Internal and External Linearization of Semi-Explicit Differential Algebraic Equations

Yahao Chen, Witold Respondek

Laboratoire de Mathématiques, EA 3226 - FR CNRS 3335, Normandie Université, Institut National des Sciences Appliquées de Rouen Normandie, FRANCE.

Vienna, September 4, 2019

Outline

1 Introduction

2 Explicitation and internal linearization of semi-explicit DAEs

3 External linearization of semi-explicit DAEs

2 Explicitation and internal linearization of semi-explicit DAEs

B External linearization of semi-explicit DAEs

We study differential-algebraic equations DAEs of semi-explicit SE form

$$\Xi^{se}: \begin{cases} \mathcal{R}(x)\dot{x} = a(x) \\ 0 = c(x), \end{cases}$$
(1)

\mathbb{R}(x), a(x), and c(x) are smooth maps with values in $\mathbb{R}^{r \times n}$, \mathbb{R}^r , and \mathbb{R}^p , respectively;

- assume $\mathcal{R}(x)$ is locally of full row rank in a neighborhood X_0 of x^0 ;
- the "generalized" state $x \in X$ and X is an open subset of \mathbb{R}^n .

Why called semi-explicit?

A linear SE DAE is of the following form

$$\Delta^{se} : \begin{cases} R\dot{x} = Ax\\ 0 = Cx, \end{cases}$$
(2)

• where $R \in \mathbb{R}^{r \times n}$, $A \in \mathbb{R}^{r \times n}$, $C \in \mathbb{R}^{p \times n}$.

When is $\Xi^{se} \sim \Delta^{se}$? How to define "~"?

Definition 1 (external equivalence)

Consider two SE DAEs $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ and $\tilde{\Xi}_{n,r,p}^{se} = (\tilde{\mathcal{R}}, \tilde{a}, \tilde{c})$. If \exists a diffeomorphism $\psi : X \to \tilde{X}$ and a smooth invertible $r \times r$ -matrix $Q^a(x)$ s.t.

$$\tilde{\mathcal{R}}(\psi(x)) = Q^a(x)\mathcal{R}(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1},\tag{3}$$

$$\tilde{a}(\psi(x)) = Q^a(x)a(x), \tag{4}$$

and if, additionally,

- ∃ invertible $p \times p$ -matrix $Q^c(x)$ s.t. $\tilde{c}(\psi(x)) = Q^c(x)c(x)$, we call Ξ^{se} and $\tilde{\Xi}^{se}$ externally equivalent, or shortly ex-equivalent, of level-1;
- ∃ a smooth invertible $p \times p$ -matrix $Q^c(x)$ s.t. $\tilde{c}(\psi(x)) = Q^c(x)c(x)$ and $Q^c(x) = Q(c(x))$ for some invertible Q(x), ...of level-2;
- **[**] ∃ a constant invertible $p \times p$ -matrix T s.t. $\tilde{c}(\psi(x)) = Tc(x),...$ of level-3.

The level-*i* (*i* = 1, 2, 3) ex-equivalence of two SE DAEs will be denoted by $\Xi^{se} \overset{ex-i}{\sim} \tilde{\Xi}^{se}$.

Proposition 1

Any linear SE DAE $\Delta_{r,n,p}^{se} = (R, A, C)$ is ex-equivalent to the following semi-explicit canonical form:

$$SCF: \begin{cases} \dot{z}^1 = A^1 z^1 + B^1 w^1 & +K^1 y \\ \dot{z}^2 = A^2 z^2 & +K^2 y \\ \dot{z}^3 = A^3 z^3 + B^3 w^3 & +K^3 y \\ \dot{z}^4 = A^4 z^4 & +K^4 y \\ 0 = w^0 \\ 0 = C^3 z^3 \\ 0 = C^4 z^4, \end{cases}$$

where $y = (y^0, y^3, y^4)$, $y^0 = w^0$, $y^3 = C^3 z^3$ and $y^4 = C^4 z^4$, and the system matrices satisfy $A^k = \text{diag} [A_1^k, \dots, A_e^k]$ for k = 1, 3, 4, $B^k = \text{diag} [B_1^k, \dots, B_e^k]$ for k = 1, 3 and B^k is empty for k = 2, 4, $C^k = \text{diag} [C_1^k, \dots, C_e^k]$ for k = 3, 4 and C^k is empty for k = 1, 2, with

$$A_i^k = \begin{bmatrix} 0 & I_{\mu_i - 1} \\ 0 & 0 \end{bmatrix}, \ B_i^k = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{\mu_i \times 1}, \ C_i^k = \begin{bmatrix} 1 & 0 \end{bmatrix} \in \mathbb{R}^{1 \times \mu_i},$$

for i = 1, ..., e, where e depends on k and is equal to a, b, c, d for k = 1, 2, 3, 4, respectively; A^2 is in the Jordan canonical form for real matrices.

