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Introduction

We study differential-algebraic equations DAEs of semi-explicit SE form

— R(z)t = a(x)

=se .

2% { o(), (1)
m R(z), a(z), and c¢(x) are smooth maps with values in R"*", R", and RP, respectively;
m assume R(z) is locally of full row rank in a neighborhood X of zY;

m the “generalized” state x € X and X is an open subset of R™.

Why called semi-explicit?

A linear SE DAE is of the following form

se . Rt = Ax
A { 0 = Cz, (2)

m where R € R"*" A € R"™*"™ (C € RPX™,

When is Z%¢ ~ A%¢? How to define “~”7?
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External equivalence of different levels

Definition 1 (external equivalence)

Consider two SE DAEs 23¢, , = (R, a,c) and éf{fhp = (R, a,¢). If 3 a diffeomorphism

¥ : X — X and a smooth invertible 7 x r-matrix Q%(x) s.t.
= . op(z)\ !
Rw() = @R (252 Q
a(y(x)) = Q*(x)a(), (4)

and if, additionally,
3 invertible p x p-matrix Q¢(z) s.t. &(¢(z)) = Q¢(x)c(x), we call 25¢ and =5¢

externally equivalent, or shortly ex-equivalent, of level-1;

3 a smooth invertible p X p-matrix Q¢(z) s.t. ¢(¢¥(x)) = Q°(z)c(z) and
Q°(z) = Q(c(z)) for some invertible Q(z), ...of level-2;
3 a constant invertible p X p-matrix T s.t. ¢(¢(z)) = Te(x),....of level-3.

§ =

The level-i (¢ =1, 2,3) ex-equivalence of two SE DAEs will be denoted by Z¢ R e,



A canonical form for linear semi-explicit DAE

Proposition 1

Any linear SE DAE A3S, , = (R, A, C) is ex-equivalent to the following semi-explicit
canonical form:

2l = Alz! + Blw! +Kly

22 - A222 +K2y

53 = 433 1 B3uwd 1 K3y
SCF:{ z*=A%2" +K4y

0=w°

)= O

0= C424,

where y = (y°,y2,y%), 0 = wP, y3 = C32% and y* = C*2%, and the system matrices
satisfy Ak = diag [A¥,..., A¥] for k =1,3,4, B¥=diag [BY, ..., B¥] for k=1,3 and B*
is empty for k = 2,4, C* =diag [C’f7 ..., CF] for k = 3,4 and C* is empty for k = 1,2,
with

0 I, 1 0 _ .
Af = [0 "o } Bf = M ERT, CF =1 0] eRVXM,

fori=1,... e, where e depends on k and is equal to a,b,c,d for k=1,2,3,4,
respectively; A2 is in the Jordan canonical form for real matrices.

m Compare the above canonical form SCF with the Kronecker canonical form
(Kronecker 1890) for linear DAEs and the Morse canonical form (Morse 1973) for
linear control systems.
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Explicitation and internal linearization of semi-explicit DAEs
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Explicitation of semi-explicit DAEs

Definition 2 (explicitation)

For 25°¢, , = (R,a,c), set m =n —r. Then the explicitation of Z°¢, denoted by

Expl(E¢), is a class of control systems of the following form:

&= 1@) + g
S g { Y= h(), (5)

where v € R™ is called the driving variable, h(z) is a smooth RP-valued function on X,
and where f,g1,...,gm are smooth vector fields on X¢ satisfying

f(@) = Ri(z)a(2), Img(z) =kerR(z), h(z)= c(a).

m Rf(z) is the right inverse of R(x), i.e., R(z)R'(x) = I..
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System equivalence of control systems

Definition 3 (system equivalence)

Consider two control systems $pn m.p = (f, g, h) and B, m.p = = (f,§,h) defined on X and
X respectively. If there exists a diffeomorphism ¢ : X — X an R™-valued function a(x),
and an invertible m X m-matrix-valued function B(x) sa.tlsfylng

F@(@) = 258 (£ + g0) (), 6
3(0(x)) = 25 (gp) (a), R
and, additionally,

(i) either 3 a constant invertible matrix T such that h(i(z)) = Th(z), we call & and &
system equivalent, shortly sys-equivalent, of level-3,

(ii) or 3 a diffeomorphism ¢ : R? — RP such that h(i(z)) = p(h(z)), we call the two
control systems sys-equivalent of level-2.
The sys-equivalence of level-i (z = 2,3) of two control systems will be denoted by
SYs—1i ~

X o~ 3.

Coordinates transformations in the output space ?
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Explicitation of semi-explicit DAEs

Proposition 2

(i) Consider two control systems Sn.m.p = (f,9,h) and Sn,mp = (f,§, k), that belong to
the explicitation class of E5¢, ,, i.e. 3,5 € Expl(E°¢). Then there exist a(x), f(x) with
values in R™ and invertible m X m-matrices such that

f(2) = f(2) + g(@)a(2), §(z) = g()B(x). (7
(i) Two SE DAEs Z;5°,. . = (R,a,c) and éfﬁ,._p = (R, a,¢) are ex-equivalent of level-2

(respectively, level-3) if and only if two control systems (f,g,h) =X € Expl(E°°) and
(f,3,h) = X € Expl(E3°¢) are sys-equivalent of level-2 (respectively, level-3).

m The explicitation of SE DAEs is a control system defined up to feedback
transformations.

m Sys-equivalence (of level-2, and, respectively, level-3) is for explicitation systems the
same as ex-equivalence (of level-2, and respectively, level-3) for DAE’s.

