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Preliminary: geometric subspaces of linear ODE control systems

Consider a linear ordinary differential equation control system ODECS:

¥

T = Az + Bu
y = Czx + Du,

m where x € R™, u € R™, y € RP, denoted An,m,p = (4,B,C, D).

m Recall the following geometric subspaces (Molinari1974):

Vo = R",

v [ ([ e 2))

w5 4]

V* = Vpx is the largest s.t.
JF, (A+ BF)Y C V and (C +
DF)V = 0;

U* = Uy~ is the corresponding
input subspace

Wo = {0},

Wiy1=[A, B] ([

VJ};] Nker [C, D}) .

W* = W is the smallest s.t.
3K, (A+KC)W+(B+KD)% =
w

Y* = Y« is the corresponding
output subspace
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Preliminary: Morse normal form and Morse canonical form

Definition 1 (Morse equivalence (Morsel973,Molinaril978))

Two ODECSs A < A, if 3 invertible matrices 7s,7;,7, and matrices F',K s.t.

_|Ts TsK||A B
) To C D
Morse transformation: Mran = (Ts, To, T;, F, K)

Morse normal form MNF (Morsel1973)(Molinaril978): Any control system
A=(A,B,C, D)X K = (A,B,C, D), where

(i 0
FT;Y Tt

7

2)

L
¢ D

A0 0 0 B° 0
o 0 A™ 0 0 0 0
A B| |o 0 AP 0 0 B
& p|l~|o 0 0 A° o 0|’

0 0 CP 0 0 D7

0 0 0o c° 0 0

where (A¢, B¢) is controllable, (A°, C°) is observable;

(AP, BP CP, DP) is called prime and it is controllable and observable;

m Via extra Morse transformations, we can get the Morse canonical form MCF from
the MNF.

m The Mores indices of can be calculated with the help of the sequences of subspaces
Vi, Wi, Ui, V;. 3/27
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Explicitation with driving variables for linear DAE control
systems
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Linear DAE control systems

We consider a linear DAE control system DAECS:

A" : Ei = Hx + Lu, (3)

m where x € R™ is called the “generalized” state, u € R™ is a vector of predefined
control variables,

m where E € R X" H € R\>X" [ € RIx™,

m denoted by A} = (E,H,L)?

l,n,m

Definition 2 (External feedback equivalence)

Two DAECSs AU ““X7° A% if 3 F and invertible Q, P, G s.t.

E=QEP!, H=QH+LF)P™!, L=QLG. (4)
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Feedback canonical form of linear DAE control systems

Set Ng = diag{Nﬁl,...,NBk}, Kps =diag{K51,...,K5k},LB = diag{LBl,...,Lgk}.

0 0

K.
i i—1 0

[0 Lioq] eROTDX L, =[I,_1 0] e RE-DXI N, = [1 ] € R¥XE.

Any A" = (E, H, L) is ex-fb-equivalent to the following feedback canonical form FBCF
(Loiseau et al 1991):

T
Ijer) 0 0 0 0 0 NT 0 0 0 0 0 €. o 0
0 L 0 0 0 0 0 Ko 0 0 0 0 5 o o
0 0 In, 0 0 0 0 0 Ap oT 0 0 o o 0
0 0 0 KT, 0 o] o0 0 o Ll 0 of'lo e, ol
0 0 0 0 I\ 0 0 0 0 0 I‘U/‘ 0 0 0 0
0 0 0 0 o LY 0 0 0 0 KT, 0 0 0

where e; (1 <1< a’),6;(1 <1< ,0,(1 <1< ¢"),0;,(1 <4< ,m: (1 <t < e") and the Jordan
h f1<i<a), g1 <i<b),oj(1<i<c),a,(1<i<d),nj(1<i<e’)and the Jord
structure of A, are its invariants.

m Is there a simpler and geometrical way to get the FBCF ?
m The FBCF seems to have some simularities with the M CF, do they have connections ?

m In general, can we connect DAECSs with ODECSs ?
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Explicitation with driving variables

Explicitation procedure:

m Given A%, let rank £ =r. Let s=n —r and m = [ — r. Choose Q s.t.

QF = [Eﬂ , (5)

where Fj is of full row rank, denote QF = [gﬂ and QL = [éj ..
m Solutions & of E1@ = Hyx + Lyu satisfy
& € Az + BYu+ker By = Az + B%u + ker E. (6)
where A= E/Hy, B* = B[ L;.
m Choose Im BY = ker F and v to parametrize ker E' and let

y=Cxz+ D" = Hax + Lou.

m Attach to Z* the following control system ALY, ., = (A, BY, B¥,C, D"),

w . z = Az + B%u + B%v
A { y = Cx + D" u, (7)

where v is called the vector of driving variables.
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Explicitation with driving variables

Analysis of the above procedure:

m The choices of @, BY and EI are not unique !

