Geometric Analysis of Differential-Algebraic Equations: Linear, Nonlinear and Linearizable

Yahao CHEN

Ph.D. advisors: Witold Respondek

Laboratoire de Mathématiques, EA 3226 - FR CNRS 3335, Normandie Université, Institut National des Sciences Appliquées de Rouen Normandie, FRANCE.

June 13th, 2019.

Differential-algebraic equation DAE systems

Linear	Nonlinear
$E\dot{x} = Hx$	$E(x)\dot{x} = F(x)$

 \blacksquare If E is square and invertible, then

$$E\dot{x} = Hx \Rightarrow \dot{x} = E^{-1}Hx.$$

Differential-algebraic equation DAE systems

Linear	Nonlinear	
$E\dot{x} = Hx$	$E(x)\dot{x} = F(x)$	

Example 1

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solutions exist only on $\{x_1 = 0\}$. (Existence)

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

There exist infinite solutions. (Uniqueness)

(1)

(2)

Differential-algebraic equation DAE systems

$$E\dot{x} = Hx + Lu$$
 $E(x)\dot{x} = F(x) + G(x)u$

Example 1

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \tag{1}$$

Solutions exist only on $\{x_1 = 0\}$. (Existence)

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \tag{2}$$

There exist infinite solutions. (Uniqueness)

A mechanical system modeled by DAEs

Example 2

Figure: A rolling disk on a slope

The Lagrangian:

$$\mathcal{L} = mgx \sin \beta + \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}J\varphi^2.$$
(3)

The Euler-Lagrange dynamical equations:

$$\begin{cases} \ddot{x} = \sin \beta - \lambda \sin \varphi \\ \ddot{y} = \lambda \cos \varphi \end{cases} \tag{4}$$

Nonholonomic constrains:

$$\begin{cases} 0 = -\sin\varphi dx + \cos\varphi dy \\ 0 = \cos\varphi dx + \sin\varphi dy - d\theta. \end{cases}$$
 (5)

The "generalized" states:

$$\xi = (x, \dot{x}, y, \dot{y}, \varphi, \theta, \beta, \lambda),$$

and controls $u = (u_1, u_2) = (\dot{\theta}, \dot{\beta})$, we get a DAE control system DAECS

$$E(\xi)\dot{x} = F(\xi) + G(\xi)u.$$

A mechanical system modeled by DAEs

Example 2

Figure: A rolling disk on a slope

Let the "generalized" states be

$$\xi = (x, \dot{x}, y, \dot{y}, \varphi, \theta, \beta, \lambda),$$

and $u = (u_1, u_2)$, we get a DAE control system

$$E(\xi)\dot{\xi} = F(\xi) + G(\xi)u.$$

$$E(\xi)\dot{x} = F(\xi) + G(\xi)u,$$

where

$$E(\xi) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -\sin \varphi & 0 & \cos \varphi & 0 & 0 & 0 & 0 & 0 \\ \cos \varphi & 0 & \sin \varphi & 0 & 0 & -1 & 0 & 0 \end{bmatrix},$$

$$F(\xi) = \begin{bmatrix} \sin \beta - \dot{x} & \sin \varphi \\ \dot{y} & \dot{y} \\ \lambda \cos \varphi & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$G(\xi) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

A simple electrical circuit modeled by DAEs

Example 3 (Rabier2013)

Figure: A simple electrical circuit

Characteristics of the capacitor and inductors:

$$\begin{cases}
C(v_c)\dot{v}_c = i_c \\
L_1(i_{l_1})\dot{i}_{l_1} = v_{l_1} \\
L_2(i_{l_2})\dot{i}_{l_2} = v_{l_2},
\end{cases}$$
(3)

The Kirchhoff's laws give

$$\begin{cases} Ai = 0 \\ v = A^T e \end{cases} \tag{4}$$

where e are the node potentials and where

$$A = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}.$$

The characteristic of the diode:

$$i_d = f(u_d). (5)$$

The combination of (3), (4) and (5) gives a DAE of the form $\mathbf{\Xi}^{se}: \left\{ \begin{array}{c} R(x)\dot{x} = a(x) \\ 0 = c(x) \end{array} \right.$, or more general, $\mathbf{\Xi}: E(x)\dot{x} = F(x)$.

Outline

- Linear DAEs versus linear ODE control systems
- 2 Linear DAE control system and its feedback canonical form
- Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- Normal forms and (feedback) linearization of nonlinear DAE systems
- 5 Conclusions

- Linear DAEs versus linear ODE control systems
- Linear DAE control system and its feedback canonical form
- Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- Normal forms and (feedback) linearization of nonlinear DAE systems
- 5 Conclusions

Linear DAEs and ODE control systems

We consider a linear DAE:

$$\Delta : E\dot{x} = Hx,\tag{6}$$

- where $x \in \mathbb{R}^n$, $E \in \mathbb{R}^{l \times n}$, $H \in \mathbb{R}^{l \times n}$.
- Denoted by $\Delta_{l,n} = (E, H)$.
- External equivalence: $\Delta \stackrel{ex}{\sim} \tilde{\Delta}$ if \exists invertible Q and P s.t.

$$\begin{split} \tilde{E} &= QEP^{-1} \\ \tilde{H} &= QHP^{-1}. \end{split} \tag{7}$$

 \blacksquare P changes coordinate and Q combines equations.

External equivalence of DAEs and Morse of ODECSs

■ A linear control system

$$\Lambda : \left\{ \begin{array}{l} \dot{z} = Az + Bu \\ y = Cz + Du, \end{array} \right. \tag{8}$$

where $z \in \mathbb{R}^q$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, denoted $\Lambda_{q,m,p} = (A, B, C, D)$.

■ Morse equivalence (Morse1973,Molinari1978): $\Lambda \stackrel{M}{\sim} \tilde{\Lambda}$, if \exists invertible matrices T_s, T_i, T_o and matrices F, K s.t.

$$\begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} = \begin{bmatrix} T_s & T_s K \\ 0 & T_o \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} T_s^{-1} & 0 \\ FT_s^{-1} & T_i^{-1} \end{bmatrix}$$
(9)

■ The prolongation of Λ :

$$\mathbf{\Lambda} : \left\{ \begin{array}{l} \dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}v \\ y = \mathbf{C}\mathbf{z}, \end{array} \right. \tag{10}$$

where $\dot{u} = v$,

$$\mathbf{z} = \begin{bmatrix} z \\ u \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 \\ I_m \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} C & D \end{bmatrix}.$$

Implicitation of linear ODE control systems

From an ODE control system towards a DAE:

Definition 1 (Implicitation of linear ODE control systems)

For a linear control system $\Lambda_{q,m,p} = (A,B,C,D)$, set the output y = Cx + Du to be zero, we define the following DAE with "generalized" states (z,u) in \mathbb{R}^{q+m} :

$$\Delta^{Impl} : \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{z} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} z \\ u \end{bmatrix}. \tag{11}$$

The DAE given by (11) is called the implicitation of Λ and denoted by $\Delta^{Impl} = Impl(\Lambda)$.

- Can we also go the other way around: DAEs \Rightarrow control systems?
- \blacksquare Constructing a control system Λ requires to identify states, controls, and outputs. How?

Explicitation: from linear DAEs towards linear ODECSs

■ Consider $\Delta_{l,n} = (E, H)$. Denote rank E = q, define p = l - q and m = n - q. Choose a map

$$P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in Gl(n, \mathbb{R}),$$

where $P_1 \in \mathbb{R}^{q \times n}$, $P_2 \in \mathbb{R}^{m \times n}$ such that $\ker P_1 = \ker E$.

