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Differential-algebraic equation DAE systems

Linear Nonlinear

Ei=Hzx E(z)i = F(x)

m If F is square and invertible, then

Ei=Hxr=1i=FE 'Hzx.
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Differential-algebraic equation DAE systems

Linear

Nonlinear

EFir=Hz

Example 1

b i1

X2

Solutions exist only on {z;

1 0]

x

T
T

(1)

-

0}. (Existence)

—[0 1] Bj . (2)

There exist infinite solutions. (Uniqueness)
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Differential-algebraic equation DAE systems

Linear

Nonlinear

Fi = Hzxz+Lu

E(z)i = F(z)+G(x)u

Example 1

b i1

X2

Solutions exist only on {z;

1 0]

x

T
T

(1)

-

0}. (Existence)

—[0 1] Bj . (2)

There exist infinite solutions. (Uniqueness)
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A mechanical system modeled by DAEs

Example 2
The Euler-Lagrange dynamical equations:

Z=sinf — Asingp
{ §= Acosp (4)

Nonholonomic constrains:

{ 0= — sin pdx + cos pdy (5)

0 = cos pdzx + sin pdy — db.

The “generalized” states:

§: (x7i7y»y7§0»9757)‘)7

Figure: A rolling disk on a slope

and controls u = (u1,u2) = (6, 3), we get

e e a DAE control system DAECS

E(£)& = F(£) + G(&)u.
E:mgmsinﬁ—i—%m(ﬁcz—i—yQ)—i-ngoQ. &)z © (&u

2
®3)
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A mechanical system modeled by DAEs

Example 2

E@©)z = F(§) + GOy,

where

1 0O 0 000 OO

0 1 0 000 0O

0 0 0 10000

E(f) = 0 0O 0 001 00]>

0 0O 0 00010

—sinp 0cosp 00 0 00

cosp 0sinp 00 —-100
an

sin B—Asin ¢
Figure: A rolling disk on a slope Y
® . i F(é) = Acgscp E)

0
Let the “generalized” states be 8
. . 00
52(1790,?!,?;7@,9,57)\)7 00
00
— 00
and u = (u1,u2), we get a DAE control G = |70
system 8(1)
00

E(£)¢ =F(&) + G(®)u.
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A simple electrical circuit modeled by DAEs

Example 3 (Rabier2013)

Characteristics of the capacitor and

inductors:
C(’Uc)’[{c =i
L (i1, )i, = vy (3)
Lo (i1, )ity = viy,
The Kirchhoff’s laws give
Ai=0
{ v =ATe &)
where e are the node potentials and where
—-100 1 0O
A= [ 010-11 0}
— 0010 —11
Figure: A simple electrical circuit The characteristic of the diode:
ia = f(ua)- (5)
N . —se R(z)t = a(x)
The combination of (3), (4) and (5) gives a DAE of the form =%¢ : 0 =cz) or

more general, = : E(z)& = F(z).
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Outline

Linear DAEs versus linear ODE control systems
Linear DAE control system and its feedback canonical form

Internal (feedback) equivalence and explicitation of nonlinear DAE
systems

Normal forms and (feedback) linearization of nonlinear DAE
systems

Conclusions
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Linear DAEs versus linear ODE control systems
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Linear DAEs and ODE control systems

We consider a linear DAE:

A: Ei=Hz, (6)

m where z € R?, £ € RYX", H € R,

m Denoted by A;,, = (E, H).
m External equivalence: A < A if 3 invertible @ and P s.t.

E=QEpP-!
H :%HP*l. ™

m P changes coordinate and ) combines equations.
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External equivalence of DAEs and Morse of ODECSs

m A linear control system
| 2=Az+ Bu
A { y = Cz+ Du, ®)

where z € R?, w € R™, y € RP, denoted Ag,m,p = (A, B,C, D).

m Morse equivalence (Morsel973,Molinari1978): AI'\\{ A, if 3 invertible matrices 7%s,7;,7,

and matrices F,K s.t.

A B| _[r, T:K|[A B]|71T! 0 ©)
¢ D| |0 T, ||C D||FTst Tt
m The prolongation of A:
| z=Az+Bv
A { y = Cz, (10)

where 1 = v,
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Implicitation of linear ODE control systems

From an ODE control system towards a DAE:

Definition 1 (Implicitation of linear ODE control systems)

For a linear control system Ag m,p = (A, B, C, D), set the output y = Cz + Du to be zero,
we define the following DAE with “generalized” states (z,u) in R9T™:

oo 13- A1)

The DAE given by (11) is called the implicitation of A and denoted by APl = I'mpl(A).

m Can we also go the other way around: DAEs = control systems ?

m Constructing a control system A requires to identify states, controls, and outputs.
How?
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Explicitation: from linear DAEs towards linear ODECSs

m Consider A; ,, = (E, H). Denote rank F = ¢, define p =1 — g and m = n — q. Choose
a map

— Pl P
P = |:P2:| € Gl(n,R),
where P € R17%"™ Py € R™*™ such that ker P; = ker F.

m Define coordinates transformation
z| _ |Pix| [P _
o] = [R) =[] = e

I, 0

0 0

-1 _
m Choose @ such that QEP~" = { cC D

} and denote QHP~! = [A B:| R

m Let y = 0= Cz + Du, we attach an ODECS A = (A, B,C, D) to A, that is,
A AP = Impl(A).