Ex-equivalence of level i

explicitation explicitation

_ Sys-equivalence of level ¢ - -
¥ € Expl(E%°) 3 € Expl(=°¢)
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Internal equivalence of SE DAEs

m A solution of Z%€ is a curve z(t) € €*(I; X) with an open interval I such that for all
t €I, z(t) solves (1).

m A submanifold M* is called a mazimal invariant submanifold (for details, see Chen
and Respondek (2018)) of Z%€ if M* is the largest submanifold of X s.t. V 2% € M*,
3 x(t) such that 2(0) = 2° and x(t) € M*, t € I. (M* is where the solutions exist)

Definition 4 (internal equivalence)

Consider two SE DAEs Z7°,. | = (R, a,c) and gse, = (R,a,¢). Let M* and M* be their

=n,r,p

maximal invariant submanifolds. We call Z°¢ and Sse internally equivalent, shortly
in-equivalent, if £%¢|,/« and Z%¢| N7+ are ex-equivalent.
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Internal linearizability of SE DAEs

For =3¢, , = (R, a,c), the following are locally equivalent:

(1) E%¢ is in-equivalent to a linear SE DAE A®¢ with internal reachability;

(ii) A (and then any) control system (f*,g*) = X* € Expl(E®¢|p+) is feedback
linearizable;

(iii) The linearizability distributions G;(X*) (given below) are involutive and of constant
rank and G*(3*) = TM*.

m The equivalence of (ii) and (iii) is proved in Jakubczyk and Respondek (1980), Hunt
and Su (1983), as classical results of feedback linearization of nonlinear control
systems.
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The Kapitsa pendulum under holonomic constraints

Example 1 (Fliess 1995)

The dynamics of the system:

& :p+uT1 sin «

2 wa)2
P :(%7%cosa7%cosa) sinaf%pcosa (8)
z =uj,

Case 1: under holonomic constraint z + [ cos @ = c19, where ¢ denotes a fixed constant.
Our DAE is 25¢ = (R1, a1, c1) where

10000
Ri(z) = 8(1)(1)88}, ci(z) = z3 + lcosz1 — cio,
12+IT4 sin 1
2 2
al(x) = <% (ml42) Coszlf(“;?; cosacl) sinmlf%zgcosrl

T4
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Internal linearization of the Kapitsa pendulum

Case 1: Our DAE is Z§¢ = (R1,a1,c1). A control system 31 = (f1,91,h1) € Expl(E°) is

. ay(x) 00 v
s a= [0 18]

y =3 +lcoszy — cip.

The maximal output zeroing submanifold M} of ¥;:

M{‘:{ax|z3 +lcoszy — c19 =4 cos> z1 — lxo sin:v1:0}.

Thus
T = —22
1= os2 i
2 2
b : o (g _ (x2)°  (=s5) ;
1|M1* To T~ cosS oy 55— cosz | sinay
T = v2,

which is locally static feedback equivalent to
&y =i, dg =75, %5 = Do,

=3¢ is internally equivalent to the following linear DAE:

T1 = T2
To = Ts. 14 /25



Case 2: We change the holonomic constrains to
0=z
0 =1In|tan §|+ (k — 1)z,
m Our DAE is 25° = (R2, a2, c2), where Ra(z) = R1(z), az(z) = a1(z) and

_ z3
ea(x) = In|tan T+ (k — 1)zg |-

m A control system X2 = (f2, g2, h2) € Expl(Z5°) is given by

oo a= 0] 58] ©)

y1] _ T4
[yz] = [ln\tan%H»(kfl)zg] .

m The maximal output zeroing submanifold M3 of ¥ is

In|tan T |+ (k- 1)z3 =22 =24 =

My = 2lg — (x5)% cosxz1 =0

The zero dynamics of 3o is 1 = 0.



External linearization of semi-explicit DAEs
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Level-3 external linearization of SE DAEs

For a nonlinear control system X, m,p = (f, g, h), define sequences of distributions G,
S; and codistributions P; by

Gy =G = Span{glz~"7gm}
Git1 := G + [f, G4]
G* =3 G;.
i>1
S1 =G,
Sit1:= S; + [f, Si Nkerdh] + 377 [g;, S; N ker dh]
S* =305,
i>1
P1 :=span {dhl,...,dhp},
Piy1:=P + Lg(P;N GL) + Z;r;l ng (PN Gl)
pP* =3 P
i>1

and V; := P, V* = (P*)L.
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Level-3 external linearization of SE DAEs