T pov uv .
lIf{ Q, By, B = A , then A%V ~ A% via v = Fyx + Ru + 7;

Q B, B = Aw
T v uv ~
m If { g’g}r’gv z %uv , then A%Y ~ A% via Ky = K(Cz 4+ D%u) and § = Tyy;
I 1°

m We attach a class of ODECSs to A%, given by all choices of K, F,, R, and invertible
Ty, Ty:

& = Az 4+ B%u + Ky + BY(Fyx + Ru+ T, ')
y = Ty(Cx + Du).

Definition 3 (Explicitation with driving variables)

We will call a control system A% given by the above procedure a (Q, v)-explicitation of
AY. The class of all (Q,v)-explicitations of A" is denoted by Expl(A™).
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Equivalence of DAECSs and ODECSs with two kinds of inputs

Definition 4 (Extended Morse equivalence)

EM + -~
A~ A" if 3 invertible matrices Ty, Ty, Tw,T» and matrices Fy, Fyy,R, K s.t.

o 7" 0 0

A B BY| {Tz TZK} [A B B”} e ’”T_l | .

C Dt o0 T, ||C D* 0 v u ’
¢ 0 Y (Fy + RE)T; ' RTyY Tyt

Extended Morse transformation: EMyran = (Te, Ty, Tu, Ty, Fu, Fv, R, K).

m Two kinds of feedback transformations (v is more powerful than wu !):
v:va—i-Ru—i—TJlfj and u = Fux—i-TJlﬂ.
m If we write w = (u,v), [B* B']=BY, D¥ =[D* 0], then
AW = A% = (A, BY,C,Dv).
m EMirqn can be represented as Myrqpn with a triangular input coordinates

_ Ty 0
transformation T, ! = v 4.
v RT; ' T,

. EM 145

Given A" € Expl(A™) and A" € Expl(A%), locally A® v b Aa iff Ave T~ ATT,
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Augmented Wong sequences of DAECSs and invariant subspaces of

ODECSs
AT = A, B",B",C, D% or A® =
A =mmD (4.5".0.0%) )
The augmented Wong sequences: n A1-1 (1 BW
Yo =R", ¥ipr = H Y (EY; +Im L) Vo =& Vi = [¢] (M Vi +lm {D“’])
Wo =0, Wis1 = E " “(H#; +ImL) Wo = {0}, Wi 1 = [A BY] ({;Zz] A ker [C Dw])

R ()
w

YV* = V= is the largest st. ¥ = VE Vs
H Y (EY +1ImL); =k

W* = Wyx = Wy«1 is the smallest s.t.

W =E"Y(HY +ImL) W= Wi = Wirs

Proposition 1 (Subspaces relations)

Assume that A"V € Expl(AY). Then we have for i € N,

Yi(AY) =Vi(AY),  Hi(AY) = Wi(AY),

and for i € Nt ) .
Wi(A™) = Wi(A®).
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Our plan of getting the FBCF of A":

A FBCF
(Loiseau et al 1991)
|explicitation 1
A : CF of A™7
relation? relation?

(Morse1973)(Molinari1978), can we simplify the construction?
MCF
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Morse triangular form, Morse normal form and their extensions
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Morse triangular form

Proposition 2 (Morse triangular form MTF)

For an ODECS A} ,,, , = (A, B%,C, D"), choose full rank matrices Tg,j =1,2,3,4,
Tf’,j_l 2, TS, j=1,2, s.t.
ImT1 V¥ w*, V*ﬂW*@ImT2 A2
V*ﬂW*EBImT3 W, (V*+W*)®ImT4 Z =R",
ImT} =Uu;, ImT? @ ImT} = %, =R™,
Ingzy*, ImT2 &ImT! =% =RP.