Definition 2 (Explicitation of linear control systems)

We call the just defined ODECS Ag,m,p = (A, B, C, D) the (Q, P)-explicitation of A.
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Our construction is not unique: it depends on the choice of P and Q:

m Non-uniqueness of the choice of coordinates: choose other coordinates (z/,u’)

2 =Tsz
{ u = F'z + T;u, (12)

where Ts and T; are invertible. Clearly, z’ = Tsz is another set of coordinates on the
state space and u/ = F’z + T;u is a state feedback transformation.

m Non-uniqueness of the choice of @Q: a triangular transformation (output injection and
multiplication) of the system

d _[Ts K'[2] _[Ts K'|[A B][z (13)
v T lo T, |yl — |0 T,| |C D] |u
where K/ € R"*? T, € Gl(p,R).

m The explicitation is a class of control systems!!!

m The class of all (Q, P)-explicitations will be denoted by Expl(A) and we will write
A € Expl(A).
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Theorem 1 (Theorem 2.3.4)

(i) Given two DAEs A = (E,H) and A = H), choose two control systems

( b
A € Expl(A) and A € Exzpl(A). Then A A if and only if A~ XA

(ii) Consider two control systems A and A. Then AXA if and only if ATmpl 3 A”’”’l

where AI™PL = Impl(A) and AT™PL = Impl(A).

(iii) Consider a DAE A = (E,H) and a control system A. Then A € Ezpl(A) if and only
zfA & AImPL phere ATmPL = Impl(A). Mm"e specifically, A is the
(Q, P)-explicitation of A if and only if AR ATmDL g (@, P).

m Morse equivalent control systems (and only such) give, via implicitation,
ex-equivalent DAEs.

m Ex-equivalent DAEs produce Morse equivalent control systems.

’T‘ Ex-equivalence ’f‘
[ -

Explicitation Explicitation

Morse equivalence .
Ex-equivalence A € Expl(A) 4 A € Expl(A) Ex-equivalence

-

]

.

Implicitation Implicitation
Ex-equivalence _ .
= AT™mPl = Impl(A) Almel = [mpl(A) |e=——
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Subspaces relations between DAEs and ODE control systems

A:Ei=Hz A 2= Az+ Bu A z = Az + Bv
’ y=Cz+ Du, ’ y = Cz,
The Wong sequences
(Wong1974):
n -1 Vo =R%, -1 Vo =R",
Yo =R Vi = H B | v, =[] ([{J] Vi +1Im [gD Viji=kerCN A~ (V; + ImB);
Wo = {0}, W, =0,

Wo = {0}, Wit1 =

E-‘HW;.

W,

1} Nker [C, D])

Wit1=[A, B] ({

Wit1=A(W,; NkerC) + ImB.

V* = ¥« is the largest s.t.
¥ =H 'EY;

W™ = Wi+ is the smallest
st. # =E"'HW.

V* = Vi+ is the largest s.t.
JF, (A+BF)V CV and (C+
DF)V = 0;

W* = W« is the smallest
s.t. 3K, (A+ KC)W + (B +
KD)% = W.

V* = V.« is the largest con-
trolled invariant subspace i.e.,
AY CV +ImB in ker C;

W?* = W« is the smallest con-
ditioned invariant subspace, i.e.,
A(WnkerC) C W, containing
Im B.
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Subspaces relations between DAEs and ODE control systems

Proposition 1 (Subspaces relations Proposition 2.4.10)

Gwen a DAE A = (E, H), the (Q, P)-explicitation A = (A, B,C, D) € Expl(A), and the
prolongation A = (A, B, C) of A, consider the limits of the Wong sequences ¥* and #*
of A and of AT™PL = I'mpl(A), the invariant subspaces V* and W* of A, and the
tnvariant subspaces V* and W* of A. Then the following hold

o) Py =vr@amn =viay = [4 BT W],

C D 0

(ii) PW*(A) = w=(AImPl) = W (A) = [qu 8}71 [W*O(A)} .

m Similar relations hold for augmented Wong sequences of the linear DAE control
systems and invariant subspaces of its explicitation. (see Proposition 3.2.10).
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Kronecker canonical form versus Morse canonical form