■ Define coordinates transformation

$$\begin{bmatrix} z \\ u \end{bmatrix} = \begin{bmatrix} P_1 x \\ P_2 x \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} x = Px.$$

- Choose Q such that $QEP^{-1} = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}$ and denote $QHP^{-1} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$,
- Let y = 0 = Cx + Du, we attach an ODECS $\Lambda = (A, B, C, D)$ to Δ , that is, $\Delta \stackrel{ex}{\sim} \Delta^{Impl} = Impl(\Lambda)$.

Definition 2 (Explicitation of linear control systems)

We call the just defined ODECS $\Lambda_{q,m,p} = (A, B, C, D)$ the (Q, P)-explicitation of Δ .

Our construction is not unique: it depends on the choice of P and Q:

Non-uniqueness of the choice of coordinates: choose other coordinates (z', u')

$$\begin{cases} z' = T_s z \\ u' = F'z + T_i u, \end{cases}$$
 (12)

where T_s and T_i are invertible. Clearly, $z' = T_s z$ is another set of coordinates on the state space and $u' = F'z + T_i u$ is a state feedback transformation.

Non-uniqueness of the choice of Q: a triangular transformation (output injection and multiplication) of the system

$$\begin{bmatrix} \dot{z}' \\ y' \end{bmatrix} = \begin{bmatrix} T_s & K' \\ 0 & T_o \end{bmatrix} \begin{bmatrix} \dot{z} \\ y \end{bmatrix} = \begin{bmatrix} T_s & K' \\ 0 & T_o \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} z \\ u \end{bmatrix}$$
(13)

where $K' \in \mathbb{R}^{n \times p}$, $T_o \in Gl(p, \mathbb{R})$.

- The explicitation is a class of control systems!!!
- The class of all (Q, P)-explicitations will be denoted by $Expl(\Delta)$ and we will write $\Lambda \in Expl(\Delta)$.

Theorem 1 (Theorem 2.3.4)

- (i) Given two DAEs $\Delta = (E, H)$ and $\tilde{\Delta} = (\tilde{E}, \tilde{H})$, choose two control systems $\Lambda \in Expl(\Delta)$ and $\tilde{\Lambda} \in Expl(\tilde{\Delta})$. Then $\Delta \stackrel{ex}{\sim} \tilde{\Delta}$ if and only if $\Lambda \stackrel{M}{\sim} \tilde{\Lambda}$.
- (ii) Consider two control systems Λ and $\tilde{\Lambda}$. Then $\Lambda \stackrel{M}{\sim} \tilde{\Lambda}$ if and only if $\Delta^{Impl} \stackrel{ex}{\sim} \tilde{\Delta}^{Impl}$, where $\Delta^{Impl} = Impl(\tilde{\Lambda})$ and $\tilde{\Delta}^{Impl} = Impl(\tilde{\Lambda})$.
- (iii) Consider a DAE $\Delta = (E, H)$ and a control system Λ . Then $\Lambda \in Expl(\Delta)$ if and only if $\Delta \overset{ex}{\sim} \Delta^{Impl}$, where $\Delta^{Impl} = Impl(\Lambda)$. More specifically, Λ is the (Q, P)-explicitation of Δ if and only if $\Delta \overset{ex}{\sim} \Delta^{Impl}$ via (Q, P).
 - Morse equivalent control systems (and only such) give, via implicitation, ex-equivalent DAEs.
 - Ex-equivalent DAEs produce Morse equivalent control systems.

Subspaces relations between DAEs and ODE control systems

$\Delta: E\dot{x} = Hx$	$\Lambda: \left\{ \begin{array}{l} \dot{z} = Az + Bu \\ y = Cz + Du, \end{array} \right.$	$\mathbf{\Lambda} : \left\{ \begin{array}{l} \dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}v \\ y = \mathbf{C}\mathbf{z}, \end{array} \right.$
The Wong sequences (Wong1974):	_	
$\mathscr{V}_0 = \mathbb{R}^n, \mathscr{V}_{i+1} = H^{-1} E \mathscr{V}_i,$	$\mathcal{V}_0 = \mathbb{R}^q,$ $\mathcal{V}_{i+1} = \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \left(\begin{bmatrix} I \\ 0 \end{bmatrix} \mathcal{V}_i + \operatorname{Im} \begin{bmatrix} B \\ D \end{bmatrix} \right)$	$egin{aligned} oldsymbol{\mathcal{V}}_0 &= \mathbb{R}^n, \ oldsymbol{\mathcal{V}}_{i+1} &= \ker \mathbf{C} \cap \mathbf{A}^{-1} (oldsymbol{\mathcal{V}}_i + \operatorname{Im} \mathbf{B}); \end{aligned}$
$\mathscr{W}_0 = \{0\}, \mathscr{W}_{i+1} = \mathbf{E}^{-1} H \mathscr{W}_i.$	$\begin{split} \mathcal{W}_0 &= \{0\}, \\ \mathcal{W}_{i+1} &= [A, B] \left(\begin{bmatrix} \mathcal{W}_i \\ \mathcal{U} \end{bmatrix} \cap \ker \left[C, D \right] \right) \end{split}$	$\mathcal{W}_0 = 0,$ $\mathcal{W}_{i+1} = \mathbf{A}(\mathcal{W}_i \cap \ker \mathbf{C}) + \operatorname{Im} \mathbf{B}.$
$\mathcal{V}^* = \mathcal{V}_{k^*}$ is the largest s.t. $\mathcal{V} = H^{-1}E\mathcal{V};$	$\mathcal{V}^* = \mathcal{V}_{k^*}$ is the largest s.t. $\exists F, (A+BF)\mathcal{V} \subseteq \mathcal{V} \text{ and } (C+DF)\mathcal{V} = 0;$	$\mathcal{V}^* = \mathcal{V}_{k^*}$ is the largest controlled invariant subspace i.e., $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{Im} \mathbf{B}$ in ker C;
$\mathcal{W}^* = \mathcal{W}_{l^*}$ is the smallest s.t. $\mathcal{W} = E^{-1}H\mathcal{W}$.	$\mathcal{W}^* = \mathcal{W}_{l^*}$ is the smallest s.t. $\exists K, (A + KC)\mathcal{W} + (B + KD)\mathcal{U} = \mathcal{W}$.	$\mathcal{W}^* = \mathcal{W}_{l^*}$ is the smallest conditioned invariant subspace, i.e., $\mathbf{A}(\mathcal{W} \cap \ker \mathbf{C}) \subseteq \mathcal{W}$, containing Im \mathbf{B} .

Subspaces relations between DAEs and ODE control systems

Proposition 1 (Subspaces relations Proposition 2.4.10)

Given a $DAE \Delta = (E, H)$, the (Q, P)-explicitation $\Lambda = (A, B, C, D) \in Expl(\Delta)$, and the prolongation $\Lambda = (A, B, C)$ of Λ , consider the limits of the Wong sequences \mathcal{V}^* and \mathcal{W}^* of Δ and of $\Delta^{Impl} = Impl(\Lambda)$, the invariant subspaces \mathcal{V}^* and \mathcal{W}^* of Λ , and the invariant subspaces \mathcal{V}^* and \mathcal{W}^* of Λ . Then the following hold

$$(i) \ P \mathscr{V}^*(\Delta) = \mathscr{V}^*(\Delta^{Impl}) = \mathcal{V}^*(\Lambda) = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{V}^*(\Lambda) \\ 0 \end{bmatrix},$$

$$(ii) \ P \mathscr{W}^*(\Delta) = \mathscr{W}^*(\Delta^{Impl}) = \mathcal{W}^*(\Lambda) = \begin{bmatrix} I_q & 0 \\ 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{W}^*(\Lambda) \\ 0 \end{bmatrix}.$$

Similar relations hold for augmented Wong sequences of the linear DAE control systems and invariant subspaces of its explicitation. (see Proposition 3.2.10).