• Compare the above canonical form SCF with the Kronecker canonical form (Kronecker 1890) for linear DAEs and the Morse canonical form (Morse 1973) for linear control systems.

2 Explicitation and internal linearization of semi-explicit DAEs

3 External linearization of semi-explicit DAEs

Definition 2 (explicitation)

For $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$, set m = n - r. Then the *explicitation* of Ξ^{se} , denoted by $\mathbf{Expl}(\Xi^{se})$, is a class of control systems of the following form:

$$\Sigma : \begin{cases} \dot{x} = f(x) + g(x)v\\ y = h(x), \end{cases}$$
(5)

where $v \in \mathbb{R}^m$ is called the driving variable, h(x) is a smooth \mathbb{R}^p -valued function on X_0 , and where f, g_1, \ldots, g_m are smooth vector fields on X_0 satisfying

$$f(x) = \mathbf{R}^{\dagger}(x)a(x), \quad \operatorname{Im}g(x) = \ker \mathcal{R}(x), \quad h(x) = c(x).$$

• $R^{\dagger}(x)$ is the right inverse of R(x), i.e., $R(x)R^{\dagger}(x) = I_r$.

Definition 3 (system equivalence)

Consider two control systems $\Sigma_{n,m,p} = (f, g, h)$ and $\tilde{\Sigma}_{n,m,p} = (\tilde{f}, \tilde{g}, \tilde{h})$ defined on X and \tilde{X} , respectively. If there exists a diffeomorphism $\psi : X \to \tilde{X}$, an \mathbb{R}^m -valued function $\alpha(x)$, and an invertible $m \times m$ -matrix-valued function $\beta(x)$ satisfying

$$\tilde{f}(\psi(x)) = \frac{\partial \psi(x)}{\partial x} (f + g\alpha) (x),
\tilde{g}(\psi(x)) = \frac{\partial \psi(x)}{\partial x} (g\beta)(x),$$
(6)

and, additionally,

- (i) either ∃ a constant invertible matrix T such that h
 h(ψ(x)) = Th(x), we call Σ and Σ
 system equivalent, shortly sys-equivalent, of level-3,
- (ii) or \exists a diffeomorphism $\varphi : \mathbb{R}^p \to \mathbb{R}^p$ such that $\tilde{h}(\psi(x)) = \varphi(h(x))$, we call the two control systems sys-equivalent of level-2.

The sys-equivalence of level-i (i = 2, 3) of two control systems will be denoted by $\sum_{j=1}^{sys-i} \tilde{\Sigma}$.

Coordinates transformations in the output space ?

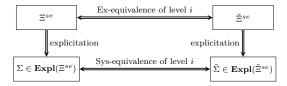
Proposition 2

(i) Consider two control systems $\Sigma_{n,m,p} = (f, g, h)$ and $\Sigma_{n,m,p} = (\tilde{f}, \tilde{g}, \tilde{h})$, that belong to the explicitation class of $\Xi_{n,r,p}^{se}$, i.e. $\Sigma, \tilde{\Sigma} \in \mathbf{Expl}(\Xi^{se})$. Then there exist $\alpha(x)$, $\beta(x)$ with values in \mathbb{R}^m and invertible $m \times m$ -matrices such that

$$\tilde{f}(x) = f(x) + g(x)\alpha(x), \quad \tilde{g}(x) = g(x)\beta(x).$$
(7)

(ii) Two SE DAEs $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ and $\tilde{\Xi}_{n,r,p}^{se} = (\tilde{\mathcal{R}}, \tilde{a}, \tilde{c})$ are ex-equivalent of level-2 (respectively, level-3) if and only if two control systems $(f, g, h) = \Sigma \in \mathbf{Expl}(\Xi^{se})$ and $(\tilde{f}, \tilde{g}, \tilde{h}) = \tilde{\Sigma} \in \mathbf{Expl}(\tilde{\Xi}^{se})$ are sys-equivalent of level-2 (respectively, level-3).

- The explicitation of SE DAEs is a control system defined up to feedback transformations.
- Sys-equivalence (of level-2, and, respectively, level-3) is for explicitation systems the same as ex-equivalence (of level-2, and respectively, level-3) for DAE's.