Set N = diag{Ngl,.. ‘,Nﬁk}, Kp = diag{KBl,...,ng},LB = diag{LBl,...,LBk}.
Ki=1[0 Ii_1] e RUG-Dxi Li=[Li.1 0] e RU-DXi N, — 0 0 € REX?
i i ) i i ) i Ii1 O
Kronecker canonical form KCF (Kronecker1890): Any DAE A = (E, H) ¥ A = (E, H), where
(BE,H) =
L. 0 0 0 K 0 0 0 under — determin
0 I, 0 0 0 A, 0 0 ODE
0 0 No 0 |0 0 15| 0 nilpotent ’
0o o0 0 KT 0 0 o LT over — determin
k
where 8 = (B1,...,8k), |8 = X Bi, A, is in the real Jordan canonical form. The integers
i=1
(e1,---5€a)s (P1y---spb), (O1,...,0¢), (M,...,na) are called the Kronecker indices.

m The Kronecker indices can be calculated with the help of the Wong sequences ¥;, #;.
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Kronecker canonical form versus Morse canonical form

Morse canonical form MCF (Morse1973)(Molinari1978): Any control system
A=(A,B,C, D)X K = (A,B,C, D), where

Al 0 0 0 B o0
0 A o0 0 0 0
A Bl |0 o 4% o 0 B3
¢ D 0o 0 o0 A* 0o o0/’
0 0 C3 0 0 D3
{o 0 0o ¢4 0 OJ

where (A, B1) is controllable and in its Brunovsky canonical form with indices

el(1 <i<a'); (A%, C*) is observable and in its dual Brunovsky canonical form with
indices 7} (1 < i < d'); (A%, B3,C3, D?) is controllable and observable and in its prime
form with indices /(1 < i < ¢’), and the matrix A? is in its real Jordan canonical form
with each block of p/ x p}(1 < i <b’) dimension.

m The Mores indices can be calculated with the help of the sequences of subspaces V;,
W;.
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Relations of the Kronecker indices and the Morse indices

Proposition 2 (Indices relations Proposition 2.5.3)

m For a DAE A, the Kronecker indices of its KCF coincide with the Morse indices of
the MCF of A € Expl(A).

® (No,I|s|) of the KCF is present iff the subsystem MCF? of the MCF is present.

m The invariant factors of A, in the KCF of A coincide with that of A? in the MCF

of A.

m There exists a perfect correspondence between the KCF of a DAE and the MCF of
its explicitation systems !!

Example 4

(Le, K<) : [1 0]

{0 0
110

(K7, Ly) :

(o1, Ap)
(N¢77[|0'|) (

ol 1
- of]
45 445
1 &4 = Ay

@3] _ 1 0] [«}

) 0 1|z}

1
~4 4
v = 0}“’

|

e

g

<>

(AL, BY): 2t = ut

A2 ;32 = A22?
8=z
(A3, B3,C3,D3) : {%’3
22 =u
4 4 yt =24
(A vC ) :{24:0

3
3
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Linear DAE control system and its feedback canonical form
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Feedback canonical form of linear DAE control systems

m Consider a DAE control system DAECS (denoted by A} = (E,H, L))

l,n,m

A" : Ei = Hx + Lu, (14)
m External feedback equivalence: A" et A% if 3 F and invertible Q, P, G s.t.
E=QEP!, H=QH+LF)P™1, L=QLG. (15)

Any A" = (E, H, L) is ex-fb-equivalent to the following feedback canonical form FBCF
(Loiseau et al 1991):

T
I}E/‘ 0 0 0 0 0 N‘, ¢ 0 0 0 0 . 0 0
0 L 0 0 0 0 0 K, 0 0 0 0 § o o
0 0 In, 0 0 0 0 0 A4 0O 0 0 0 o o
0 0 o K7 0 o|’'|O 0 0o L, 0 0o (>lo &, of]|
0 0 0 0 N/ 0 0 0 0 0 UEa 0 0 0 0
0 0 0 0 o LT 0 0 0 0 o KF 0 o 0

where €/(1 <i<a'),&(1<i<b),0i(1<i<c),5,(1<i<d),ni(1<i<e’)andthe Jordan

structure of A, are its invariants.

m Is there a simpler and geometrical way to get FBCF? Using explicitation ?
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Explicitation with driving variables

m Given A%, let rank ' =r. Let s=n —r and m = [ — r. Choose Q s.t.
ar =7, (16)
where Ey is of full row rank, denote QF = i and QL = L ..
Ho Lo
m Solutions ¢ of F1& = Hyix + Liu satisfy
& € Az + BYu+ker Ey = Ax + B%u + ker E. (17)

where A = EIHl, BY = EILl. Then choose Im BY = ker F and v to parametrize
ker F and let y = Cx + D%u = Hox + Lou.

m Attach to Z* the following control system A%? A, BY%, BY,C, DY),

n,m,s,p ~_ (

A“”'{ T = Az + B%u + B%v

y = Cx + D%u, (18)

where v is called the vector of driving variables.