Kronecker canonical form versus Morse canonical form

$$\begin{split} \text{Set } N_{\beta} &= \text{diag}\left\{N_{\beta_1}, \dots, N_{\beta_k}\right\}, \, K_{\beta} &= \text{diag}\left\{K_{\beta_1}, \dots, K_{\beta_k}\right\}, \\ L_{\beta} &= \text{diag}\left\{L_{\beta_1}, \dots, L_{\beta_k}\right\}. \end{split}$$

$$K_i &= \begin{bmatrix}0 & I_{i-1}\end{bmatrix} \in \mathbb{R}^{(i-1)\times i}, \quad L_i &= \begin{bmatrix}I_{i-1} & 0\end{bmatrix} \in \mathbb{R}^{(i-1)\times i}, \quad N_i &= \begin{bmatrix}0 & 0\\I_{i-1} & 0\end{bmatrix} \in \mathbb{R}^{i\times i}. \end{split}$$

Kronecker canonical form **KCF** (Kronecker 1890): Any DAE $\Delta=(E,H) \overset{ex}{\sim} \tilde{\Delta}=(\tilde{E},\tilde{H}),$ where $(\tilde{E},\tilde{H})=$

$$\left(\begin{bmatrix} L_{\varepsilon} & 0 & 0 & 0 \\ 0 & I_{|\rho|} & 0 & 0 \\ 0 & 0 & N_{\sigma} & 0 \\ 0 & 0 & 0 & K_{\eta}^T \end{bmatrix}, \begin{bmatrix} K_{\varepsilon} & 0 & 0 & 0 \\ 0 & A_{\rho} & 0 & 0 \\ 0 & 0 & I_{|\sigma|} & 0 \\ 0 & 0 & 0 & L_{\eta}^T \end{bmatrix}\right) \begin{pmatrix} \text{under-determin} \\ \text{ODE} \\ \text{nilpotent} \\ \text{over-determin} \end{pmatrix},$$

where $\beta = (\beta_1, \dots, \beta_k), |\beta| = \sum_{i=1}^k \beta_i, A_\rho$ is in the real Jordan canonical form. The integers $(\varepsilon_1, \dots, \varepsilon_a), (\rho_1, \dots, \rho_b), (\sigma_1, \dots, \sigma_c), (\eta_1, \dots, \eta_d)$ are called the Kronecker indices.

The Kronecker indices can be calculated with the help of the Wong sequences \mathcal{V}_i , \mathcal{W}_i .

Kronecker canonical form versus Morse canonical form

Morse canonical form MCF (Morse 1973)(Molinari 1978): Any control system $\Lambda = (A,B,C,D) \overset{M}{\sim} \tilde{\Lambda} = (\tilde{A},\tilde{B},\tilde{C},\tilde{D}), \text{ where}$

$$\begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} = \begin{bmatrix} A^1 & 0 & 0 & 0 & | & B^1 & 0 \\ 0 & A^2 & 0 & 0 & | & 0 & 0 \\ 0 & 0 & A^3 & 0 & | & 0 & B^3 \\ 0 & 0 & 0 & A^4 & | & 0 & 0 \\ 0 & 0 & C^3 & 0 & | & 0 & D^3 \\ 0 & 0 & 0 & C^4 & | & 0 & 0 \end{bmatrix},$$

where (A^1,B^1) is controllable and in its Brunovský canonical form with indices $\varepsilon_i'(1\leq i\leq a')$; (A^4,C^4) is observable and in its dual Brunovský canonical form with indices $\eta_i'(1\leq i\leq a')$; (A^3,B^3,C^3,D^3) is controllable and observable and in its prime form with indices $\sigma_i'(1\leq i\leq c')$, and the matrix A^2 is in its real Jordan canonical form with each block of $\rho_i'\times\rho_i'(1\leq i\leq b')$ dimension.

■ The Mores indices can be calculated with the help of the sequences of subspaces V_i , W_i .

Relations of the Kronecker indices and the Morse indices

Proposition 2 (Indices relations Proposition 2.5.3)

- For a DAE Δ , the Kronecker indices of its KCF coincide with the Morse indices of the MCF of $\Lambda \in Expl(\Delta)$.
- $(N_{\sigma}, I_{|\sigma|})$ of the KCF is present iff the subsystem MCF^3 of the MCF is present.
- The invariant factors of A_{ρ} in the KCF of Δ coincide with that of A^2 in the MCF of Λ .
- There exists a perfect correspondence between the **KCF** of a DAE and the **MCF** of its explicitation systems !!

Example 4

$$(L_{\varepsilon}, K_{\varepsilon}) : \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_{1}^{1} \\ \dot{x}_{2}^{1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1}^{1} \\ x_{2}^{1} \end{bmatrix} \quad \leftrightarrow \qquad (A^{1}, B^{1}) : \dot{z}^{1} = u^{1}$$

$$(I_{|\rho|}, A_{\rho}) : \dot{x}^{2} = A_{\rho}x \qquad \leftrightarrow \qquad A^{2} : \dot{z}^{2} = A^{2}z^{2}$$

$$(N_{\sigma}, I_{|\sigma|}) : \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_{1}^{3} \\ \dot{x}_{2}^{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1}^{3} \\ x_{2}^{3} \end{bmatrix} \quad \leftrightarrow \quad (A^{3}, B^{3}, C^{3}, D^{3}) : \begin{cases} y^{3} = z^{3} \\ \dot{z}^{3} = u^{3} \end{cases}$$

$$(K_{\eta}^{T}, L_{\eta}^{T}) : \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dot{x}^{4} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} x^{4} \qquad \leftrightarrow \qquad (A^{4}, C^{4}) : \begin{cases} y^{4} = z^{4} \\ \dot{z}^{4} = 0 \end{cases}$$

- Linear DAEs versus linear ODE control systems
- 2 Linear DAE control system and its feedback canonical form
- Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- Normal forms and (feedback) linearization of nonlinear DAE systems
- 5 Conclusions

Feedback canonical form of linear DAE control systems

 \blacksquare Consider a DAE control system DAECS (denoted by $\Delta^u_{l,n,m}=(E,H,L)$:)

$$\Delta^u : E\dot{x} = Hx + Lu,\tag{14}$$

■ External feedback equivalence: $\Delta^u \stackrel{ex-fb}{\sim} \tilde{\Delta}^{\tilde{u}}$ if $\exists F$ and invertible Q, P, G s.t.

$$\tilde{E} = QEP^{-1}, \quad \tilde{H} = Q(H + L\mathbf{F})P^{-1}, \quad \tilde{L} = QL\mathbf{G}.$$
 (15)

Any $\Delta^u=(E,H,L)$ is ex-fb-equivalent to the following feedback canonical form **FBCF** (Loiseau et al 1991):

where $\epsilon_i'(1 \leq i \leq a')$, $\bar{\epsilon}_i'(1 \leq i \leq b')$, $\sigma_i'(1 \leq i \leq c')$, $\bar{\sigma}_i'(1 \leq i \leq d')$, $\eta_i'(1 \leq i \leq e')$ and the Jordan structure of A_ρ are its invariants.

■ Is there a simpler and geometrical way to get **FBCF**? Using explicitation?

Explicitation with driving variables

■ Given Δ^u , let rank E = r. Let s = n - r and m = l - r. Choose Q s.t.

$$QE = \begin{bmatrix} E_1 \\ 0 \end{bmatrix}, \tag{16}$$

where E_1 is of full row rank, denote $QF = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ and $QL = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$...

