λ̃ if and only if ∆Impl ex∼ ∆̃Impl,

where ∆Impl = Impl(Λ) and ∆̃Impl = Impl(Λ̃).

(iii) Consider a DAE ∆ = (E,H) and a control system Λ. Then Λ ∈ Expl(∆) if and only
if ∆

ex∼∆Impl, where ∆Impl = Impl(Λ). More specifically, Λ is the
(Q,P )-explicitation of ∆ if and only if ∆

ex∼∆Impl via (Q,P ).

Morse equivalent control systems (and only such) give, via implicitation,
ex-equivalent DAEs.

Ex-equivalent DAEs produce Morse equivalent control systems.

∆

Λ ∈ Expl(∆)

∆̃

∆Impl = Impl(Λ)

Ex-equivalence Λ̃ ∈ Expl(∆̃) Ex-equivalence

∆̃Impl = Impl(Λ̃)

Explicitation

Ex-equivalence

Explicitation

Morse equivalence

Implicitation

Ex-equivalence

Implicitation
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Subspaces relations between DAEs and ODE control systems

∆ : Eẋ = Hx Λ :

{
ż = Az + Bu
y = Cz +Du,

Λ :

{
ż = Az + Bv
y = Cz,

The Wong sequences
(Wong1974):

V0 = Rn,Vi+1 = H
−1
EVi,

V0 = Rq,

Vi+1 =

[
A
C

]−1
([
I
0

]
Vi + Im

[
B
D

]) V0 = Rn,
Vi+1 =ker C ∩A−1(Vi + Im B);

W0 = {0},Wi+1 = E−1HWi.
W0 = {0},

Wi+1 =
[
A,B

] ([Wi
U

]
∩ ker

[
C,D

])
.

W0 = 0,
Wi+1 =A(Wi ∩ ker C) + Im B.

V ∗ = Vk∗ is the largest s.t.
V = H−1EV ;

V∗ = Vk∗ is the largest s.t.
∃F , (A+BF )V ⊆ V and (C+
DF )V = 0;

V∗ = Vk∗ is the largest con-
trolled invariant subspace i.e.,
AV ⊆ V + Im B in ker C;

W ∗ = Wl∗ is the smallest
s.t. W = E−1HW .

W∗ = Wl∗ is the smallest
s.t. ∃K, (A+KC)W + (B +
KD)U =W.

W∗ = Wl∗ is the smallest con-
ditioned invariant subspace, i.e.,
A(W ∩ker C) ⊆W, containing
Im B.
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Subspaces relations between DAEs and ODE control systems

Proposition 1 (Subspaces relations Proposition 2.4.10)

Given a DAE ∆ = (E,H), the (Q,P )-explicitation Λ = (A,B,C,D) ∈ Expl(∆), and the
prolongation Λ = (A,B,C) of Λ, consider the limits of the Wong sequences V ∗ and W ∗

of ∆ and of ∆Impl = Impl(Λ), the invariant subspaces V∗ and W∗ of Λ, and the
invariant subspaces V∗ and W∗ of Λ. Then the following hold

(i) PV ∗(∆) = V ∗(∆Impl) = V∗(Λ) =

[
A B
C D

]−1 [V∗(Λ)
0

]
,

(ii) PW ∗(∆) = W ∗(∆Impl) = W∗(Λ) =

[
Iq 0
0 0

]−1 [W∗(Λ)
0

]
.

Similar relations hold for augmented Wong sequences of the linear DAE control
systems and invariant subspaces of its explicitation. (see Proposition 3.2.10).
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Kronecker canonical form versus Morse canonical form

Set Nβ = diag
{
Nβ1

, . . . , Nβk

}
, Kβ = diag

{
Kβ1

, . . . , Kβk

}
,Lβ = diag

{
Lβ1

, . . . , Lβk

}
.

Ki =
[
0 Ii−1

]
∈ R(i−1)×i, Li =

[
Ii−1 0

]
∈ R(i−1)×i, Ni =

[
0 0

Ii−1 0

]
∈ Ri×i.

Kronecker canonical form KCF (Kronecker1890): Any DAE ∆ = (E,H)
ex∼ ∆̃ = (Ẽ, H̃), where

(Ẽ, H̃) =

Lε 0 0 0
0 I|ρ| 0 0
0 0 Nσ 0

0 0 0 KT
η

 ,

Kε 0 0 0
0 Aρ 0 0
0 0 I|σ| 0

0 0 0 LTη





under− determin
ODE

nilpotent
over− determin

 ,

where β = (β1, . . . , βk), |β| =
k∑
i=1

βi, Aρ is in the real Jordan canonical form. The integers

(ε1, . . . , εa), (ρ1, . . . , ρb), (σ1, . . . , σc), (η1, . . . , ηd) are called the Kronecker indices.

