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Preliminary: geometric subspaces of linear ODE control systems

Consider a linear ordinary differential equation control system ODECS:

Λ :

{
ẋ = Ax+Bu
y = Cx+Du,

(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, denoted Λn,m,p = (A,B,C,D).

Recall the following geometric subspaces (Molinari1974):


V0 := Rn,

Vi+1 :=

[
A
C

]−1
([

I
0

]
Vi + Im

[
B
D

]) V∗ = Vk∗ is the largest s.t.
∃F , (A + BF )V ⊆ V and (C +
DF )V = 0;

Ui :=

[
B
D

]−1 [Vi
0

]
.

U∗ = Uk∗ is the corresponding
input subspace

W0 = {0},

Wi+1 =
[
A,B

]([Wi

U

]
∩ ker

[
C,D

])
.

W∗ = Wl∗ is the smallest s.t.
∃K, (A+KC)W+(B+KD)U =
W

Yi =
[
C D

] [Wi

U

]
.

Y∗ = Yl∗ is the corresponding
output subspace
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Preliminary: Morse normal form and Morse canonical form

Definition 1 (Morse equivalence (Morse1973,Molinari1978))

Two ODECSs Λ
M∼ Λ̃, if ∃ invertible matrices Ts,Ti,To and matrices F ,K s.t.[

Ã B̃

C̃ D̃

]
=

[
Ts TsK
0 To

] [
A B
C D

][
T−1
s 0

FT−1
s T−1

i

]
(2)

Morse transformation: Mtran = (Ts, To, Ti, F,K)

Morse normal form MNF (Morse1973)(Molinari1978): Any control system

Λ = (A,B,C,D)
M∼ Λ̃ = (Ã, B̃, C̃, D̃), where

[
Ã B̃

C̃ D̃

]
=


Ac 0 0 0 Bc 0
0 Ann 0 0 0 0
0 0 Ap 0 0 Bp

0 0 0 Ao 0 0
0 0 Cp 0 0 Dp

0 0 0 Co 0 0

 ,

where (Ac, Bc) is controllable, (Ao, Co) is observable;

(Ap, Bp, Cp, Dp) is called prime and it is controllable and observable;

Via extra Morse transformations, we can get the Morse canonical form MCF from
the MNF.

The Mores indices of can be calculated with the help of the sequences of subspaces
Vi, Wi, Ui, Yi. 3 / 27
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Linear DAE control systems

We consider a linear DAE control system DAECS:

∆u : Eẋ = Hx+ Lu, (3)

where x ∈ Rn is called the “generalized” state, u ∈ Rm is a vector of predefined
control variables,

where E ∈ Rl×n, H ∈ Rl×n, L ∈ Rl×m,

denoted by ∆u
l,n,m = (E,H,L)?

Definition 2 (External feedback equivalence)

Two DAECSs ∆u ex−fb∼ ∆̃ũ if ∃ F and invertible Q,P,G s.t.

Ẽ = QEP−1, H̃ = Q(H + LF )P−1, L̃ = QLG. (4)
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Feedback canonical form of linear DAE control systems

Set Nβ = diag
{
Nβ1

, . . . , Nβk

}
, Kβ = diag

{
Kβ1

, . . . , Kβk

}
,Lβ = diag

{
Lβ1

, . . . , Lβk

}
.

Ki =
[
0 Ii−1

]
∈ R(i−1)×i, Li =

[
Ii−1 0

]
∈ R(i−1)×i, Ni =

[
0 0

Ii−1 0

]
∈ Ri×i.

Any ∆u = (E,H,L) is ex-fb-equivalent to the following feedback canonical form FBCF
(Loiseau et al 1991):



I∣∣ε′∣∣ 0 0 0 0 0

0 Lε̄′ 0 0 0 0
0 0 Inρ 0 0 0

0 0 0 KT
σ′ 0 0

0 0 0 0 Nσ̄′ 0

0 0 0 0 0 LT
η′


,



NT
ε′ 0 0 0 0 0

0 Kε̄′ 0 0 0 0
0 0 Aρ 0 0 0

0 0 0 LT
σ′ 0 0

0 0 0 0 I∣∣σ̄′∣∣ 0

0 0 0 0 0 KT
η′


,


Eε′ 0 0
0 0 0
0 0 0
0 Eσ′ 0
0 0 0
0 0 0




,

where ε′i(1 ≤ i ≤ a
′), ε̄′i(1 ≤ i ≤ b

′), σ′i(1 ≤ i ≤ c
′), σ̄′i(1 ≤ i ≤ d

′), η′i(1 ≤ i ≤ e
′) and the Jordan

structure of Aρ are its invariants.