■ Solutions \dot{x} of $E_1\dot{x} = H_1x + L_1u$ satisfy

$$\dot{x} \in Ax + B^u u + \ker E_1 = Ax + B^u u + \ker E. \tag{17}$$

where $A = E_1^{\dagger} H_1$, $B^u = E_1^{\dagger} L_1$. Then choose $\operatorname{Im} B^v = \ker E$ and v to parametrize $\ker E$ and let $y = Cx + D^u u = H_2 x + L_2 u$.

■ Attach to Ξ^u the following control system $\Lambda_{n,m,s,p}^{uv} = (A, B^u, B^v, C, D^u),$

$$\Lambda^{uv}: \begin{cases} \dot{x} = Ax + B^u u + B^v v \\ y = Cx + D^u u, \end{cases}$$
 (18)

where v is called the vector of driving variables.

Definition 3 (Explicitation with driving variables)

We will call the just defined control system Λ^{uv} a (Q, v)-explicitation of Δ^u . The class of all (Q, v)-explicitations of Δ^u is denoted by $\mathbf{Expl}(\Delta^u)$.

Equivalence of DAECSs and ODECSs with two kinds of inputs

■ Extended Morse equivalence: $\Lambda^{uv} \stackrel{EM}{\sim} \tilde{\Lambda}^{\tilde{u}\tilde{v}}$, if \exists invertible matrices T_x, T_y, T_u, T_v and matrices F_u, F_v, R, K s.t.

$$\begin{bmatrix} \tilde{A} & \tilde{B}^{\tilde{u}} & \tilde{B}^{\tilde{v}} \\ \tilde{C} & \tilde{D}^{\tilde{u}} & 0 \end{bmatrix} = \begin{bmatrix} T_x & T_x K \\ 0 & T_y \end{bmatrix} \begin{bmatrix} A & B^u & B^v \\ C & D^u & 0 \end{bmatrix} \begin{bmatrix} T_x^{-1} & 0 & 0 \\ F_u T_x^{-1} & T_u^{-1} & 0 \\ (F_v + RF_u)T_x^{-1} & RT_u^{-1} & T_v^{-1} \end{bmatrix},$$

Extended Morse transformation: $EM_{tran} = (T_x, T_y, T_u, T_v, F_u, F_v, R, K)$.

■ Two kinds of feedback transformations (v is more powerful than u!):

$$v = F_v x + Ru + T_v^{-1} \tilde{v}$$
 and $u = F_u x + T_u^{-1} \tilde{u}$.

Theorem 2 (Theorem 3.2.9)

Given
$$\Lambda^{uv} \in \mathbf{Expl}(\Delta^u)$$
 and $\tilde{\Lambda}^{\tilde{u}\tilde{v}} \in \mathbf{Expl}(\tilde{\Delta}^{\tilde{u}})$, locally $\Delta^u \overset{ex-fb}{\sim} \tilde{\Delta}^{\tilde{u}}$ iff $\Lambda^{uv} \overset{EM}{\sim} \tilde{\Lambda}^{\tilde{u}\tilde{v}}$.

Our plan of getting the **FBCF** of a DAECS Δ^u :

Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS $\Lambda=(A,B,C,D)$, we can explicitly construct a Morse transformation bringing Λ into its Morse canonical form MCF, passing through intermediate Morse triangular form MTF $(\tilde{\Lambda}=(\tilde{A},\tilde{B},\tilde{C},\tilde{D}))$ and Morse normal form MNF $(\bar{\Lambda}=(\bar{A},\bar{B}^{\bar{u}},\bar{C},\bar{D}))$.

$$\mathbf{MTF}: \begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} = \begin{bmatrix} \tilde{A}_1 & \tilde{A}_1^2 & \tilde{A}_1^3 & \tilde{A}_1^4 & & \tilde{B}_1 & \tilde{B}_1^2 \\ 0 & \tilde{A}_2 & 0 & \tilde{A}_2^4 & & 0 & 0 \\ 0 & 0 & \tilde{A}_3 & \tilde{A}_3^4 & & 0 & \tilde{B}_3 \\ 0 & 0 & 0 & \tilde{A}_4 & & 0 & 0 \\ 0 & 0 & \tilde{C}_3 & \tilde{C}_3^4 & & 0 & \tilde{D}_3 \\ 0 & 0 & 0 & \tilde{C}_4 & & 0 & 0 \end{bmatrix}.$$

Morse triangular form and Morse normal form

Proposition 3 (Proposition 3.3.1 and 3.3.2)

For an ODECS $\Lambda=(A,B,C,D)$, we can explicitly construct a Morse transformation bringing Λ into its Morse canonical form \mathbf{MCF} , passing through intermediate Morse triangular form \mathbf{MTF} $(\tilde{\Lambda}=(\tilde{A},\tilde{B},\tilde{C},\tilde{D}))$ and Morse normal form \mathbf{MNF} $(\bar{\Lambda}=(\bar{A},\bar{B},\bar{C},\bar{D}))$.

$$\mathbf{MNF}: \begin{bmatrix} \bar{A} & \bar{B} \\ \bar{C} & \bar{D} \end{bmatrix} = \begin{bmatrix} \bar{A}_1 & 0 & 0 & 0 & | & \bar{B}_1 & 0 \\ 0 & \bar{A}_2 & 0 & 0 & | & 0 & 0 \\ 0 & 0 & \bar{A}_3 & 0 & | & 0 & \bar{B}_3 \\ 0 & 0 & 0 & \bar{A}_4 & | & 0 & 0 \\ 0 & 0 & \bar{C}_3 & 0 & | & 0 & \bar{D}_3 \\ 0 & 0 & 0 & \bar{C}_4 & | & 0 & 0 \end{bmatrix}.$$

Extended Morse canonical form and its indices

For ODECSs with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 3 (Theorem 3.3.4, 3.3.5 and 3.4.2)

For an ODECS Λ^{uv} , we can explicitly construct an extended Morse transformation bringing Λ^{uv} into its extended Morse canonical form **EMCF**, passing through intermediate extended Morse triangular form **EMTF** and extended Morse normal form **EMNF**.

$$\begin{aligned} \mathbf{EMCF} : \left\{ \begin{array}{l} \dot{z}^{cu} &= A^{cu}z^{cu} + B^{cu}u \\ \dot{z}^{cv} &= A^{cv}z^{cv} + B^{cv}v \\ \dot{z}^{nn} &= A^{nn}z^{nn} \\ \dot{z}^{pu} &= A^{pu}z^{pu} + B^{pu}u, \quad y^{pu} &= C^{pu}z^{pu} + D^{pu}u \\ \dot{z}^{pv} &= A^{pv}z^{pv} + B^{pv}v, \quad y^{pv} &= C^{pv}z^{pv} \\ \dot{z}^{o} &= A^{o}z^{o} & y^{o} &= C^{o}z^{o}, \end{array} \right. \end{aligned}$$

- both the pairs (A^{cu}, B^{cu}) and (A^{cv}, B^{cv}) are controllable and in the Brunovský canonical forms;
- $\blacksquare A^{nn}$ is up to similarity;
- the 4-tuple $(A^{pu}, B^{pu}, C^{pu}, D^{pu})$ and the triple (A^{pv}, B^{pv}, C^{pv}) are prime;
- \blacksquare the pair (C^o,A^o) is observable and in the dual Brunovský canonical form.