Then Ts = [T T2 T3 T2~ T; = [T} T2)7L, To = [T} T2]7L, are invertible and
HFMTa KMT s.1. Mt'f‘an = (’I’s,']—'i7 TO, FMT7 KMT) brings A" into ]\ﬂ = Mtran(Au),
represented in the Morse triangular form MTF,

Al A% A~££’ A‘ll Bl B%

0 Ay 0 A2 0 0
i B;u:| _|o o A4y Al 0 B3 ®)
¢ D® 0 0 0 A 0 0

{0 0 C3 Cf ‘ 0 DgJ

0 0 0 C4 0 0

In the above MTF, the pair (Al, B1) s controllable, the pair (C~'47 A4) 18 observable and
the 4-tuple (A3, Bg,Cg,Dg,) s prime.
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Morse normal form

Proposition 3 (Morse normal form MNF)

There exists Farn, Kynv and Thyrn, which can be chosen by Algomthm 1 below, s.t.
Miran = (TN, Lus Iy, Fyin, K brings AT into A% = Myran (A ), represented in the
Morse normal form MNF,

A 0 0 O B 0

0 A 0 0 0 0
[f_i 1?1}]_ 0 0 A3 0 0 Bs )
C D'~ |0 0 0 Ay 0 0

0 0 C3 O 0 D3

lo 0 0 C4 ‘ 0 oJ

In the above MNF, the pair (A1, By) is controllable, the pair (Cy, Ag) is observable, and
the 4-tuple (As, B3, Cs, D3) is prime.
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gorithm

1
Fi 0 0 0 Kﬂc/)IN g
Step 1: Choose F = |"MN K = s.t. the
: MN = 2 3 v KMN = [g2 2
0 0 PRy P KM 5
0 K3,y

eigenvalues of A1, Aa, Az and Ay of the equation below are pairwise disjoint:

i, A3 A3 Ai By B}

~ 0 Ao 0 Ai 0 0

In Kyn||A BY [In 0}= 0 0 Az A3 0 Bs
0 Ip ¢ DU [Fuyn Im 0 0 0 Ay 0 0
0 o &3 C3 0 D3

0 0 0 Cy 0 0

Step 2: Find matrices T]%/IN’ TJ%4N’ T1%/1N7 TJA\ZN’ T1?4N via the following (constrained)
Sylvester equations:

1 2 i, — _ a4
ATy - TMNA32 = -4}, ATy - TM%A% = 43, @)
ATy N —TynAa=—A1 - ATy Ny — A1Ty N
2 i3 2 = _ 52
MTyn —TynAas =—41,  TynBs = -5, (1)
Aamer N — Tapn Ay = —A%,  Cami iy = Gy
Step 3: Set
1 T} T2 T3 -1
MN MN yN
- 0 1 0 T g
MN = M
0 0 I 3
0 0 0 1
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Extended Morse triangular form and extended Morse normal form

For ODECS A%? = A% with two kinds of inputs (u, v), we propose a similar procedure.

Theorem 2 (extended Morse triangular form EMTF)

Aw = (A, B, BY,C,D%) RN A3t — (4, B%, BY,C, DY), where
A1 Ay Az A BY BY B} B,
0 Ao 0 Aoy 0 0 0 0
) A B% PB° |0 0 A3 12134 0 BZ; 0 Bg
EMTE: & pa o]_ 0 0 0 Ay 0 0 0 0
0 0 05 Cu 0 Dj 0 0
0 0 0 Cy 0 0 0 0

(12)
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Extended Morse triangular form and extended Morse normal form

For ODECS A"Y = A" with two kinds of inputs (u,v), we propose a similar procedure.

Theorem 3 (extended Morse normal form EMNF)
- Y Reo = (A4, B®, B?,C, D®), where

AZE .= (A, B% B? C,D%)

A 0 0 0 Bf 0 By 0

0 A, 0 0 0 0 0 0

[A B* B _|0 o0 A3 0 0 BY 0 B}
EMNF‘[C D 0}— 0 0 0 A 0 0 0 0 (13)

0 0 Cz 0 0 DY 0 0

0 0 0 C4 0 0 0 0

18/ 27



f From extended Morse canonical form to the feedback canonical
orm
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Extended Morse canonical form and its indices

For ODECSs with two kinds of inputs (u,v), we propose a similar procedure.

For an ODECS A“?, we can explicitly construct an extended Morse transformation
bringing A“Y into its extended Morse canonical form EMCF, passing through
intermediate extended Morse triangular form EMTF and extended Morse normal form
EMNEF.