Definition 3 (Explicitation with driving variables)

We will call the just defined control system A“? a (Q,v)-explicitation of A¥. The class of
all (@, v)-explicitations of A" is denoted by Expl(A").

20 /47



Equivalence of DAECSs and ODECSs with two kinds of inputs

wEM zes o . .
m Extended Morse equivalence: A"Y "~ A"V if 3 invertible matrices T%,Ty, T, T, and
matrices Fy, Fy,R, K s.t.

S Tt 0 0

A B* BY| [T, T:K||A B“ BY e 1

é Da 0 0 Ty C DY 0 FuTz . Tu—l 91 ’
(Fy + RE)T; ' RT;' T,

Extended Morse transformation: EMyran = (T, Ty, Tu, Tv, Fu, Fu, R, K).

m Two kinds of feedback transformations (v is more powerful than wu !):

v:va—l—Ru—i-Tv_lfJ and u:Fua:—f—Tu_lﬂ,.

Theorem 2 (Theorem 3.2.9)

— _ —fb ~ - -
Given A"V € Expl(A™) and A“Y € Expl(A"™), locally A" v b Aa iff AW EM Ras,

Our plan of getting the FBCF of a DAECS A:

AQ (Loiseau et al 1991) \jCF
explicitation implicitation???
relation??? relation???
Fj (Morse1973)(Molinari1978), can we simplify the construction? WCF“ 21/ a7




Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS A = (A, B,C, D), we can ezplicitly construct a Morse transformation
bringing A into its Morse canonical form MCF, passing through intermediate Morse
triangular form MTF (A = (A, B,C, D)) and Morse normal form MNF

(A= (A,B%,C,D)).

Ay A2 A3 A B B2

0 Ay 0o Al 0 0

A Bl _|o o Az A} 0 Bs
MTE : {C‘ f)] 1o 0 0 Ay 0 0
0 0 C3 Ci 0 Ds

0 0 0 (4 0 0
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Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS A = (A, B,C, D), we can explicitly construct a Morse transformation
bringing A into its Morse canonical form MCF, passing through intermediate Morse
triangular form MTF (/~\ = ([l, B,C, D)) and Morse normal form MINF
(A=(A,B,C,D)).

AL 0 0 0 B 0

0 A 0 0 0 0

[A Bl _|o o0 A3 0 0 Bs
MNE [C‘ D} “]o 0o 0 A 0 0
0 0 Csy 9 0 D3

0 0 0 (4 0 0
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Extended Morse canonical form and its indices

For ODECSs with two kinds of inputs (u,v), we propose a similar procedure.

Theorem 3 (Theorem 3.3.4, 3.3.5 and 3.4.2)

For an ODECS A"?, we can explicitly construct an extended Morse transformation
bringing A“V into its extended Morse canonical form EMCEF, passing through
intermediate extended Morse triangular form EMTF and extended Morse normal form
EMNF.

2Cu e AC’(LZCU + BCuu

Z.,'C,U e AC'UZC’U + BC'U,U

nn . Annznn

ZPU = APUZPY 4 BPUy  yPU = CPUZPY 4 DPUy
2PV = APYZPV 4 BPVy PV = CPY PV

Z‘O e AOZO yO — 00207

w

EMCEF :

m both the pairs (A%, B*) and (A®Y, B¢) are controllable and in the Brunovsky
canonical forms;

m A™ is up to similarity;
m the 4-tuple (AP¥, BP* CP% DP") and the triple (APY, BPY, CP") are prime;
m the pair (C°, A°) is observable and in the dual Brunovsky canonical form.
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Our algorithm of finding the FBCF of a linear DAECS

m Step 1: For A%, construct A*V st. A*Y € Expl(AY).

m Step 2: Find an EMirqn s.t. A% = EM¢ran(A") is in the EMTF.
m Step 3: Find an EMyran s.t. A% = EMyran(A%?) is in the EMNF.
m Step 4: Bring A®™ into the EMCF by normalizing the subsystems in the EMNF.

m Step 5: Find the implicitation of EMCF, denoted by A%. Then A% is in the FBCF

ex—fb

and A% AT,
At FBCF
‘ (Loiseau et al 1991)
explicitation, implicitation,

Thm.3.3.4 Thm.3.3.5 Thm.3.4.2
EMCF

extension extension extension extension

Prop.3.3.1 Prop.3.3.2 (Molinari1978)
A MTF MNF MCF
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Internal (feedback) equivalence and explicitation of nonlinear
DAE systems
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Nonlinear DAE and its solutions

Consider a nonlinear DAE (DAECS):

E: B(x)d = F(z)+G(2)u, a9

m z € X, an open subset of R™, v € R functions E(z), F(z), G/(z) are C* smooth,
denote DAECS (19) by E} = (E,F, Q).