Our algorithm of finding the **FBCF** of a linear DAECS

Algorithm 1

- Step 1: For Δ^u , construct Λ^{uv} st. $\Lambda^{uv} \in \mathbf{Expl}(\Delta^u)$.
- Step 2: Find an EM_{tran} s.t. $\tilde{\Lambda}^{\tilde{u}\tilde{v}} = EM_{tran}(\Lambda^{uv})$ is in the **EMTF**.
- Step 3: Find an EM_{tran} s.t. $\bar{\Lambda}^{\bar{u}\bar{v}} = EM_{tran}(\tilde{\Lambda}^{\tilde{u}\tilde{v}})$ is in the **EMNF**.
- Step 4: Bring $\bar{\Lambda}^{\bar{u}\bar{v}}$ into the **EMCF** by normalizing the subsystems in the **EMNF**.
- Step 5: Find the implicitation of **EMCF**, denoted by $\bar{\Delta}^{\bar{u}}$. Then $\bar{\Delta}^{\bar{u}}$ is in the **FBCF** and $\Delta^u \stackrel{ex}{\sim} \bar{\Delta}^{\bar{u}}$.

Plan

- 1 Linear DAEs versus linear ODE control systems
- 2 Linear DAE control system and its feedback canonical form
- **3** Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- Normal forms and (feedback) linearization of nonlinear DAE systems
- **5** Conclusions

Nonlinear DAE control system and its solutions

Consider a nonlinear DAE (DAECS):

$$\Xi^{u}: E(x)\dot{x} = F(x) + G(x)u, \tag{19}$$

- $x \in X$, an open subset of \mathbb{R}^n , $u \in \mathbb{R}^m$, functions E(x), F(x), G(x) are \mathcal{C}^{∞} smooth, denote DAECS (19) by $\Xi_{l,n,m}^u = (E, F, G)$.
- A solution of a DAE $\Xi = (E, F)$ (DAECS $\Xi^u = (E, F, G)$) is a \mathcal{C}^1 curve $\gamma : I \to X$ defined on an open interval I (a curve $(\gamma, u) : I \to X \times \mathscr{U}$ with $\gamma(t) \in \mathcal{C}^1$ and $u(t) \in \mathcal{C}^0$) s.t. for all $t \in I$, the curve $\gamma(t)$ ($\gamma(t)$, u(t)) satisfies $E\left(\gamma(t)\right)\dot{\gamma}(t) = F\left(\gamma(t)\right)$ ($E(\gamma(t))\dot{\gamma}(t) = F(\gamma(t)) + G(\gamma(t))u(t)$).
- γ_{x^0} : a solution $\gamma(t)$ satisfying $\gamma(0) = x^0$;
- \blacksquare $I_{x^0} :$ the maximal time-interval on which γ_{x^0} exists.
- $\blacksquare x_a$: admissible point, through x_a there exist at least one solution.

External feedback equivalence of nonlinear DAE systems

■ External feedback equivalence: $\Xi^u \overset{ex-fb}{\sim} \tilde{\Xi}^{\tilde{u}}$, \exists a diffeomorphism $\psi: X \to \tilde{X}$ and smooth functions $Q: X \to Gl(l, \mathbb{R})$, $\alpha^u: X \to \mathbb{R}^m$, $\beta^u: X \to Gl(m, \mathbb{R})$ s.t.

$$\begin{split} \tilde{E}(\psi(x)) &= Q(x)E(x) \left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}, \quad \tilde{f}(\psi(x)) = Q(x) \left(F(x) + G(x)\alpha^u(x)\right), \\ \tilde{g}(\psi(x)) &= Q(x)G(x)\beta^u(x). \end{split}$$

■ The ex-fb-equivalence preserves trajectories, but even if we can smoothly conjugate all trajectories of two DAEs, they are not necessarily ex-fb-equivalent.

Example 5

Consider two DAEs $\Xi_1 = (E_1, F_1)$ and $\Xi_2 = (E_2, F_2)$, where

$$E_1(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad E_2(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad F_1(x) = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \end{bmatrix}, \quad F_2(x) = \begin{bmatrix} x_{21} \\ x_{22} \\ x_{23} \end{bmatrix}.$$

- Solutions of Ξ_1 exist on $\{x_{12} = x_{13} = 0\}$ only, while those of Ξ_2 on $\{x_{22} = x_{23} = 0\}$ only. Ex-fb-equivalence is defined on X or a neighborhood U of x^0 .
- We need another equivalence defined only on where the solution exists !!

Locally invariant submanifold (existence of solutions)

Definition 4 (Locally (controlled) invariant submanifold)

Consider a DAE $\Xi_{l,n}=(E,F)$ (DAECS $\Xi_{l,n,m}^u=(E,F,G)$) defined on X. A smooth submanifold M s.t. $x_a\in M$ is called locally (controlled) invariant if \exists a neighborhood $U\subseteq X$ of x_a s.t. for any point $x^0\in M\cap U$, \exists a solution $\gamma_{x^0}:I_{x^0}\to X$ (a \mathcal{C}^0 -control u(t)) of Ξ (Ξ^u) s.t. $\gamma_{x^0}(0)=x^0$ and $\gamma_{x^0}(t)\in M\cap U$ for all $t\in I_{x^0}$.

Proposition 4 (Proposition 4.3.2 and 5.3.3 known results!!!)

For $\Xi = (E, F)$ ($\Xi^u = (E, F, G)$), assume that locally on M,

(Reg) the dimension of $E(x)T_xM$ (and of $E(x)T_xM + \operatorname{Im} G(x)$ are) is constant

then M is a locally (controlled) invariant submanifold iff locally for all $x \in M$,

$$F(x) \in E(x)T_xM + \operatorname{Im} G(x). \tag{20}$$

- For $\Delta = (E, H)$, a subspace \mathcal{M} is invariant iff $H\mathcal{M} \subset E\mathcal{M}$.
- How to identify (locally) maximal invariant submanifold (where the solution exists)?

Locally maximal (controlled) invariant submanifold

Proposition 5 (Proposition 4.3.3)

For a DAE DAECS $\Xi^u=(E,F,G)$, assume that a point x^0 satisfies $F(x^0)\in {\rm Im}\, E(x^0)+{\rm Im}\, G(x^0)$. Set

$$M_0 = \left\{ x \in X : F(x) \in \operatorname{Im} E(x) + \operatorname{Im} G(x) \right\};$$

Assume that M_{k-1} is a smooth embedded submanifold and denote by M_{k-1}^c the connected component of M_{k-1} containing $x^0 \in M_{k-1}^c$. Set

$$M_k = \left\{ x \in M_{k-1}^c : F(x) \in E(x) T_x M_{k-1}^c + \text{Im } G(x) \right\}.$$

Then there exists a smallest k, denoted $k^* < n$, s.t. $M_{k^*+1} = M_{k^*}^c$. If $M_{k^*}^c$ satisfies the assumption (**Reg**) locally for all $x \in M_{k^*}^c$, then x^0 is an admissible point and $M^* = M_{k^*}^c$ is a locally (controlled) maximal invariant submanifold.

- Identifying M^* was called the reduction procedure, e.g. (Reich1990)(Riaza2008).
- We propose an algorithm procedure (see Algorithm 4.3.4 and compare the zero dynamics algorithm (Isidori 1989)).
- Linear case: the maximal invariant subspace $\mathcal{M}^* = \mathcal{V}^*$.
- M_k can be seen as a nonlinear generalization of the Wong sequence \mathscr{V}_i and thus M^* can be seen that of the limits \mathscr{V}^* .