The Kronecker indices can be calculated with the help of the Wong sequences Vi, Wi.
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Kronecker canonical form versus Morse canonical form

Morse canonical form MCF (Morse1973)(Molinari1978): Any control system

Λ = (A,B,C,D)
M∼ Λ̃ = (Ã, B̃, C̃, D̃), where

[
Ã B̃

C̃ D̃

]
=



A1 0 0 0 B1 0
0 A2 0 0 0 0
0 0 A3 0 0 B3

0 0 0 A4 0 0
0 0 C3 0 0 D3

0 0 0 C4 0 0


,

where (A1, B1) is controllable and in its Brunovský canonical form with indices
ε′i(1 ≤ i ≤ a′); (A4, C4) is observable and in its dual Brunovský canonical form with
indices η′i(1 ≤ i ≤ d′); (A3, B3, C3, D3) is controllable and observable and in its prime
form with indices σ′i(1 ≤ i ≤ c′), and the matrix A2 is in its real Jordan canonical form
with each block of ρ′i × ρ′i(1 ≤ i ≤ b′) dimension.

The Mores indices can be calculated with the help of the sequences of subspaces Vi,
Wi.
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Relations of the Kronecker indices and the Morse indices

Proposition 2 (Indices relations Proposition 2.5.3)

For a DAE ∆, the Kronecker indices of its KCF coincide with the Morse indices of
the MCF of Λ ∈ Expl(∆).

(Nσ , I|σ|) of the KCF is present iff the subsystem MCF 3 of the MCF is present.

The invariant factors of Aρ in the KCF of ∆ coincide with that of A2 in the MCF
of Λ.

There exists a perfect correspondence between the KCF of a DAE and the MCF of
its explicitation systems !!

Example 4

(Lε,Kε) :
[
1 0

] [ẋ1
1
ẋ1

2

]
=
[
0 1

] [x1
1
x1

2

]
↔ (A1, B1) : ż1 = u1

(I|ρ|, Aρ) : ẋ2 = Aρx ↔ A2 : ż2 = A2z2

(Nσ , I|σ|) :

[
0 0
1 0

] [
ẋ3

1
ẋ3

2

]
=

[
1 0
0 1

] [
x3

1
x3

2

]
↔ (A3, B3, C3, D3) :

{
y3 = z3

ż3 = u3

(KT
η , L

T
η ) :

[
0
1

]
ẋ4 =

[
1
0

]
x4 ↔ (A4, C4) :

{
y4 = z4

ż4 = 0
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Feedback canonical form of linear DAE control systems

Consider a DAE control system DAECS (denoted by ∆u
l,n,m = (E,H,L):)

∆u : Eẋ = Hx+ Lu, (14)

External feedback equivalence: ∆u ex−fb∼ ∆̃ũ if ∃ F and invertible Q,P,G s.t.

Ẽ = QEP−1, H̃ = Q(H + LF )P−1, L̃ = QLG. (15)

Any ∆u = (E,H,L) is ex-fb-equivalent to the following feedback canonical form FBCF
(Loiseau et al 1991):



I∣∣ε′∣∣ 0 0 0 0 0

0 Lε̄′ 0 0 0 0
0 0 Inρ 0 0 0

0 0 0 KT
σ′ 0 0

0 0 0 0 Nσ̄′ 0

0 0 0 0 0 LT
η′


,



NT
ε′ 0 0 0 0 0

0 Kε̄′ 0 0 0 0
0 0 Aρ 0 0 0

0 0 0 LT
σ′ 0 0

0 0 0 0 I∣∣σ̄′∣∣ 0

0 0 0 0 0 KT
η′


,


Eε′ 0 0
0 0 0
0 0 0
0 Eσ′ 0
0 0 0
0 0 0




,

where ε′i(1 ≤ i ≤ a
′), ε̄′i(1 ≤ i ≤ b

′), σ′i(1 ≤ i ≤ c
′), σ̄′i(1 ≤ i ≤ d

′), η′i(1 ≤ i ≤ e
′) and the Jordan

structure of Aρ are its invariants.

Is there a simpler and geometrical way to get FBCF? Using explicitation ?
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Explicitation with driving variables

Given ∆u, let rankE = r. Let s = n− r and m = l − r. Choose Q s.t.

QE =

[
E1

0

]
, (16)

where E1 is of full row rank, denote QF =

[
H1

H2

]
and QL =

[
L1

L2

]
. .