Is there a simpler and geometrical way to get the FBCF ?

The FBCF seems to have some simularities with the MCF, do they have connections ?

In general, can we connect DAECSs with ODECSs ?
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Explicitation with driving variables

Explicitation procedure:

Given ∆u, let rankE = r. Let s = n− r and m = l − r. Choose Q s.t.

QE =

[
E1

0

]
, (5)

where E1 is of full row rank, denote QF =

[
H1

H2

]
and QL =

[
L1

L2

]
. .

Solutions ẋ of E1ẋ = H1x+ L1u satisfy

ẋ ∈ Ax+Buu+ kerE1 = Ax+Buu+ kerE. (6)

where A = E†1H1, Bu = E†1L1.

Choose ImBv = kerE and v to parametrize kerE and let

y = Cx+Duu = H2x+ L2u.

Attach to Ξu the following control system Λuvn,m,s,p = (A,Bu, Bv , C,Du),

Λuv :

{
ẋ = Ax+Buu+Bvv
y = Cx+Duu,

(7)

where v is called the vector of driving variables.
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Explicitation with driving variables

Analysis of the above procedure:

The choices of Q, Bv and E†1 are not unique !

If

{
Q,E†1 , B

v ⇒ Λuv

Q, Ẽ†1 , B̃
ṽ ⇒ Λ̃uṽ

, then Λuv ∼ Λ̃uṽ via v = Fvx+Ru+ ṽ;

If

{
Q,E†1 , B

v ⇒ Λuv

Q̃, E†1 , B
v ⇒ Λ̃uv

, then Λuv ∼ Λ̃uv via Ky = K(Cx+Duu) and ỹ = Tyy;

We attach a class of ODECSs to ∆u, given by all choices of K, Fv , R, and invertible
Tv , Ty : {

ẋ = Ax+Buu+Ky +Bv(Fvx+Ru+ T−1
v ṽ)

y = Ty(Cx+Du).

Definition 3 (Explicitation with driving variables)

We will call a control system Λuv given by the above procedure a (Q, v)-explicitation of
∆u. The class of all (Q, v)-explicitations of ∆u is denoted by Expl(∆u).
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Equivalence of DAECSs and ODECSs with two kinds of inputs

Definition 4 (Extended Morse equivalence)

Λuv
EM∼ Λ̃ũṽ , if ∃ invertible matrices Tx,Ty ,Tu,Tv and matrices Fu, Fv ,R, K s.t.[

Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

[
Tx TxK
0 Ty

] [
A Bu Bv

C Du 0

] T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv +RFu)T−1
x RT−1

u T−1
v

 ,
Extended Morse transformation: EMtran = (Tx, Ty , Tu, Tv , Fu, Fv , R,K).

Two kinds of feedback transformations (v is more powerful than u !):

v = Fvx+Ru+ T−1
v ṽ and u = Fux+ T−1

u ũ.

If we write w = (u, v), [Bu Bv ] = Bw, Dw = [Du 0], then
∆uv = ∆w = (A,Bw, C,Dw).

EMtran can be represented as Mtran with a triangular input coordinates

transformation T−1
w =

[
T−1
u 0

RT−1
u T−1

v

]
.

Theorem 1

Given Λuv ∈ Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ), locally ∆u ex−fb∼ ∆̃ũ iff Λuv
EM∼ Λ̃ũṽ.
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Augmented Wong sequences of DAECSs and invariant subspaces of
ODECSs

∆u = (E,H,L)
Λuv = (A,Bu, Bv, C,Du) or Λw =
(A,Bw, C,Dw)

The augmented Wong sequences:{
V0 = Rn, Vi+1 = H−1(EVi + ImL)

W0 = 0, Wi+1 = E−1(HWi + ImL)


V0 = Rn, Vi+1 =

[
A
C

]−1
([
I
0

]
Vi + Im

[
Bw

Dw

])

W0 = {0}, Wi+1 =
[
A Bw

] ([Wi
Uw

]
∩ ker

[
C Dw

])

Ŵ1 = kerE, Ŵi+1 = E−1(HŴi + ImL) Ŵ1 = ImBv, Ŵi+1 =
[
A Bw

] [Ŵi
Uw

]
∩ ker

[
C Dw

]
V ∗ = Vk∗ is the largest s.t. V =
H−1(EV + ImL); V∗ = Vk∗ ;

W ∗ = Wl∗ = Ŵl∗±1 is the smallest s.t.
W = E−1(HV + ImL)

W∗ =Wl∗ = Ŵl∗±1.