“l,n,m

m A solution of a DAE E = (E,F) (DAECS =% = (F,F, () isaCl curve y: [ — X
defined on an open interval I (a curve (v, u): [ — X x % with ~(t) € C' and
u(t) € CY) s.t. for all ¢t € I, the curve y(t) (v(t), u(t)) satisfies E (v(t)) ¥(t) = F (v(t))
(B((£)3(8) = F((1)) + G 0)u(t)).

m 7,0: a solution () satisfying v(0) = 2°;

m [ 0: the maximal time-interval on which ~, 0 exists.

® Z,: admissible point, through z, there exist at least one solution.

26 /47



External equivalence of nonlinear DAE systems

—fb ~ - ~
m External feedback equivalence: =" e~ )E“, 3 a diffeomorphism 1 : X — X and

smooth functions Q : X — GI(l,R), o* : X — R™ g% : X — Gl(m,R) s.t.

Bw() = Q@)E@) (242) 7, Fas(e) = Q) (F@)+Gr)a*(2)
(Y (z)) = Q(x)G(x)B%(x).

m The ex-fb-equivalence preserves trajectories, but even if we can smoothly conjugate
all trajectories of two DAESs, they are not necessarily ex-fb-equivalent.

Example 5

Consider two DAEs E1 = (E1, F1) and Eg = (E2, F»), where

1 0 O 1 0 O r11 21
Ei(z)=1(0 0 0|, Exx)=1|0 0 0|, Fi(zx)= |z12|, Fo(z)= |[z22
0 1 0 0O 0 O 13 23

m Solutions of E; exist on {12 = x13 = 0} only, while those of 23 on {x22 = z23 = 0}
only. Ex-fb-equivalence is defined on X or a neighborhood U of x°.

m We need another equivalence defined only on where the solution exists !!
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Locally invariant submanifold (existence of solutions)

Definition 4 (Locally invariant submanifold)

Consider a DAE 5; ,, = (B, F) (DAECS = = (F, F,()) defined on X . A smooth
submanifold M s.t. o € M is called locally (controlled) invariant if 3 a neighborhood
U C X of z4 s.t. for any point 2° € M N U, 3 a solution v,0 : I[,o — X ( a C”-control

u(t)) of E () s.t. 7,0(0) = 2% and v,0(t) € M NU for all t € I0.

Proposition 4 (Proposition 4.3.2 and 5.3.3 known results!!!)
For2= (E,F) (2" = (E.F,d)), assume that locally on M,

[(Reg) the dimenston of E(x)TxM (and of E(x)T, M + Im G(x) are) is constand

then M s a locally (controlled) invariant submanifold iff locally for all x € M,

F(z) € E(zx)T: M+Im G(x). (20)

m For A = (E, H), a subspace . is invariant iff H.#Z C E/ .

m How to identify (locally) maximal invariant submanifold (where the solution exists)?
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Locally maximal invariant submanifold

Proposition 5 ( Proposition 4.3.3)

For a DAE DAECS E* = (E, F,(), assume that a point z0 satisfies
F(x°) € ITm E(z°)+Tm G/(2Y). Set

My ={z€X:F(z) € ImE(z)+ImG(x)};
Assume that My_1 is a smooth embedded submanifold and denote by Mf_, the connected
component of My_1 containing z° € Mg . Set
My, = {:c € My_,:F(z) € E(x)TzMg_;+Im G(:Ir)} .

Then there exists a smallest k, denoted k* <mn, s.t. My« 1 = Mg.. If M{. satisfies the
assumption (Reg) locally for all x € M., then 29 is an admissible point and M* = M.
s a locally (controlled) mazimal invariant submanifold.

m Identifying M* was called the reduction procedure, e.g. (Reich1990)(Riaza2008).

m We propose an algorithm procedure (see Algorithm 4.3.4 and compare the zero
dynamics algorithm (Isidori 1989)).

m Linear case: the maximal invariant subspace .Z* = 7 *.

m M} can be seen as a nonlinear generalization of the Wong sequence ¥; and thus M*
can be seen that of the limits 7'* .
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Internal equivalence

m Restriction: If M = {z2 = 0}, then
E|ar : E(21,0) ['zol} = F(21,0). (21)

m We would like the restricted system as simple as possible!

] Reduction_z ) o)
r = f(z _ i= f(x ved  mred .
1: q(x)a'c:q(ar)f(a:) s :2:{ 0=0 s :1‘1—“201, x—f(x) )

m =4[7¢¢ (a restricted system): a reduction of the restriction =
important!!!