Solutions ẋ of E1ẋ = H1x+ L1u satisfy

ẋ ∈ Ax+Buu+ kerE1 = Ax+Buu+ kerE. (17)

where A = E†1H1, Bu = E†1L1. Then choose ImBv = kerE and v to parametrize
kerE and let y = Cx+Duu = H2x+ L2u.

Attach to Ξu the following control system Λuvn,m,s,p = (A,Bu, Bv , C,Du),

Λuv :

{
ẋ = Ax+Buu+Bvv
y = Cx+Duu,

(18)

where v is called the vector of driving variables.

Definition 3 (Explicitation with driving variables)

We will call the just defined control system Λuv a (Q, v)-explicitation of ∆u. The class of
all (Q, v)-explicitations of ∆u is denoted by Expl(∆u).
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Equivalence of DAECSs and ODECSs with two kinds of inputs

Extended Morse equivalence: Λuv
EM∼ Λ̃ũṽ , if ∃ invertible matrices Tx,Ty ,Tu,Tv and

matrices Fu, Fv ,R, K s.t.[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

[
Tx TxK
0 Ty

] [
A Bu Bv

C Du 0

] T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv +RFu)T−1
x RT−1

u T−1
v

 ,
Extended Morse transformation: EMtran = (Tx, Ty , Tu, Tv , Fu, Fv , R,K).

Two kinds of feedback transformations (v is more powerful than u !):

v = Fvx+Ru+ T−1
v ṽ and u = Fux+ T−1

u ũ.

Theorem 2 (Theorem 3.2.9)

Given Λuv ∈ Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ), locally ∆u ex−fb∼ ∆̃ũ iff Λuv
EM∼ Λ̃ũṽ.

Our plan of getting the FBCF of a DAECS ∆u:

∆u

Λuv

FBCF

Λ

CF of Λuv?

MCF

explicitation

?

implicitation???

(Loiseau et al 1991)

relation??? relation???

(Morse1973)(Molinari1978), can we simplify the construction?
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Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS Λ = (A,B,C,D), we can explicitly construct a Morse transformation
bringing Λ into its Morse canonical form MCF, passing through intermediate Morse
triangular form MTF (Λ̃ = (Ã, B̃, C̃, D̃)) and Morse normal form MNF
(Λ̄ = (Ā, B̄ū, C̄, D̄)).

MTF :

[
Ã B̃

C̃ D̃

]
=



Ã1 Ã2
1 Ã3

1 Ã4
1 B̃1 B̃2

1

0 Ã2 0 Ã4
2 0 0

0 0 Ã3 Ã4
3 0 B̃3

0 0 0 Ã4 0 0

0 0 C̃3 C̃4
3 0 D̃3

0 0 0 C̃4 0 0


.
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Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS Λ = (A,B,C,D), we can explicitly construct a Morse transformation
bringing Λ into its Morse canonical form MCF, passing through intermediate Morse
triangular form MTF (Λ̃ = (Ã, B̃, C̃, D̃)) and Morse normal form MNF
(Λ̄=(Ā, B̄, C̄, D̄)).

MNF :

[
Ā B̄
C̄ D̄

]
=


Ā1 0 0 0 B̄1 0
0 Ā2 0 0 0 0
0 0 Ā3 0 0 B̄3

0 0 0 Ā4 0 0
0 0 C̄3 0 0 D̄3

0 0 0 C̄4 0 0

 .
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Extended Morse canonical form and its indices

For ODECSs with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 3 (Theorem 3.3.4, 3.3.5 and 3.4.2)

For an ODECS Λuv, we can explicitly construct an extended Morse transformation
bringing Λuv into its extended Morse canonical form EMCF, passing through
intermediate extended Morse triangular form EMTF and extended Morse normal form
EMNF.

EMCF :



żcu = Acuzcu +Bcuu
żcv = Acvzcv +Bcvv
żnn = Annznn

żpu = Apuzpu +Bpuu, ypu = Cpuzpu +Dpuu
żpv = Apvzpv +Bpvv, ypv = Cpvzpv

żo = Aozo yo = Cozo,

both the pairs (Acu, Bcu) and (Acv , Bcv) are controllable and in the Brunovský
canonical forms;

Ann is up to similarity;

the 4-tuple (Apu, Bpu, Cpu, Dpu) and the triple (Apv , Bpv , Cpv) are prime;

the pair (Co, Ao) is observable and in the dual Brunovský canonical form.
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Our algorithm of finding the FBCF of a linear DAECS

Algorithm 1

Step 1: For ∆u, construct Λuv st. Λuv ∈ Expl(∆u).

Step 2: Find an EMtran s.t. Λ̃ũṽ = EMtran(Λuv) is in the EMTF.

Step 3: Find an EMtran s.t. Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF.

Step 4: Bring Λ̄ūv̄ into the EMCF by normalizing the subsystems in the EMNF.