Proposition 1 (Subspaces relations)

Assume that Λuv ∈ Expl(∆u). Then we have for i ∈ N,

Vi(∆
u) = Vi(Λw), Wi(∆

u) =Wi(Λ
w),

and for i ∈ N+,
Ŵi(∆

u) = Ŵi(Λ
w).
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Our plan of getting the FBCF of ∆u:

∆u

Λuv

FBCF

Λ

CF of Λuv?

MCF

explicitation

?

?

(Loiseau et al 1991)

relation? relation?

(Morse1973)(Molinari1978), can we simplify the construction?
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Morse triangular form

Proposition 2 (Morse triangular form MTF)

For an ODECS Λun,m,p = (A,Bu, C,Du), choose full rank matrices T js , j = 1, 2, 3, 4,

T ji , j = 1, 2, T jo , j = 1, 2, s.t.

ImT 1
s = V∗ ∩W∗, V∗ ∩W∗ ⊕ ImT 2

s = V∗,
V∗ ∩W∗ ⊕ ImT 3

s =W∗, (V∗ +W∗)⊕ ImT 4
s = X = Rn,

ImT 1
i = U∗u , ImT 2

i ⊕ ImT 1
i = Uu = Rm,

ImT 1
o = Y∗, ImT 2

o ⊕ ImT 1
o = Y = Rp.

Then Ts = [T 1
s T 2

s T 3
s T 4

s ]−1,Ti = [T 1
i T 2

i ]−1, To = [T 1
o T 2

o ]−1, are invertible and
∃FMT ,KMT s.t. Mtran = (Ts, Ti, To, FMT ,KMT ) brings Λu into Λ̃ũ = Mtran(Λu),
represented in the Morse triangular form MTF,

[
Ã B̃ũ

C̃ D̃ũ

]
=



Ã1 Ã2
1 Ã3

1 Ã4
1 B̃1 B̃2

1

0 Ã2 0 Ã4
2 0 0

0 0 Ã3 Ã4
3 0 B̃3

0 0 0 Ã4 0 0

0 0 C̃3 C̃4
3 0 D̃3

0 0 0 C̃4 0 0


. (8)

In the above MTF, the pair (Ã1, B̃1) is controllable, the pair (C̃4, Ã4) is observable and
the 4-tuple (Ã3, B̃3, C̃3, D̃3) is prime.
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Morse normal form

Proposition 3 (Morse normal form MNF)

There exists FMN , KMN and TMN , which can be chosen by Algorithm 1 below, s.t.
Mtran = (TMN , Iu, Iy , FMN ,KMN ) brings Λ̃ũ into Λ̄ū = Mtran(Λ̃ũ), represented in the
Morse normal form MNF,

[
Ā B̄ū

C̄ D̄ū

]
=


Ā1 0 0 0 B̄1 0
0 Ā2 0 0 0 0
0 0 Ā3 0 0 B̄3

0 0 0 Ā4 0 0
0 0 C̄3 0 0 D̄3

0 0 0 C̄4 0 0

 . (9)

In the above MNF, the pair (Ā1, B̄1) is controllable, the pair (C̄4, Ā4) is observable, and
the 4-tuple (Ā3, B̄3, C̄3, D̄3) is prime.
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Algorithm 1

Step 1: Choose FMN =

F1
MN 0 0 0

0 0 F2
MN F3

MN

 , KMN =


K1
MN 0

0 0

K2
MN 0

0 K3
MN

 s.t. the

eigenvalues of Ā1, Ā2, Ā3 and Ā4 of the equation below are pairwise disjoint:

[
In KMN
0 Ip

] [
Ã B̃ũ

C̃ D̃ũ

] [
In 0

FMN Im

]
=



Ā1 Ā2
1 Ā3

1 Ā4
1 B̄1 B̄2

1
0 Ā2 0 Ā4

2 0 0

0 0 Ā3 Ā4
3 0 B̄3

0 0 0 Ā4 0 0

0 0 C̄3 C̄4
3 0 D̄3

0 0 0 C̄4 0 0


.