Consider E7%,. |, = (R, a,c) around a point 0. Then in a neighborhood Xo of z°, Z%¢ is

level-8 ex-equivalent to a linear SE DAE A®¢ of the form

32 = A222 +K2y, 0=w?,
23 = A%23 + B3w? 4+ K3y, 0=C323,
2% = A4t +K4y, 0=C424,

with constraint-free controllability if and only if a (and then any) control system
3 = (f,9,h) € Expl(E®®) satisfies the following conditions in Xo:

To(z) Ty (x) -+ Tp(x)
(i) The Toeplitz matrices My = | © To@) - Te—1(&) | satisfy r(My,(z)) = rg (M)
0 0 - Toz)

for all k < 2n — 1, where Ty (z) = Lng;h(x);

(ii) G* = TXo;

(iii) [ad?@i, adl);gj} =0 for 1<i,j<m, 0<l,k<n, where f and §; are vector fields
modified by a feedback transformation resulting from the structure algorithm;

(iv) V*NS* =0.

Moreover, A%¢ is regular if and only if 25¢ satisfies (1)-(iv) and, additionally, condition

(v) V* @ §* = TXo. .



Level-3 external linearization of SE DAEs

Consider 255, , = (R,a,c) around a point xo. Then in a neighborhood Xo of xo, 2%¢ is
level-8 ex-equivalent to a linear SE DAE A®¢ of the form

L= ALzl + Blwl, 0=uw (10)
33 = A%23 + B3w®  +K3y, 0=C323,

where all matrices are as in the SCF, if and only if a (and then any) control system
3 € Expl(E%¢) satisfies the following conditions in Xo:

To(@) T1(z) - Ty (z)
(i) The Toeplitz matrices My, = | O To@) - Te—1(2) | sqtisfy r(My(x)) = (Mg ()
0 0 - To(z)

for all k < 2n — 1, where Ty (x) = LgL’}h(a:);
(ii) S; and G; are involutive and of constant rank;
(iii) S* = T'Xo;

(iv) S;NV* =GN V™.
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Continuation of the Kapitsa pendulum example

Example 2 (continuation of Example 1)

Case 1: X satisfies conditions (i)-(iv) of the above theorem and is level-3 sys-equivalent
to X3 below. Thus =7¢ is level-3 ex-equivalent to the following Aj¢:

- T =
T4 = V1 :.1 ..2
S 2 = T =
1 1 =2 = Aie : ;2 ~5
b -7 3 =2
2 77 0 =4is.
ZTs5 = V2

Case 2: %o satisfies conditions (i)-(v) of the above theorem and is level-3 sys-equivalent to
the following 2. Thus Z5¢ is level-3 ex-equivalent to the following A3€.

C??g =Xy 55]_ = X9 + kZ4
~ Ty =101, Y1 =Ta iz =5
Yo 1 =Za+kyi, y2=T1 = ASE : 533 = 4

2 =35 0 =i

i5 = ’l~)2 0 = j1-

m Although internally =3¢ is equivalent to 21 = 0, it is level-3 ex-equivalent to the
above linear SE DAE !!!
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An example which is not level-3 externally linearizable but so is level-2

Consider a SE DAE Z5° = (R3, a3, c3), described by

1
10 —z; 0 00 (w1 73) % 2y

Rs(x) = [0063% ] 00] » a3(x) = |:(m5+kem3):| , c3(@) = [34]-
00 0 010 B

A control system (f3, g3, h3) = X3 € Expl(Z5°), given by

i1 1

8] [eenia] 0o

o3 [ 3 + |0 10 [3;]
S - Z4 z5+ke®3 0373 0 v3
3 @5 6 0 0 0

e G 0 0 1

Y1 =123

Y2 = Z4.

m X3 is not level-3 input-output linearizable (since the Toeplitz matrices My (33) do
not satisfy the rank condition).

m However, via y1 = €Y1, g = y2 — %esyl, the system with the new outputs 41, g2 is
level-3 input-output linearizable.
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An example which is not level-3 externally linearizable but so is level-2

Example 3

m The system with the new outputs satisfies conditions (i)-(iv). In fact, 33 is level-2
sys-equivalent to the linear control system Y3 below =3¢ is level-2 ex-equivalent to
the linear DAE AZ® below

T3 =22 - _
- ~ T =%
2 = V1 :,1 ..2 -
i - S - Za =25 +kin
S xr3 = V2, Y1 =3 ASE . 2 =
3 - e - L = A3 Is = Tg
Ty =25+ kyi, Y2=24 0 =g
az =F7 -
:.5 .,6 0 = 4.
T =13

m Even if an explicit control system is not level-3 input-output linearizable, it may be
so under level-2 sys-equivalence.

m The future work should be focused on level-2 (and level-1) input-output
linearizability of control systems and corresponding SE DAEs.
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Conclusions
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Conclusions

m Notion of level-i (i=1,2,3) ex-equivalence;

m Explicitation of SE DAEs;

m Difference between internal equivalence and external equivalence;

m Characterization of the internal linearizability of SE DAEs;

m Necessary and sufficient conditions for Level-3 external linearization;

m An example to show level-2 external linearization of SE DAEs.
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Thank you for listening !!
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