Step 5: Find the implicitation of EMCF, denoted by ∆̄ū. Then ∆̄ū is in the FBCF

and ∆u ex−fb∼ ∆̄ū.

∆u

Λuv

FBCF

Λu

EMTF EMNF EMCF

MTF MNF MCF

explicitation, implicitation,

(Loiseau et al 1991)

extension extension extension extension

Thm.3.3.4 Thm.3.3.5 Thm.3.4.2

Prop.3.3.1 Prop.3.3.2 (Molinari1978)
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Nonlinear DAE control system and its solutions

Consider a nonlinear DAE (DAECS):

Ξu : E(x)ẋ = F (x)+G(x)u, (19)

x ∈ X, an open subset of Rn, u ∈ Rm, functions E(x), F (x), G(x) are C∞ smooth,
denote DAECS (19) by Ξul,n,m = (E,F,G).

A solution of a DAE Ξ = (E,F ) (DAECS Ξu = (E,F,G)) is a C1 curve γ : I → X
defined on an open interval I (a curve (γ, u) : I → X ×U with γ(t) ∈ C1 and
u(t) ∈ C0) s.t. for all t ∈ I, the curve γ(t) (γ(t), u(t)) satisfies E

(
γ(t)

)
γ̇(t) = F

(
γ(t)

)
(E(γ(t))γ̇(t) = F (γ(t)) +G(γ(t))u(t)).

γx0 : a solution γ(t) satisfying γ(0) = x0;

Ix0 : the maximal time-interval on which γx0 exists.

xa: admissible point, through xa there exist at least one solution.
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External feedback equivalence of nonlinear DAE systems

External feedback equivalence: Ξu
ex−fb∼ Ξ̃ũ, ∃ a diffeomorphism ψ : X → X̃ and

smooth functions Q : X → Gl(l,R), αu : X → Rm, βu : X → Gl(m,R) s.t.

Ẽ(ψ(x)) = Q(x)E(x)
(
∂ψ(x)
∂x

)−1
, f̃(ψ(x)) = Q(x)

(
F (x)+G(x)αu(x)

)
,

g̃(ψ(x)) = Q(x)G(x)βu(x).

The ex-fb-equivalence preserves trajectories, but even if we can smoothly conjugate
all trajectories of two DAEs, they are not necessarily ex-fb-equivalent.

Example 5

Consider two DAEs Ξ1 = (E1, F1) and Ξ2 = (E2, F2), where

E1(x) =

1 0 0
0 0 0
0 1 0

 , E2(x) =

1 0 0
0 0 0
0 0 0

 , F1(x) =

x11

x12

x13

 , F2(x) =

x21

x22

x23

 .

Solutions of Ξ1 exist on {x12 = x13 = 0} only, while those of Ξ2 on {x22 = x23 = 0}
only. Ex-fb-equivalence is defined on X or a neighborhood U of x0.

We need another equivalence defined only on where the solution exists !!
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Locally invariant submanifold (existence of solutions)

Definition 4 (Locally (controlled) invariant submanifold)

Consider a DAE Ξl,n = (E,F ) (DAECS Ξul,n,m = (E,F,G)) defined on X . A smooth
submanifold M s.t. xa ∈M is called locally (controlled) invariant if ∃ a neighborhood
U ⊆ X of xa s.t. for any point x0 ∈M ∩ U , ∃ a solution γx0 : Ix0 → X ( a C0-control
u(t)) of Ξ (Ξu) s.t. γx0 (0) = x0 and γx0 (t) ∈M ∩ U for all t ∈ Ix0 .

Proposition 4 (Proposition 4.3.2 and 5.3.3 known results!!!)

For Ξ = (E,F ) (Ξu = (E,F,G)), assume that locally on M ,

(Reg) the dimension of E(x)TxM (and of E(x)TxM + ImG(x) are) is constant

then M is a locally (controlled) invariant submanifold iff locally for all x ∈M ,

F (x) ∈ E(x)TxM+ImG(x). (20)

For ∆ = (E,H), a subspace M is invariant iff HM ⊂ EM .

How to identify (locally) maximal invariant submanifold (where the solution exists)?
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Locally maximal (controlled) invariant submanifold

Proposition 5 ( Proposition 4.3.3)

For a DAE DAECS Ξu = (E,F,G), assume that a point x0 satisfies
F (x0) ∈ ImE(x0)+ImG(x0). Set

M0 =
{
x ∈ X : F (x) ∈ ImE(x)+ImG(x)

}
;

Assume that Mk−1 is a smooth embedded submanifold and denote by Mc
k−1 the connected

component of Mk−1 containing x0 ∈Mc
k−1. Set

Mk =
{
x ∈Mc

k−1 : F (x) ∈ E(x)TxM
c
k−1+ImG(x)

}
.