Definition 5 (Internal equivalence)

Given two DAEs DAECSs 2% = (E, F, () and 2% = (E, F, (), let M* and M* be two
smooth submanifolds. Assume that

(1]

=Uu

|ar+. The order is

(A1) M* and M* are locally maximal controlled invariant submanifolds of 2 and 27,
respectively.

(A2) Locally M* and M* satisfy the assumption (Reg).

Then, 2% and 2% are called locally internally (feedback) equivalent, shortly
‘lf =u 'red and = |'r_ed
A

oy in— bz o
=u A R

in-fb-equivalent ,
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Internal equivalence of linear DAEs

m The internal equivalence is a proper tool to study solutions of DAEs !!

Theorem 4 (Theorem 2.6.10)

Consider two control systems: A* € Ea?pl(AB;[d*), A* e Ezpl(5|%*) Then the following
are equivalent:

(i) ATA;
(i) A* and A* are feedback equivalent;

(iii) A and A have isomorphic trajectories, i.e, there exists a linear and invertible map
S M* — M* transforming any trajectory x(t,x°), where 0 € A4* of A|T/2d* nto a
trajectory @(t, &°), ° € M* of A|T5-d* , where 70 = Sx0, and vice versa.
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Internal regularity of DAEs (uniqueness of solutions)

Proposition 6 (Proposition 2.6.12)
For a DAE Ay ,, = (E, H), denote rank E = q. The following statements are equivalent:

(i) A is internally regular i.e., through each point of .#*, 3 only one solution.
(i) Any A* € Ezpl(AB;{d*) has no inputs;

(iii) rank B = dim EZ*.

Theorem 5 (Theorem 4.3.14)

Consider a DAE 2, = (E,F). Let M* be a locally mazimal invariant submanifold.
Assume that dim E(x)TyM* is constant locally for all x € M*. The following are locally

equivalent:

(i) E s internally regular i.e., locally through each point of M*, 3 only one solution.
(i) E is internally equivalent to
B3 =F (2Y), (22)
where z* is a local, around xq, system of coordinates on M*.
(iii) dim M* = dim E(z)TyM* for all x € M*.
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(Q,v)-explicitation of nonlinear DAE systems

m Given a DAE DAECS =} = (E, F,(), fix a point 2°. Assume rank F(x) = const.

“l,n,m
around z°. Choose Q(z) s.t. Q(z)E(z) = [Eléx)

rank, denote QF(x) = {?;Eiﬂ and QG(z) = {gi EZ;}

} where E1(z) is locally full row

Definition 6 (Explicitation with driving variables)

We will call the control system
w | &= f(@)+g“(z)u+ g¥(x)v
. { y = h{w)+1"(x)u, (23)

with two inputs (u,v), where f(z) = EIF& (z), g“(z) = EI(:l(,I?% Im g% (z) = ker E(x),
h(z) = Fa(x), I“(z) = G2(x), a (Q,v)-explicitation of £, denote the class of all
(Q, v)-explicitation of Z“ by Expl(E").

b o~ - ~

m System feedback equivalence ¥"? vsss >4Y: if 3 a diffeomorphism 9 : X — X,
smooth functions o (), a¥(z), A(x) and y(x) and invertible smooth functions 5" (x),
BY(x) and n(z) s.t. (compare EM-equivalence of A“?)

. . - 1 I 0 0

fov gou g¥o w} _ [gf gfw} {f g' g”} o gu 0
U ~ afy u

hot [foy 0 0 L I e N P VD V: .
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External (feedback) equivalence of DAE systems vs. system (feedback)
equivalence of ODE control systems

heorem 6 (Theorem 5.2.9)

Locally, assume rank E(z) = const. and rank E(Z) = const. Then, given *V € Expl(Z*)

X0 iff $uY sysf:fl) b

ex—fb
~

and 277 € Expl(E") , we have E*

Ex-equivalence | \ Ex-fb-equivalence
\ |

(Q, v)-explicitation Q, 'ﬁ)-explicitationjl Jl(@. v)-explicitation (@, 9)-explicitation

£ ¢ Expl(En Sys-fb-equivalence
€ Expl(Z }¢=.

m System (feedback) equivalence for explicitation systems is a true counterpart of the
external (feedback) equivalence for DAEs (DAECSs) !!!

[u

_ Sys-equivalence [ -
¥ € Expl(2) ‘ S € Expl(2)

S ¢ Expl(EY)
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Does Exzpl(E) (the class of (Q, P)-explicitations of nonlinear DAEs) exists?

m When is a nonlinear DAE = = (E, F') ex-equivalent to a pure semi-explicit PSE DAE?

=pse :{ 21.51:F1(£E1,CC2) (24)

m Can we get rid of all the driving variables v in a (Q,v)-expl of E7?