Z‘Cu e AC’U.ZC’IL + BC’U.U
21/,01) — ACUZCU + BCU,D
ZPU = APUZPYU 4 BPUqy  yPU = CPUZPY 4 DPUy
2PV = APYZPY 4 BPVy  yPY = CPY PV

Z‘O e AOZO yO e COZO,

EMCEF :

m both the pairs (A%, B*) and (A°?, B¢) are controllable and in the Brunovsky
canonical forms with indices €1,...,€, and €1,..., €, resp.;

m A™ is up to similarity;

m the 4-tuple (AP¥, BP* CP% DP%) and the triple (APY, BPY,CP") are prime with

indices o01,...,0. and &1, ...04, resp.;

m the pair (C°, A°) is observable and in the dual Brunovsky canonical form with indices
m,...MNe-
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Indices of the EMCF and the FBCF

Proposition 4 (the EMCF indices)

For an ODECS ALY, s .= (A, B%, BY,C, D"), the EMCF indices in Theorem 4 can be
calculated as follows and thus are invariant under EM-transformations.
Set .
& =dim (V*NW;) —dim (V*NW;), i > 1,
& =dim (V*NW;) —dim (V*NW;_1), i > 1
&; =dim W; —dim W;_1 — &, i > 1,
n; = dim (W* T Vifl) — dim (W* + Vi), 7> 1.
Then a=¢é, b=¢,d= 01, e=11. The indices (e1,...,€q) = 0(),

(€1, &) =0(€), (51,...,04) =0(5) and (n1,...,ne) = 0(R).
Set
61 =m—¢, 6;=dim W;_1 —dim Wi_1 — &_1, i > 2.

Then ¢ = 62 and § = 61 — c¢. The indices (o1,...,0.) =0(6) — (1,...,1).
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Implicitation of ODECSs and reduction of driving variables

Example 1

Consider a prime subsystem (A2”, BEY CZY) of (APY, BPY, CP?), for which we get:

1
Y =T, .1
@l =22 O -
AZ®, BEV,CP) NoIp0):{ & =2
(A5",B&",C3%) _1"‘_ — (Nz,15,0) :
W T — p— {og
- =z 70—1 — &
° =w, ’

m The FBCF is the implicitation and reduction of the EMICF of A%. A crucial
ex— fb
observation is that EMICF € Expl(FBCF). Thus A" /" FBCF (since
A" € Expl(A%), A* " EMCF).
m With the help of the reduction and implicitation procedure, we can regard the
FBCF (Loiseau et al 1991) as a corollary of Theorem 4 (EMCEF).
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Proposition 5 (Relations of the indices)

Assume A*W € Expl(AY), then the EMCEF indices of A*Y and the FBCF indices of A%
are related by

ma=ad ande, =€), fork=1,...,a, b=V and & =¢_ fork=1,...,b;
m ngy =n, and A" = Ap;

mctd=candoy =0h =, ,=05=1,05 1 =01+1, 05, ,=02+1,...,
ag+czac+1; Moreover, d = d' and 6, = 7}, for k=1,...,d;

me=c¢ andnp +1=mn) fork=1,...,e.

m With the help of Proposition 5, we can regard the results of calculating FBCF indices
(Loiseau et al 1991) (Berger 2015) as a corollary of Proposition 4 (EMCEF indices).

m There exists a perfect correspondence between the EMCF and of the FBCF':

(Acuchu) Ans (I\e’|7N5785’)7 (Acu’Bcu) Ans (LE/aK€’70)7
Any ¢ (In,, Ap), (Apv, Bpv CPv DPY) ¢ (KT, LT

iz /aga/)7
(Apszpvvcpv) H(N6'/71|6"\70)7 (6“7714C.)<_> (Lfvi,Z/vO) ’ ’
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An algorithm and conclusions
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Our algorithm of finding the FBCF of a linear DAECS

m Step 1: For A%, construct A*V st. A*Y € Expl(AY).

m Step 2: Find an EMirqn s.t. A% = EM¢ran(A") is in the EMTF.
m Step 3: Find an EMyran s.t. A% = EMyran(A%?) is in the EMNF.
m Step 4: Bring A®™ into the EMCF by normalizing the subsystems in the EMNF.

m Step 5: Find the implicitation of EMCF, denoted by A%. Then A% is in the FBCF

ex—fb

and A% AT,
At FBCF
‘ (Loiseau et al 1991)
explicitation, implicitation,
Thm.2 Thm.3 Thm.4
Aw EMTF EMNF EMCF
extension extension extension extension
Prop.2 Prop.3 (Molinari1978)
A MTF MNF MCF
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Conclusions

m Propose the explicitation with driving variables procedure.
m Show the role of the driving variables.

m Connect DAECSs and ODECSs via their equivalences and geometric
subspaces.

m Simple way to transform an ODECS to its MCF or EMCEF.
m Geometrical way to get the FBCF of a DAECS
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Thank you for listening !!
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