Then there exists a smallest k, denoted k∗ < n, s.t. Mk∗+1 = Mc
k∗ . If Mc

k∗ satisfies the
assumption (Reg) locally for all x ∈Mc

k∗ , then x0 is an admissible point and M∗ = Mc
k∗

is a locally (controlled) maximal invariant submanifold.

Identifying M∗ was called the reduction procedure, e.g. (Reich1990)(Riaza2008).

We propose an algorithm procedure (see Algorithm 4.3.4 and compare the zero
dynamics algorithm (Isidori 1989)).

Linear case: the maximal invariant subspace M ∗ = V ∗.

Mk can be seen as a nonlinear generalization of the Wong sequence Vi and thus M∗

can be seen that of the limits V ∗ .
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Internal (feedback) equivalence

Restriction: If M = {z2 = 0}, then

Ξ|M : Ẽ(z1, 0)

[
ż1
0

]
= F̃ (z1, 0). (21)

We would like the restricted system as simple as possible!

Reduction:

Ξ1 :

{
ẋ = f(x)

q(x)ẋ= q(x)f(x)
, Ξ2 :

{
ẋ= f(x)
0 = 0

, Ξred1 = Ξred2 : ẋ = f(x) .

Ξu|redM∗ (a restricted system): a reduction of the restriction Ξu|M∗ . The order is
important!!!

Definition 5 (Internal feedback equivalence)

Given two DAEs DAECSs Ξu = (E,F,G) and Ξ̃ũ = (Ẽ, F̃ , G̃), let M∗ and M̃∗ be two
smooth submanifolds. Assume that

(A1) M∗ and M̃∗ are locally maximal controlled invariant submanifolds of Ξu and Ξ̃ũ,
respectively.

(A2) Locally M∗ and M̃∗ satisfy the assumption (Reg).

Then, Ξu and Ξ̃ũ are called locally internally (feedback) equivalent, shortly

in-fb-equivalent , if Ξu|redM∗ and Ξ̃ũ|red
M̃∗

are ex-fb-equivalent, denoted by Ξu
in−fb∼ ˜̃Ξũ .
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Internal equivalence of linear DAEs

The internal equivalence is a proper tool to study solutions of DAEs !!

Theorem 4 (Theorem 2.6.10)

Consider two control systems: Λ∗ ∈ Expl(∆|redM∗ ), Λ̃∗ ∈ Expl(∆̃|red
M̃∗ ). Then the following

are equivalent:

(i) ∆
in∼ ∆̃;

(ii) Λ∗ and Λ̃∗ are feedback equivalent;

(iii) ∆ and ∆̃ have isomorphic trajectories, i.e, there exists a linear and invertible map
S : M ∗ → M̃ ∗ transforming any trajectory x(t, x0), where x0 ∈M ∗ of ∆|redM∗ into a
trajectory x̃(t, x̃0), x̃0 ∈ M̃ ∗ of ∆̃|red

M̃∗ , where x̃0 = Sx0, and vice versa.
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Internal regularity of DAEs (uniqueness of solutions)

Proposition 6 (Proposition 2.6.12)

For a DAE ∆l,n = (E,H), denote rankE = q. The following statements are equivalent:

(i) ∆ is internally regular i.e., through each point of M ∗, ∃ only one solution.

(ii) Any Λ∗ ∈ Expl(∆|redM∗ ) has no inputs;

(iii) rankE = dim EM ∗.

Theorem 5 (Theorem 4.3.14)

Consider a DAE Ξl,n = (E,F ). Let M∗ be a locally maximal invariant submanifold.
Assume that dim E(x)TxM∗ is constant locally for all x ∈M∗. The following are locally
equivalent:

(i) Ξ is internally regular i.e., locally through each point of M∗, ∃ only one solution.

(ii) Ξ is internally equivalent to

Ξ∗ : ż∗ = F ∗
(
z∗
)
, (22)

where z∗ is a local, around xa, system of coordinates on M∗.

(iii) dim M∗ = dim E(x)TxM∗ for all x ∈M∗.
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(Q,v)-explicitation of nonlinear DAE systems

Given a DAE DAECS Ξul,n,m = (E,F,G), fix a point x0. Assume rankE(x) = const.

around x0. Choose Q(x) s.t. Q(x)E(x) =

[
E1(x)

0

]
where E1(x) is locally full row

rank, denote QF (x) =

[
F1(x)
F2(x)

]
and QG(x) =

[
G1(x)
G2(x)

]
.