Example 6

sinzy —cosx3 0:| o1 _|: Fyi(x) }

0 0 0] |¥2 22 4221
a3

Consider a DAE E = (E, F), given by |:

where F : X — R. A control system ¥ € Expl(2) is:

T1 sin x3 0 COS 3 "
Z2| = |—coszz| Fi(z)+ [0 —sinzs |:U1i|
i3 0 1 0 2
y =uzi+ x% -1,
where [sin T3 —CcosTy O]T is a right inverse of E1(z) = [sin T3 —cCcosxy 0].

m We may get rid of v; and regard x3 as a new control, but not for va:
T sinx cosx
o —coszs —sinzs
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Explicitation without driving variables and pure semi-explicit DAEs

Theorem 7 (Theorem 4.3.27)

For a DAE 2, = (E, F), the following conditions are equivalent around a point 20

(i) rank E(z) is constant and the distribution 9 = ker E(x) is involutive.
(i) Z is ex-equivalent to a pure semi-explicit DAE =P5E,

(iii) The driving variables v of any control system Xy m.p = (f,g,h) € Expl(E) can be
fully reduced.

m (Q, P)- and (Q,v)- explicitations of a linear DAE A = (E, H) always exist. But
Expl(Z) of of a nonlinear DAE E = (E, F) exits when E(x) is const. rank and
“Expl(E)” exists when ker E(x) is const. rank and involutive.

m Claim: SE DAES of the form below are the right class to be considered.

se . { Ei(z)d )
’ 0 = Fr(z)

[1]

)

m They are more general than pure semi-explicit DAE’s, since ker E' need not be
integrable.
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Normal forms and (feedback) linearization of nonlinear DAE
systems
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Nonlinear Weistrass form

If a linear DAE A is regular, i.e., F and H are square (I =n) and |[sE — H| # 0 for
s € C, then A is ex-equivalent to the Weierstrass form WF (Weierstrass1868):

we [s 3J[]-6 Al

Theorem 8 (Nonlinear Weistrass form Theorem 4.3.29)

Consider Z; , = (E, F) with |l =n, assume that rank E(x) = const. = q around an
admissible point xo. Then under some constant rank assumptions in the reduction
procedure and dim E(z)T, M* = dim M*, = is internally reqular and =2 is locally
ex-equivalent to:

0 =¢}, 1<1,<m 1<j<p;i—1

g =% +adl +sz” + El(€,2,€°),
NWEF :

i = F*(£,2) — G, 2)€,

where the scalar functions ak bk €Ik, 1 <k<p;—1, IF is the ideal generated by 5{,
1<i<m, 1< j <k in the ring of smooth functions of & and z, and where

El(¢,2,€°) = ZE 2)€, > ps.
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Feedback linearizations of nonlinear DAECSs

m When is a nonlinear DAECS E% = (E, F, G) is feedback equivalent to a linear
DAECS A% = (E,H,L)?

m An ODECS X m : & = f(z) + D12 gi(x)uy, is feedback equivalent to a linear
controllable ODECS Ay m : & = Az + Bu iff for all ¢ > 1, the distributions G;
(defined by Gy :=span{g1,...,9m}, Gi+1 = G; + [f, Gi]) are constant dimensional,
involutive and G, = T'X (Jakubczyk and Respondek1980) (Hunt and Sul981).

Lemma 1 (Berger2013)

A linear DAECS A" is completely controllable( i.e., for any 20, 2f € R, 3 a solution
(z,u) s.t. z(0) = 20 and x(t) = =) iff V* O W* =R".

m ¥* and #* are the limits of the augmented Wong sequences

Yo =R", ¥y1 = H YEY¥% +ImL),

Wo =0, #Wiy1 = E-Y(HW; +ImL).

(% =kerE, W1 = E-(HY; + ImL)) .
m What are the linearizability distributions for a nonlinear DAECS?

m What is a nonlinear generalization of the augmented Wong sequences (¥; and #;) ?
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Internal feedback linearization of nonlinear DAECSs

Define the following two sequences of distributions D; and ﬁi, called the linearizability
distributions of X%V, (D; and D; generalize W; and W)

Do :={0}, R
D1 :=span{g¥,...,g%, 9%,...,9} D1 :=span{gy,..., g%}
Di+1 = D1+[f7'Dl], i=1,2,..., D’i+1 = Dz+[f;D2]7 t=1,2,....

Theorem 9 (Internal feedback linearization Theorem 5.4.5)

Consider a DAECS Z% = 2% = (E,F,Q), fix an admissible point xq. Let M* be the

- “l,nm
n*-dimensional mazimal controlled invariant submanifold of E* around xo. Assume that
locally on M*, we have

(Al) M* satisfies (Reg),
(A2) the rank of G(zx) is m.