Step 2: Find matrices T 1
MN , T 2

MN , T 3
MN , T 4

MN , T 5
MN via the following (constrained)

Sylvester equations:

Ā1T
1
MN − T

1
MNĀ2 = −Ā2

1, Ā2T
4
MN − T

4
MNĀ4 = −Ā4

2,

Ā1T
3
MN − T

3
MNĀ4 = −Ā4

1 − Ā
2
1T

4
MN − Ā

3
1T

5
MN ;

(10)

Ā1T
2
MN − T

2
MNĀ3 = −Ā3

1, T2
MNB̄3 = −B̄2

1 ,

Ā3T
5
MN − T

5
MNĀ4 = −Ā4

3, C̄3T
5
MN = −C̄4.

(11)

Step 3: Set

TMN =


I T1

MN T2
MN T3

MN
0 I 0 T4

MN
0 0 I T5

MN
0 0 0 I


−1

.
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Extended Morse triangular form and extended Morse normal form

For ODECS Λuv = Λw with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 2 (extended Morse triangular form EMTF)

Λuv = (A,Bu, Bv , C,Du)
EM∼ Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ , C̃, D̃ũ), where

EMTF :

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=



Ã1 Ã12 Ã13 Ã14 B̃ũ1 B̃ũ12 B̃ṽ1 B̃ṽ12

0 Ã2 0 Ã24 0 0 0 0

0 0 Ã3 Ã34 0 B̃ũ3 0 B̃ṽ3
0 0 0 Ã4 0 0 0 0

0 0 C̃3 C̃34 0 D̃ũ3 0 0

0 0 0 C̃4 0 0 0 0


.

(12)

17 / 27



Extended Morse triangular form and extended Morse normal form

For ODECS Λuv = Λw with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 3 (extended Morse normal form EMNF)

Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ , C̃, D̃ũ)
EM∼ Λ̄ūv̄ = (Ā, B̄ū, B̄v̄ , C̄, D̄ū), where

EMNF :

[
Ā B̄ū B̄v̄

C̄ D̄ū 0

]
=


Ā1 0 0 0 B̄ū1 0 B̄v̄1 0
0 Ā2 0 0 0 0 0 0
0 0 Ā3 0 0 B̄ū3 0 B̄v̄3
0 0 0 Ā4 0 0 0 0
0 0 C̄3 0 0 D̄ū3 0 0
0 0 0 C̄4 0 0 0 0

 . (13)
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Extended Morse canonical form and its indices

For ODECSs with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 4
For an ODECS Λuv, we can explicitly construct an extended Morse transformation
bringing Λuv into its extended Morse canonical form EMCF, passing through
intermediate extended Morse triangular form EMTF and extended Morse normal form
EMNF.

EMCF :



żcu = Acuzcu +Bcuu
żcv = Acvzcv +Bcvv
żnn = Annznn

żpu = Apuzpu +Bpuu, ypu = Cpuzpu +Dpuu
żpv = Apvzpv +Bpvv, ypv = Cpvzpv

żo = Aozo yo = Cozo,

both the pairs (Acu, Bcu) and (Acv , Bcv) are controllable and in the Brunovský
canonical forms with indices ε1, . . . , εa and ε̄1, . . . , ε̄b, resp.;

Ann is up to similarity;

the 4-tuple (Apu, Bpu, Cpu, Dpu) and the triple (Apv , Bpv , Cpv) are prime with
indices σ1, . . . , σc and σ̄1, . . . σ̄d, resp.;

the pair (Co, Ao) is observable and in the dual Brunovský canonical form with indices
η1, . . . , ηe.
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Indices of the EMCF and the FBCF

Proposition 4 (the EMCF indices)

For an ODECS Λuvn,m,s,p= (A,Bu, Bv , C,Du), the EMCF indices in Theorem 4 can be
calculated as follows and thus are invariant under EM-transformations.

(i) Set
ε̂i = dim (V∗ ∩Wi)− dim (V∗ ∩ Ŵi), i ≥ 1,
ˆ̄εi = dim (V∗ ∩ Ŵi)− dim (V∗ ∩Wi−1), i ≥ 1,
ˆ̄σi = dim Ŵi − dim Wi−1 − ˆ̄εi, i ≥ 1,
η̂i = dim (W∗ + Vi−1)− dim (W∗ + Vi), i ≥ 1.

Then a = ε̂1, b = ˆ̄ε1, d = ˆ̄σ1, e = η̂1. The indices (ε1, . . . , εa) = �(ε̂),
(ε̄1, . . . , ε̄b) = �(ˆ̄ε), (σ̄1, . . . , σ̄d) = �(ˆ̄σ) and (η1, . . . , ηe) = �(η̂).