Definition 6 (Explicitation with driving variables)

We will call the control system

Σuv :

{
ẋ = f(x)+gu(x)u+ gv(x)v
y = h(x)+lu(x)u,

(23)

with two inputs (u, v), where f(x) = E†1F1(x), gu(x) = E†1G1(x), Im gv(x) = kerE(x),
h(x) = F2(x), lu(x) = G2(x), a (Q, v)-explicitation of Ξu, denote the class of all
(Q, v)-explicitation of Ξu by Expl(Ξu).

System feedback equivalence Σuv
sys−fb∼ Σ̃ũṽ : if ∃ a diffeomorphism ψ : X → X̃,

smooth functions αu(x), αv(x), λ(x) and γ(x) and invertible smooth functions βu(x),
βv(x) and η(x) s.t. (compare EM-equivalence of Λuv)[

f̃ ◦ ψ g̃ũ ◦ ψ g̃ṽ ◦ ψ
h̃ ◦ ψ l̃ũ ◦ ψ 0

]
=

[
∂ψ
∂x

∂ψ
∂x
γη

0 η

][
f gu gv

h lu 0

] I 0 0
αu βu 0

αv+λαu λβu βv

 .
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External (feedback) equivalence of DAE systems vs. system (feedback)
equivalence of ODE control systems

Theorem 6 (Theorem 5.2.9)

Locally, assume rankE(x) = const. and rank Ẽ(x̃) = const. Then, given Σuv ∈ Expl(Ξu)

and Σ̃ũṽ ∈ Expl(Ξu) , we have Ξu
ex−fb∼ Ξ̃ũ iff Σuv

sys−fb∼ Σ̃ũṽ.

Ξ

Σ ∈ Expl(Ξ)

Ξ̃

Σ̃ ∈ Expl(Ξ̃)

(Q, v)-explicitation

Ex-equivalence

(Q̃, ṽ)-explicitation

Sys-equivalence

Ξu

Σuv ∈ Expl(Ξu)

Ξ̃u

Σ̃uv ∈ Expl(Ξ̃u)

(Q, v)-explicitation

Ex-fb-equivalence

(Q̃, ṽ)-explicitation

Sys-fb-equivalence

System (feedback) equivalence for explicitation systems is a true counterpart of the
external (feedback) equivalence for DAEs (DAECSs) !!!
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Does Expl(Ξ) (the class of (Q,P )-explicitations of nonlinear DAEs) exists?

When is a nonlinear DAE Ξ = (E,F ) ex-equivalent to a pure semi-explicit PSE DAE?

Ξpse :

{
ẋ1 = F1(x1, x2)
0 = F2(x1, x2),

(24)

Can we get rid of all the driving variables v in a (Q, v)-expl of Ξ?

Example 6

Consider a DAE Ξ = (E,F ), given by
[
sinx3 − cosx3 0

0 0 0

]ẋ1

ẋ2

ẋ3

 =

[
F1(x)

x2
1 + x2

2 − 1

]
,

where F1 : X → R. A control system Σ ∈ Expl(Ξ) is:
ẋ1

ẋ2

ẋ3

 =

 sinx3

− cosx3

0

F1(x) +

0 cosx3

0 − sinx3

1 0

[v1

v2

]
y = x2

1 + x2
2 − 1,

where
[
sinx3 − cosx3 0

]T is a right inverse of E1(x) =
[
sinx3 − cosx3 0

]
.

We may get rid of v1 and regard x3 as a new control, but not for v2:[
ẋ1

ẋ2

]
=

[
sinx3

− cosx3

]
F1(x) +

[
cosx3

− sinx3

]
v2,
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Explicitation without driving variables and pure semi-explicit DAEs

Theorem 7 (Theorem 4.3.27)

For a DAE Ξl,n = (E,F ), the following conditions are equivalent around a point x0:

(i) rankE(x) is constant and the distribution D = kerE(x) is involutive.

(ii) Ξ is ex-equivalent to a pure semi-explicit DAE ΞPSE .

(iii) The driving variables v of any control system Σn,m,p = (f, g, h) ∈ Expl(Ξ) can be
fully reduced.

(Q,P )- and (Q, v)- explicitations of a linear DAE ∆ = (E,H) always exist. But
Expl(Ξ) of of a nonlinear DAE Ξ = (E,F ) exits when E(x) is const. rank and
“Expl(Ξ)” exists when kerE(x) is const. rank and involutive.

Claim: SE DAES of the form below are the right class to be considered.