E¥ is locally in-fb-equivalent to a linear completely controllable DAECS iff the
distributions D; and D; of one (and thus any) ODECS $"“* € Expl(Z“|199) locally
satisfy :

(FL1) D; and D; are of constant rank for 1 < i < n*.
(FL2) D; and D; are involutive for1<i<n*—1.
(FL3) Dpx = Dypx = TM*.
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Theorem 10 (External feedback linearization Theorem 5.4.6)

Consider a DAECS =%

l,n,m
to a linear complete controllable DAECS, locally around x°, if and only if there exists a
neighborhood U C X of x° in which the following conditions are satisfied.

(EFL1) rank E(z) and rank [E(z), G(z)] are constant.

= (E,F,G), fiz a point °. Then E* is locally ex-fb-equivalent

(EFL2) F(x) € Im E(z) + Im G(x).
(EFL3) For one (and thus any) control system %Y € Expl(E¥|pr+), which is a system with

no outputs on M* = U, a neighborhood of z°, the distributions D; and D; satisfy
conditions (FL1)-(FL3) of Theorem 9.

m By (EFL1)-(EFL2), M* = U, which is a neighborhood of z°.

= Note that condition F(z) € Im E(z) + Im G(z) and the condition Dyp» = Dy« = TM*
are nonlinear counterparts of the condition ¥* N #* = R" of Lemma 1.

41 /47



Consider the following academic example borrowed from (Berger2016zero):

xg x1 O I1 0 1 -1 U
= (o 0 0] |af = 0 +11 1 {ul} )
1 0 1| |&3 a2 — 23 + a3 0 0 2

We consider an admissible point zq = (Z1a, %24, %34) = (1, 1,0). Clearly, 3U (z1 # 0 for
z € U) of zq s.t. (EFL1)-(EFL2) of Theorem 10 are satisfied. The reduction of the
restriction of 2% to M™* = U is

1
—ured . |T2 X1 0 . _ 0 2
= M [1 0 1} o2 _[zg—xf—i-xg]Jr[O]ul'

Now an ODECS S*¥ € Expl(E%|75¢) can be taken as

.i}l 0 0 Tl
TV g | = 0 —+ 2/11 up + | —x2| v,
T3 $% — x% + x3 0 —x1

where v is a driving variable. It is not hard to verify D; and D; satisfy (EFL3). The
original DAECS E* is ex-fb-equivalent to the following completely controllable linear
DAECS:

1 0 0 3 0 0 0] e 1 0] o
0 1 0| [z]=1]0 0 1| |=z1|l+|0 0 {ul}
0 0 0] |2 0 0 Of |2 0 1 2
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External equivalence of Semi-explicit DAEs

A semi-explicit DAE is

(x)
( (25)

o
Il

m R(x) is locally of full row rank.

Qa

m For the ex-equivalence of Z%¢, we use Q(z) = |: 0 (SC} to preserve the decoupling

into differential and algebraic parts.

m Three levels of equivalence (on the algebraic parts), Q¢ always invertible:
Level-1 : Q°(z)-any; Level-2 : Q¢(x) = S(c(x)); Level-3: Q¢(z) = Tc(x), T-const.;
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Level-3 external linearization of SE DAEs

Theorem 11 (Theorem 6.4.4)

Consider 7S, , = (R,a,c) around a point xo. Then in a neighborhood Xo of zo, 25¢ is
level-3 ex-equivalent to a linear SE DAE AS¢ of the form

{ 31 = Alzl 4 Bly!,

33 = A33 L B3uwd 1 K3y, 0= 323 + D3w3, (26)

where (A, BY) is controllable and in its Brunovsky form, (A3, B3,C3, D3) is in prime
form, iff a (and then any) control system X € Expl(=°¢) satisfies the following conditions
n XO s

(1) X s level-3 input-output linearizable;
(ii) S; and G; are involutive and of constant rank;
(iii) S* = TXo;

(iV) S;iNV* =G, NV*,

m Standard G; V;, S; distribution in nonlinear control theory. (see e.g. (Isidori 1989)
(Nijmeijer & Van der Schaft 1990)) V* is the largest controlled invariant
distributions in ker dh and S* is smallest conditioned distributions containing Img.

m The distributions V* and S* are, obviously, the nonlinear generalizations of the

limits of Wong sequences ¥™* and #*, respectively.
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Conclusions
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Conclusions

m Existence and uniqueness of solutions of DAE systems.
m Internal and external (feedback) equivalence of DAE systems.
m Two kinds of explicitation procedures.

m Connections between DAE and ODE systems: equivalences, invariant
subspaces, canonical forms.

m Nonlinear generalizations of the notions in linear DAEs theory.

m Linearization and feedback linearization of nonlinear DAE systems.

46 /47



Thank you for listening !!
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