Internal (feedback) equivalence

Restriction: If $M = \{z_2 = 0\}$, then

$$\Xi|_{M}: \tilde{E}(z_{1},0) \begin{bmatrix} \dot{z}_{1} \\ 0 \end{bmatrix} = \tilde{F}(z_{1},0). \tag{21}$$

- We would like the restricted system as simple as possible!
- Reduction:

$$\Xi_1: \left\{ \begin{array}{l} \dot{x} = f(x) \\ q(x)\dot{x} = q(x)f(x) \end{array} \right. , \qquad \Xi_2: \left\{ \begin{array}{l} \dot{x} = f(x) \\ 0 = 0 \end{array} \right. , \qquad \Xi_1^{red} = \Xi_2^{red}: \quad \dot{x} = f(x) \right. .$$

■ $\Xi^u|_{M^*}^{red}$ (a restricted system): a reduction of the restriction $\Xi^u|_{M^*}$. The order is important!!!

Definition 5 (Internal feedback equivalence)

Given two DAEs DAECSs $\Xi^u = (E, F, G)$ and $\tilde{\Xi}^{\tilde{u}} = (\tilde{E}, \tilde{F}, \tilde{G})$, let M^* and \tilde{M}^* be two smooth submanifolds. Assume that

- (A1) M^* and \tilde{M}^* are locally maximal controlled invariant submanifolds of Ξ^u and $\tilde{\Xi}^{\tilde{u}}$, respectively.
- (A2) Locally M^* and \tilde{M}^* satisfy the assumption (Reg).

Then, Ξ^u and $\tilde{\Xi}^{\tilde{u}}$ are called locally internally (feedback) equivalent, shortly in-fb-equivalent, if $\Xi^u|_{M^*}^{red}$ and $\tilde{\Xi}^{\tilde{u}}|_{\tilde{M}^*}^{red}$ are ex-fb-equivalent, denoted by Ξ^u $\overset{in-fb}{\sim}$ $\tilde{\Xi}^{\tilde{u}}$.

Internal equivalence of linear DAEs

■ The internal equivalence is a proper tool to study solutions of DAEs!!

Theorem 4 (Theorem 2.6.10)

Consider two control systems: $\Lambda^* \in Expl(\Delta|_{\mathscr{M}^*}^{red})$, $\tilde{\Lambda}^* \in Expl(\tilde{\Delta}|_{\tilde{\mathscr{M}}^*}^{red})$. Then the following are equivalent:

- (i) $\Delta \stackrel{in}{\sim} \tilde{\Delta}$;
- (ii) Λ^* and $\tilde{\Lambda}^*$ are feedback equivalent;
- (iii) Δ and $\tilde{\Delta}$ have isomorphic trajectories, i.e, there exists a linear and invertible map $S: \mathcal{M}^* \to \tilde{\mathcal{M}}^*$ transforming any trajectory $x(t, x^0)$, where $x^0 \in \mathcal{M}^*$ of $\Delta|_{\mathcal{M}^*}^{red}$ into a trajectory $\tilde{x}(t, \tilde{x}^0)$, $\tilde{x}^0 \in \tilde{\mathcal{M}}^*$ of $\tilde{\Delta}|_{\tilde{\mathcal{M}}^*}^{red}$, where $\tilde{x}^0 = Sx^0$, and vice versa.

Internal regularity of DAEs (uniqueness of solutions)

Proposition 6 (Proposition 2.6.12)

For a DAE $\Delta_{l,n} = (E, H)$, denote rank E = q. The following statements are equivalent:

- (i) Δ is internally regular i.e., through each point of \mathcal{M}^* , \exists only one solution.
- (ii) Any $\Lambda^* \in Expl(\Delta|_{\mathscr{M}^*}^{red})$ has no inputs;
- (iii) rank $E = \dim E \mathcal{M}^*$.

Theorem 5 (Theorem 4.3.14)

Consider a DAE $\Xi_{l,n}=(E,F)$. Let M^* be a locally maximal invariant submanifold. Assume that dim $E(x)T_xM^*$ is constant locally for all $x\in M^*$. The following are locally equivalent:

- (i) Ξ is internally regular i.e., locally through each point of M^* , \exists only one solution.
- (ii) Ξ is internally equivalent to

$$\Xi^* : \dot{z}^* = F^* (z^*), \tag{22}$$

where z^* is a local, around x_a , system of coordinates on M^* .

(iii) dim $M^* = \dim E(x)T_xM^*$ for all $x \in M^*$.

(Q,v)-explicitation of nonlinear DAE systems

■ Given a DAE DAECS $\Xi_{l,n,m}^u = (E,F,G)$, fix a point x^0 . Assume rank E(x) = const.

around x^0 . Choose Q(x) s.t. $Q(x)E(x) = \begin{bmatrix} E_1(x) \\ 0 \end{bmatrix}$ where $E_1(x)$ is locally full row rank, denote $QF(x) = \begin{bmatrix} F_1(x) \\ F_2(x) \end{bmatrix}$ and $QG(x) = \begin{bmatrix} G_1(x) \\ G_2(x) \end{bmatrix}$.

Definition 6 (Explicitation with driving variables)

We will call the control system

$$\Sigma^{uv} : \begin{cases} \dot{x} = f(x) + g^{u}(x)u + g^{v}(x)v \\ y = h(x) + l^{u}(x)u, \end{cases}$$
 (23)

with two inputs (u,v), where $f(x) = E_1^{\dagger} F_1(x)$, $g^u(x) = E_1^{\dagger} G_1(x)$, $\operatorname{Im} g^v(x) = \ker E(x)$, $h(x) = F_2(x)$, $l^u(x) = G_2(x)$, a (Q,v)-explicitation of Ξ^u , denote the class of all (Q,v)-explicitation of Ξ^u by $\operatorname{Expl}(\Xi^u)$.

System feedback equivalence $\Sigma^{uv} \overset{sys-fb}{\Sigma} \tilde{\Sigma}^{u\bar{v}}$: if \exists a diffeomorphism $\psi: X \to \tilde{X}$, smooth functions $\alpha^{u}(x)$, $\alpha^{v}(x)$, $\lambda(x)$ and $\gamma(x)$ and invertible smooth functions $\beta^{u}(x)$, $\beta^{v}(x)$ and $\eta(x)$ s.t. (compare EM-equivalence of Λ^{uv})

$$\begin{bmatrix} \tilde{f} \circ \psi & \tilde{g}^{\tilde{u}} \circ \psi & \tilde{g}^{\tilde{v}} \circ \psi \\ \tilde{h} \circ \psi & \tilde{l}^{\tilde{u}} \circ \psi & 0 \end{bmatrix} = \begin{bmatrix} \frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial x} \gamma \eta \\ 0 & \eta \end{bmatrix} \begin{bmatrix} f & g^u & g^v \\ h & l^u & 0 \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ \alpha^u & \beta^u & 0 \\ \alpha^v + \lambda \alpha^u & \lambda \beta^u & \beta^v \end{bmatrix}.$$

External (feedback) equivalence of DAE systems vs. system (feedback) equivalence of ODE control systems

Theorem 6 (Theorem 5.2.9)

Locally, assume rank E(x) = const. and rank $\tilde{E}(\tilde{x}) = const.$ Then, given $\Sigma^{uv} \in \mathbf{Expl}(\Xi^u)$ and $\tilde{\Sigma}^{\tilde{u}\tilde{v}} \in \mathbf{Expl}(\Xi^u)$, we have $\Xi^u \stackrel{ex-fb}{\sim} \tilde{\Xi}^{\tilde{u}}$ iff $\Sigma^{uv} \stackrel{sys-fb}{\sim} \tilde{\Sigma}^{\tilde{u}\tilde{v}}$.

 System (feedback) equivalence for explicitation systems is a true counterpart of the external (feedback) equivalence for DAEs (DAECSs) !!!

Does $Expl(\Xi)$ (the class of (Q,P)-explicitations of nonlinear DAEs) exists?