Ξse :

{
E1(x)ẋ1 = F1(x)

0 = F2(x),

They are more general than pure semi-explicit DAE’s, since kerE need not be
integrable.
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Nonlinear Weistrass form

If a linear DAE ∆ is regular, i.e., E and H are square (l = n) and |sE −H| 6≡ 0 for
s ∈ C, then ∆ is ex-equivalent to the Weierstrass form WF (Weierstrass1868):

WF :

[
N 0
0 I

][
ξ̇
ż

]
=

[
I 0
0 A

] [
ξ
z

]
,

Theorem 8 (Nonlinear Weistrass form Theorem 4.3.29)

Consider Ξl,n = (E,F ) with l = n, assume that rankE(x) = const. = q around an
admissible point xa. Then under some constant rank assumptions in the reduction
procedure and dim E(x)TxM∗ = dim M∗, Ξ is internally regular and Ξ is locally
ex-equivalent to:

NWF :



0 = ξ1
i , 1 ≤ i ≤ m, 1 ≤ j ≤ ρi − 1

ξ̇ji = ξj+1
i + aji +

m∑
l=1

bji,lξ̇
ρl
l + Eji (ξ, z, ξ̇ρ),

...
ż = F ∗(ξ, z)−G(ξ, z)ξ̇,

where the scalar functions aki , b
k
i,l ∈ Ik, 1 ≤ k ≤ ρi − 1, Ik is the ideal generated by ξji ,

1 ≤ i ≤ m, 1 ≤ j ≤ k in the ring of smooth functions of ξts and zr, and where

Eji (ξ, z, ξ̇ρ) =

i−1∑
s=1

Eji,s(ξ, z)ξ̇
ρs
s , j ≥ ρs.
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Feedback linearizations of nonlinear DAECSs

When is a nonlinear DAECS Ξu = (E,F,G) is feedback equivalent to a linear
DAECS ∆u = (E,H,L)?

An ODECS Σn,m : ẋ = f(x) +
∑m
i=1 gi(x)ui, is feedback equivalent to a linear

controllable ODECS Λn,m : ẋ = Ax+Bu iff for all i ≥ 1, the distributions Gi
(defined by G1 := span {g1, . . . , gm}, Gi+1 = Gi + [f,Gi]) are constant dimensional,
involutive and Gn = TX (Jakubczyk and Respondek1980) (Hunt and Su1981).

Lemma 1 (Berger2013)

A linear DAECS ∆u is completely controllable( i.e., for any x0, xf ∈ Rn, ∃ a solution
(x, u) s.t. x(0) = x0 and x(t) = xf ) iff V ∗ ∩W ∗ = Rn.

V ∗ and W ∗ are the limits of the augmented Wong sequences

V0 = Rn, Vi+1 = H−1(EVi + ImL),
W0 = 0, Wi+1 = E−1(HWi + ImL).(
Ŵ1 = kerE, Ŵi+1 = E−1(HŴi + ImL)

)
.

What are the linearizability distributions for a nonlinear DAECS?

What is a nonlinear generalization of the augmented Wong sequences (Vi and Wi) ?
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Internal feedback linearization of nonlinear DAECSs

Define the following two sequences of distributions Di and D̂i, called the linearizability
distributions of Σuv . (Di and D̂i generalize Wi and Ŵi) D0 := {0},

D1 := span
{
gu1 , . . . , g

u
m, g

v
1 , . . . , g

v
s

}
Di+1 := Di + [f,Di], i = 1, 2, . . . ,

 D̂1 := span
{
gv1 , . . . , g

v
s

}
D̂i+1 := Di + [f, D̂i], i = 1, 2, . . . .

Theorem 9 (Internal feedback linearization Theorem 5.4.5)

Consider a DAECS Ξu = Ξul,n,m = (E,F,G), fix an admissible point xa. Let M∗ be the
n∗-dimensional maximal controlled invariant submanifold of Ξu around xa. Assume that
locally on M∗, we have

(A1) M∗ satisfies (Reg),

(A2) the rank of G(x) is m.

Ξu is locally in-fb-equivalent to a linear completely controllable DAECS iff the
distributions Di and D̂i of one (and thus any) ODECS Σuv ∈ Expl(Ξu|redM∗ ) locally
satisfy :

(FL1) Di and D̂i are of constant rank for 1 ≤ i ≤ n∗.

(FL2) Di and D̂i are involutive for 1 ≤ i ≤ n∗ − 1.

(FL3) Dn∗ = D̂n∗ = TM∗.
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Theorem 10 (External feedback linearization Theorem 5.4.6)

Consider a DAECS Ξul,n,m = (E,F,G), fix a point x0. Then Ξu is locally ex-fb-equivalent
to a linear complete controllable DAECS, locally around x0, if and only if there exists a
neighborhood U ⊆ X of x0 in which the following conditions are satisfied.

(EFL1) rankE(x) and rank [E(x), G(x)] are constant.

(EFL2) F (x) ∈ ImE(x) + ImG(x).