(ii)Set

σ̂1 = m− ε̂1, σ̂i = dim Wi−1 − dim Ŵi−1 − ε̂i−1, i ≥ 2.

Then c = σ̂2 and δ = σ̂1 − c. The indices (σ1, . . . , σc) = �(σ̂)− (1, . . . , 1).
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Implicitation of ODECSs and reduction of driving variables

Example 1

Consider a prime subsystem (Apvσ̄ , Bpvσ̄ , Cpvσ̄ ) of (Apv , Bpv , Cpv), for which we get:

(Apvσ̄ , Bpvσ̄ , Cpvσ̄ ) :


y = x1,
ẋ1 = x2

· · ·
ẋσ̄−1 = xσ̄

ẋσ̄ = v,

→ (Nσ̄ , Iσ̄ , 0) :


0 = x1

ẋ1 = x2

· · ·
ẋσ̄−1 = xσ̄ .

The FBCF is the implicitation and reduction of the EMCF of ∆u. A crucial

observation is that EMCF ∈ Expl(FBCF). Thus ∆u ex−fb∼ FBCF (since

Λuv ∈ Expl(∆u), Λuv
EM∼ EMCF).

With the help of the reduction and implicitation procedure, we can regard the
FBCF (Loiseau et al 1991) as a corollary of Theorem 4 (EMCF).
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Proposition 5 (Relations of the indices)

Assume Λuv ∈ Expl(∆u), then the EMCF indices of Λuv and the FBCF indices of ∆u

are related by

a = a′ and εk = ε′k for k = 1, . . . , a, b = b′ and ε̄k = ε̄′k for k = 1, . . . , b;

n2 = nρ and Ann ≈ Aρ;

c+ δ = c′ and σ′1 = σ′2 =, · · · ,= σ′δ = 1, σ′δ+1 = σ1 + 1, σ′δ+2 = σ2 + 1, . . .,
σ′δ+c = σc + 1; Moreover, d = d′ and σ̄k = σ̄′k for k = 1, . . . , d;

e = e′ and ηk + 1 = η′k for k = 1, . . . , e.

With the help of Proposition 5, we can regard the results of calculating FBCF indices
(Loiseau et al 1991) (Berger 2015) as a corollary of Proposition 4 (EMCF indices).

There exists a perfect correspondence between the EMCF and of the FBCF:

(Acu, Bcu)↔ (I|ε′|, N
T
ε′ , Eε′ ), (Acu, Bcu)↔ (Lε̄′ ,Kε̄′ , 0),

An2 ↔ (Inρ , Aρ), (Apu, Bpu, Cpu, Dpu)↔ (KT
σ′ , L

T
σ′ , Eσ′ ),

(Apv , Bpv , Cpv)↔ (Nσ̄′ , I|σ̄′|, 0), (Co, Ao)↔ (LT
η′ ,K

T
η′ , 0).
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Our algorithm of finding the FBCF of a linear DAECS

Algorithm 2

Step 1: For ∆u, construct Λuv st. Λuv ∈ Expl(∆u).

Step 2: Find an EMtran s.t. Λ̃ũṽ = EMtran(Λuv) is in the EMTF.

Step 3: Find an EMtran s.t. Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF.

Step 4: Bring Λ̄ūv̄ into the EMCF by normalizing the subsystems in the EMNF.

Step 5: Find the implicitation of EMCF, denoted by ∆̄ū. Then ∆̄ū is in the FBCF

and ∆u ex−fb∼ ∆̄ū.

∆u

Λuv

FBCF

Λu

EMTF EMNF EMCF

MTF MNF MCF

explicitation, implicitation,

(Loiseau et al 1991)

extension extension extension extension

Thm.2 Thm.3 Thm.4

Prop.2 Prop.3 (Molinari1978)
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Conclusions

Propose the explicitation with driving variables procedure.

Show the role of the driving variables.

Connect DAECSs and ODECSs via their equivalences and geometric
subspaces.

Simple way to transform an ODECS to its MCF or EMCF.

Geometrical way to get the FBCF of a DAECS
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Thank you for listening !!!

27 / 27


	Explicitation with driving variables for linear DAE control systems
	Morse triangular form, Morse normal form and their extensions
	From extended Morse canonical form to the feedback canonical form
	An algorithm and conclusions