• When is a nonlinear DAE $\Xi = (E, F)$ ex-equivalent to a *pure* semi-explicit PSE DAE?

$$\Xi^{pse}: \begin{cases} \dot{x}_1 = F_1(x_1, x_2) \\ 0 = F_2(x_1, x_2), \end{cases}$$
 (24)

■ Can we get rid of all the driving variables v in a (Q, v)-expl of Ξ ?

Example 6

Consider a DAE
$$\Xi = (E, F)$$
, given by
$$\begin{bmatrix} \sin x_3 & -\cos x_3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} F_1(x) \\ x_1^2 + x_2^2 - 1 \end{bmatrix},$$

where $F_1: X \to \mathbb{R}$. A control system $\Sigma \in \mathbf{Expl}(\Xi)$ is:

$$\left\{ \begin{array}{l} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} \sin x_3 \\ -\cos x_3 \\ 0 \end{bmatrix} F_1(x) + \begin{bmatrix} 0 & \cos x_3 \\ 0 & -\sin x_3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \\ y & = x_1^2 + x_2^2 - 1, \end{array} \right.$$

where $\begin{bmatrix} \sin x_3 - \cos x_3 & 0 \end{bmatrix}^T$ is a right inverse of $E_1(x) = \begin{bmatrix} \sin x_3 - \cos x_3 & 0 \end{bmatrix}$.

■ We may get rid of v_1 and regard x_3 as a new control, but not for v_2 :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \sin x_3 \\ -\cos x_3 \end{bmatrix} F_1(x) + \begin{bmatrix} \cos x_3 \\ -\sin x_3 \end{bmatrix} v_2,$$

Explicitation without driving variables and pure semi-explicit DAEs

Theorem 7 (Theorem 4.3.27)

For a DAE $\Xi_{l,n} = (E,F)$, the following conditions are equivalent around a point x^0 :

- (i) rank E(x) is constant and the distribution $\mathscr{D} = \ker E(x)$ is involutive.
- (ii) Ξ is ex-equivalent to a pure semi-explicit DAE Ξ^{PSE} .
- (iii) The driving variables v of any control system $\Sigma_{n,m,p} = (f,g,h) \in \mathbf{Expl}(\Xi)$ can be fully reduced.
 - (Q, P)- and (Q, v)- explicitations of a linear DAE $\Delta = (E, H)$ always exist. But $\mathbf{Expl}(\Xi)$ of of a nonlinear DAE $\Xi = (E, F)$ exits when E(x) is const. rank and " $Expl(\Xi)$ " exists when $\ker E(x)$ is const. rank and involutive.
 - Claim: SE DAES of the form below are the right class to be considered.

$$\Xi^{se}: \left\{ \begin{array}{rcl} E_1(x)\dot{x}_1 & = & F_1(x) \\ 0 & = & F_2(x), \end{array} \right.$$

 \blacksquare They are more general than pure semi-explicit DAE's, since ker E need not be integrable.

Plan

- 1 Linear DAEs versus linear ODE control systems
- Linear DAE control system and its feedback canonical form
- Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- **4** Normal forms and (feedback) linearization of nonlinear DAE systems
 - **5** Conclusions

Nonlinear Weistrass form

If a linear DAE Δ is regular, i.e., E and H are square (l=n) and $|sE-H| \not\equiv 0$ for $s \in \mathbb{C}$, then Δ is ex-equivalent to the Weierstrass form **WF** (Weierstrass1868):

$$\mathbf{WF}: \begin{bmatrix} N & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \dot{\xi} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & A \end{bmatrix} \begin{bmatrix} \xi \\ z \end{bmatrix},$$

Theorem 8 (Nonlinear Weistrass form Theorem 4.3.29)

Consider $\Xi_{l,n} = (E, F)$ with l = n, assume that rank E(x) = const. = q around an admissible point x_a . Then under some constant rank assumptions in the reduction procedure and dim $E(x)T_xM^* = \dim M^*$, Ξ is internally regular and Ξ is locally exequivalent to:

$$\mathbf{NWF}: \left\{ \begin{array}{ll} 0 &= \xi_i^1, \quad 1 \leq i \leq m, \quad 1 \leq j \leq \rho_i - 1 \\ \dot{\xi}_i^j &= \xi_i^{j+1} + a_i^j + \sum\limits_{l=1}^m b_{i,l}^j \dot{\xi}_l^{\rho_l} + E_i^j(\xi, z, \dot{\xi}^{\rho}), \\ \vdots \\ \dot{z} &= F^*(\xi, z) - G(\xi, z) \dot{\xi}, \end{array} \right.$$

where the scalar functions $a_i^k, b_{i,l}^k \in \mathbf{I}^k$, $1 \leq k \leq \rho_i - 1$, \mathbf{I}^k is the ideal generated by ξ_i^j , $1 \leq i \leq m$, $1 \leq j \leq k$ in the ring of smooth functions of ξ_s^t and z_r , and where

$$E_i^j(\xi, z, \dot{\xi}^{\rho}) = \sum_{s=1}^{i-1} E_{i,s}^j(\xi, z) \dot{\xi}_s^{\rho_s}, \quad j \ge \rho_s.$$

Feedback linearizations of nonlinear DAECSs

- When is a nonlinear DAECS $\Xi^u = (E, F, G)$ is feedback equivalent to a linear DAECS $\Delta^u = (E, H, L)$?
- An ODECS $\Sigma_{n,m}: \dot{x} = f(x) + \sum_{i=1}^m g_i(x)u_i$, is feedback equivalent to a linear controllable ODECS $\Lambda_{n,m}: \dot{x} = Ax + Bu$ iff for all $i \geq 1$, the distributions G_i (defined by $G_1:= \operatorname{span} \{g_1, \ldots, g_m\}$, $G_{i+1}=G_i+[f,G_i]$) are constant dimensional, involutive and $G_n=TX$ (Jakubczyk and Respondek1980) (Hunt and Su1981).

Lemma 1 (Berger2013)

A linear DAECS Δ^u is completely controllable (i.e., for any $x^0, x^f \in \mathbb{R}^n$, \exists a solution (x, u) s.t. $x(0) = x^0$ and $x(t) = x^f$) iff $\mathscr{V}^* \cap \mathscr{W}^* = \mathbb{R}^n$.

• \mathcal{V}^* and \mathcal{W}^* are the limits of the augmented Wong sequences

$$\begin{split} \mathscr{V}_0 &= \mathbb{R}^n, \ \mathscr{V}_{i+1} = H^{-1}(E\mathscr{V}_i + \operatorname{Im} L), \\ \mathscr{W}_0 &= 0, \ \mathscr{W}_{i+1} = E^{-1}(H\mathscr{W}_i + \operatorname{Im} L). \\ \left(\hat{\mathscr{W}}_1 = \ker E, \ \hat{\mathscr{W}}_{i+1} = E^{-1}(H\hat{\mathscr{W}}_i + \operatorname{Im} L)\right). \end{split}$$

- What are the linearizability distributions for a nonlinear DAECS?
- What is a nonlinear generalization of the augmented Wong sequences (\mathscr{V}_i and \mathscr{W}_i)?