(EFL3) For one (and thus any) control system Σuv ∈ Expl(Ξu|M∗ ), which is a system with
no outputs on M∗ = U , a neighborhood of x0, the distributions Di and D̂i satisfy
conditions (FL1)-(FL3) of Theorem 9.

By (EFL1)-(EFL2), M∗ = U , which is a neighborhood of x0.

Note that condition F (x) ∈ ImE(x) + ImG(x) and the condition D̂n∗ = Dn∗ = TM∗

are nonlinear counterparts of the condition V ∗ ∩W ∗ = Rn of Lemma 1.
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Example 7

Consider the following academic example borrowed from (Berger2016zero):

Ξu :

x2 x1 0
0 0 0
1 0 1

 ẋ1

ẋ2

ẋ3

 =

 0
0

x2
2 − x3

1 + x3

+

1 −1
1 1
0 0

 [u1

u2

]
.

We consider an admissible point xa = (x1a, x2a, x3a) = (1, 1, 0). Clearly, ∃U (x1 6= 0 for
x ∈ U) of xa s.t. (EFL1)-(EFL2) of Theorem 10 are satisfied. The reduction of the
restriction of Ξu to M∗ = U is

Ξu|redM∗ :

[
x2 x1 0
1 0 1

] ẋ1

ẋ2

ẋ3

 =

[
0

x2
2 − x3

1 + x3

]
+

[
2
0

]
u1.

Now an ODECS Σuv ∈ Expl(Ξu|redM∗ ) can be taken as

Σuv :

ẋ1

ẋ2

ẋ3

 =

 0
0

x2
2 − x3

1 + x3

+

 0
2/x1

0

u1 +

 x1

−x2

−x1

 v,
where v is a driving variable. It is not hard to verify Di and D̂i satisfy (EFL3). The
original DAECS Ξu is ex-fb-equivalent to the following completely controllable linear
DAECS: 1 0 0

0 1 0
0 0 0


 ξ̇ż1
ż2

 =

0 0 0
0 0 1
0 0 0

 ξz1
z2

+

1 0
0 0
0 1

 [ũ1

ũ2

]
.
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External equivalence of Semi-explicit DAEs

A semi-explicit DAE is

Ξse :

{
R(x)ẋ= a(x)

0 = c(x)
(25)

R(x) is locally of full row rank.

For the ex-equivalence of Ξse, we use Q(x) =

[
Qa 0
0 Qc

]
to preserve the decoupling

into differential and algebraic parts.

Three levels of equivalence (on the algebraic parts), Qc always invertible:
Level-1 : Qc(x)-any; Level-2 : Qc(x) = S(c(x)); Level-3: Qc(x) = Tc(x), T -const.;
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Level-3 external linearization of SE DAEs

Theorem 11 (Theorem 6.4.4)

Consider Ξsen,r,p = (R, a, c) around a point x0. Then in a neighborhood X0 of x0, Ξse is
level-3 ex-equivalent to a linear SE DAE ∆se of the form{

ż1 = A1z1 +B1w1,
ż3 = A3z3 +B3w3 +K3y, 0 = C3z3 +D3w3,

(26)

where (A1, B1) is controllable and in its Brunovsky form, (A3, B3, C3, D3) is in prime
form, iff a (and then any) control system Σ ∈ Expl(Ξse) satisfies the following conditions
in X0:

(i) Σ is level-3 input-output linearizable;

(ii) Si and Gi are involutive and of constant rank;

(iii) S∗ = TX0;

(iv) Si ∩ V ∗ = Gi ∩ V ∗.

Standard Gi Vi, Si distribution in nonlinear control theory. (see e.g. (Isidori 1989)
(Nijmeijer & Van der Schaft 1990)) V ∗ is the largest controlled invariant
distributions in ker dh and S∗ is smallest conditioned distributions containing Img.

The distributions V ∗ and S∗ are, obviously, the nonlinear generalizations of the
limits of Wong sequences V ∗ and W ∗, respectively.
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Conclusions

Existence and uniqueness of solutions of DAE systems.

Internal and external (feedback) equivalence of DAE systems.

Two kinds of explicitation procedures.

Connections between DAE and ODE systems: equivalences, invariant
subspaces, canonical forms.

Nonlinear generalizations of the notions in linear DAEs theory.

Linearization and feedback linearization of nonlinear DAE systems.
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Thank you for listening !!!

47 / 47


	Linear DAEs versus linear ODE control systems
	Linear DAE control system and its feedback canonical form
	Internal (feedback) equivalence and explicitation of nonlinear DAE systems
	Normal forms and (feedback) linearization of nonlinear DAE systems 
	Conclusions