Internal feedback linearization of nonlinear DAECSs

Define the following two sequences of distributions \mathcal{D}_i and $\hat{\mathcal{D}}_i$, called the linearizability distributions of Σ^{uv} . (\mathcal{D}_i and $\hat{\mathcal{D}}_i$ generalize \mathcal{W}_i and $\hat{\mathcal{W}}_i$)

$$\begin{cases} \mathcal{D}_{0} &:= \{0\}, \\ \mathcal{D}_{1} &:= \operatorname{span} \left\{ g_{1}^{u}, \dots, g_{m}^{u}, g_{1}^{v}, \dots, g_{s}^{v} \right\} \\ \mathcal{D}_{i+1} &:= \mathcal{D}_{i} + [f, \mathcal{D}_{i}], \quad i = 1, 2, \dots, \end{cases}$$

$$\begin{cases} \hat{\mathcal{D}}_{1} &:= \operatorname{span} \left\{ g_{1}^{v}, \dots, g_{s}^{v} \right\} \\ \hat{\mathcal{D}}_{i+1} &:= \mathcal{D}_{i} + [f, \hat{\mathcal{D}}_{i}], \quad i = 1, 2, \dots. \end{cases}$$

Theorem 9 (Internal feedback linearization Theorem 5.4.5)

Consider a DAECS $\Xi^u = \Xi^u_{l,n,m} = (E,F,G)$, fix an admissible point x_a . Let M^* be the n^* -dimensional maximal controlled invariant submanifold of Ξ^u around x_a . Assume that locally on M^* , we have

- (A1) M^* satisfies (Reg),
- (A2) the rank of G(x) is m.

 Ξ^u is locally in-fb-equivalent to a linear completely controllable DAECS iff the distributions \mathcal{D}_i and $\hat{\mathcal{D}}_i$ of one (and thus any) ODECS $\Sigma^{uv} \in \mathbf{Expl}(\Xi^u|_{M^*}^{red})$ locally satisfy:

- (FL1) \mathcal{D}_i and $\hat{\mathcal{D}}_i$ are of constant rank for $1 \leq i \leq n^*$.
- (FL2) \mathcal{D}_i and $\hat{\mathcal{D}}_i$ are involutive for $1 \leq i \leq n^* 1$.
- (FL3) $\mathcal{D}_{n^*} = \hat{\mathcal{D}}_{n^*} = TM^*$.

Theorem 10 (External feedback linearization Theorem 5.4.6)

Consider a DAECS $\Xi^u_{l,n,m} = (E,F,G)$, fix a point x^0 . Then Ξ^u is locally ex-fb-equivalent to a linear complete controllable DAECS, locally around x^0 , if and only if there exists a neighborhood $U \subseteq X$ of x^0 in which the following conditions are satisfied.

- (EFL1) rank E(x) and rank [E(x), G(x)] are constant.
- (EFL2) $F(x) \in \operatorname{Im} E(x) + \operatorname{Im} G(x)$.
- (EFL3) For one (and thus any) control system $\Sigma^{uv} \in \mathbf{Expl}(\Xi^u|_{M^*})$, which is a system with no outputs on $M^* = U$, a neighborhood of x^0 , the distributions \mathcal{D}_i and $\hat{\mathcal{D}}_i$ satisfy conditions (FL1)-(FL3) of Theorem 9.
 - By (EFL1)-(EFL2), $M^* = U$, which is a neighborhood of x^0 .
 - Note that condition $F(x) \in \operatorname{Im} E(x) + \operatorname{Im} G(x)$ and the condition $\hat{\mathcal{D}}_{n^*} = \mathcal{D}_{n^*} = TM^*$ are nonlinear counterparts of the condition $\mathcal{V}^* \cap \mathcal{W}^* = \mathbb{R}^n$ of Lemma 1.

Example 7

Consider the following academic example borrowed from (Berger2016zero):

$$\Xi^{u}: \begin{bmatrix} x_{2} & x_{1} & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ x_{2}^{2} - x_{1}^{3} + x_{3} \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}.$$

We consider an admissible point $x_a = (x_{1a}, x_{2a}, x_{3a}) = (1, 1, 0)$. Clearly, $\exists U \ (x_1 \neq 0 \text{ for } x \in U) \text{ of } x_a \text{ s.t. } \text{(EFL1)-(EFL2) of Theorem 10 are satisfied.}$ The reduction of the restriction of Ξ^u to $M^* = U$ is

$$\Xi^{u}|_{M^{*}}^{red} : \begin{bmatrix} x_{2} & x_{1} & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ x_{2}^{2} - x_{1}^{3} + x_{3} \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u_{1}.$$

Now an ODECS $\Sigma^{uv} \in \mathbf{Expl}(\Xi^u|_{M^*}^{red})$ can be taken as

$$\Sigma^{uv} : \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ x_2^2 - x_1^3 + x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2/x_1 \\ 0 \end{bmatrix} u_1 + \begin{bmatrix} x_1 \\ -x_2 \\ -x_1 \end{bmatrix} v,$$

where v is a driving variable. It is not hard to verify \mathcal{D}_i and $\hat{\mathcal{D}}_i$ satisfy (EFL3). The original DAECS Ξ^u is ex-fb-equivalent to the following completely controllable linear DAECS:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\xi} \\ \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \xi \\ z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix}.$$

External equivalence of Semi-explicit DAEs

A semi-explicit DAE is

$$\Xi^{se}: \left\{ \begin{array}{c} \mathcal{R}(x)\dot{x} = a(x) \\ 0 = c(x) \end{array} \right. \tag{25}$$

- $\blacksquare \mathcal{R}(x)$ is locally of full row rank.
- For the ex-equivalence of Ξ^{se} , we use $Q(x) = \begin{bmatrix} Q^a & 0 \\ 0 & Q^c \end{bmatrix}$ to preserve the decoupling into differential and algebraic parts.
- Three levels of equivalence (on the algebraic parts), Q^c always invertible: Level-1: $Q^c(x)$ -any; Level-2: $Q^c(x) = S(c(x))$; Level-3: $Q^c(x) = Tc(x)$, T-const.;

Level-3 external linearization of SE DAEs

Theorem 11 (Theorem 6.4.4)

Consider $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ around a point x_0 . Then in a neighborhood X_0 of x_0 , Ξ^{se} is level-3 ex-equivalent to a linear SE DAE Δ^{se} of the form

$$\begin{cases}
\dot{z}^1 = A^1 z^1 + B^1 w^1, \\
\dot{z}^3 = A^3 z^3 + B^3 w^3 + K^3 y, & 0 = C^3 z^3 + D^3 w^3,
\end{cases} (26)$$

where (A^1, B^1) is controllable and in its Brunovsky form, (A^3, B^3, C^3, D^3) is in prime form, iff a (and then any) control system $\Sigma \in \mathbf{Expl}(\Xi^{se})$ satisfies the following conditions in X_0 :

- (i) Σ is level-3 input-output linearizable;
- (ii) S_i and G_i are involutive and of constant rank;
- (iii) $S^* = TX_0$;
- (iv) $S_i \cap V^* = G_i \cap V^*$.
 - Standard G_i V_i , S_i distribution in nonlinear control theory. (see e.g. (Isidori 1989) (Nijmeijer & Van der Schaft 1990)) V^* is the largest controlled invariant distributions in ker dh and S^* is smallest conditioned distributions containing Imq.
 - The distributions V^* and S^* are, obviously, the nonlinear generalizations of the limits of Wong sequences \mathscr{V}^* and \mathscr{W}^* , respectively.

Plan

- Linear DAEs versus linear ODE control systems
- Linear DAE control system and its feedback canonical form
- Internal (feedback) equivalence and explicitation of nonlinear DAE systems
- Normal forms and (feedback) linearization of nonlinear DAE systems
- **5** Conclusions

Conclusions

- Existence and uniqueness of solutions of DAE systems.
- Internal and external (feedback) equivalence of DAE systems.
- Two kinds of explicitation procedures.
- Connections between DAE and ODE systems: equivalences, invariant subspaces, canonical forms.
- Nonlinear generalizations of the notions in linear DAEs theory.
- Linearization and feedback linearization of nonlinear DAE systems.

Thank you for listening!!!