- A solution of Ξ^{se} is a curve $x(t) \in \mathscr{C}^1(I; X)$ with an open interval I such that for all $t \in I$, x(t) solves (1).
- A submanifold M^* is called a maximal invariant submanifold (for details, see Chen and Respondek (2018)) of Ξ^{se} if M^* is the largest submanifold of X s.t. $\forall x^0 \in M^*$, $\exists x(t)$ such that $x(0) = x^0$ and $x(t) \in M^*$, $t \in I$. (M^* is where the solutions exist)

Definition 4 (internal equivalence)

Consider two SE DAEs $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ and $\tilde{\Xi}_{n,r,p}^{se} = (\tilde{\mathcal{R}}, \tilde{a}, \tilde{c})$. Let M^* and \tilde{M}^* be their maximal invariant submanifolds. We call Ξ^{se} and $\tilde{\Xi}^{se}$ internally equivalent, shortly in-equivalent, if $\Xi^{se}|_{M^*}$ and $\tilde{\Xi}^{se}|_{\tilde{M}^*}$ are ex-equivalent.

Theorem 1

- For $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$, the following are locally equivalent:
- (i) Ξ^{se} is in-equivalent to a linear SE DAE Δ^{se} with internal reachability;
- (ii) A (and then any) control system $(f^*, g^*) = \Sigma^* \in \mathbf{Expl}(\Xi^{se}|_{M^*})$ is feedback linearizable;
- (iii) The linearizability distributions $G_i(\Sigma^*)$ (given below) are involutive and of constant rank and $G^*(\Sigma^*) = TM^*$.
 - The equivalence of (ii) and (iii) is proved in Jakubczyk and Respondek (1980), Hunt and Su (1983), as classical results of feedback linearization of nonlinear control systems.

The Kapitsa pendulum under holonomic constraints

Example 1 (Fliess 1995)

The dynamics of the system:

$$\begin{cases} \dot{\alpha} = p + \frac{u_1}{l} \sin \alpha \\ \dot{p} = \left(\frac{g}{l} - \frac{(u_1)^2}{l^2} \cos \alpha - \frac{(u_2)^2}{2l^2} \cos \alpha\right) \sin \alpha - \frac{u_1}{l} p \cos \alpha \\ \dot{z} = u_1, \end{cases}$$
(8)

Case 1: under holonomic constraint $z + l \cos \alpha = c_{10}$, where c_{10} denotes a fixed constant. Our DAE is $\Xi_1^{se} = (\mathcal{R}_1, a_1, c_1)$ where

$$\mathcal{R}_{1}(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \quad c_{1}(x) = x_{3} + l \cos x_{1} - c_{10},$$
$$a_{1}(x) = \begin{bmatrix} x_{2} + \frac{x_{4}}{l} \sin x_{1} \\ \left(\frac{q}{l} - \frac{(x_{4})^{2}}{l^{2}} \cos x_{1} - \frac{(x_{5})^{2}}{2l^{2}} \cos x_{1}\right) \sin x_{1} - \frac{x_{4}}{l} x_{2} \cos x_{1} \\ x_{4} \end{bmatrix}$$

Example 1

Case 1: Our DAE is $\Xi_1^{se} = (\mathcal{R}_1, a_1, c_1)$. A control system $\Sigma_1 = (f_1, g_1, h_1) \in \mathbf{Expl}(\Xi_1^{se})$ is

$$\Sigma_1: \left\{ \begin{array}{c} \dot{x} = \begin{bmatrix} a_1(x) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \right. \\ y = x_3 + l \cos x_1 - c_{10}.$$

The maximal output zeroing submanifold M_1^* of Σ_1 :

$$M_1^* = \left\{ x \, | \, x_3 + l \cos x_1 - c_{10} = x_4 \cos^2 x_1 - l x_2 \sin x_1 = 0 \right\}.$$

Thus

$$\Sigma_1|_{M_1^*} : \begin{cases} \dot{x}_1 = \frac{x_2}{\cos^2 x_1} \\ \dot{x}_2 = \left(\frac{g}{l} - \frac{(x_2)^2}{\cos^3 x_1} - \frac{(x_5)^2}{2l^2} \cos x_1\right) \sin x_1 \\ \dot{x}_5 = v_2, \end{cases}$$

which is locally static feedback equivalent to

$$\dot{\tilde{x}}_1 = \tilde{x}_2, \quad \dot{\tilde{x}}_2 = \tilde{x}_5, \quad \dot{\tilde{x}}_5 = \tilde{v}_2,$$

 Ξ_1^{se} is internally equivalent to the following linear DAE:

Example 1

Case 2: We change the holonomic constrains to

$$\begin{cases} 0=z\\ 0=\ln|\tan\frac{\alpha}{2}|+(k-1)z, \end{cases}$$

• Our DAE is $\Xi_2^{se} = (\mathcal{R}_2, a_2, c_2)$, where $\mathcal{R}_2(x) = \mathcal{R}_1(x), a_2(x) = a_1(x)$ and

$$c_2(x) = \begin{bmatrix} x_3 \\ \ln|\tan\frac{x_1}{2}| + (k-1)x_3 \end{bmatrix}$$

• A control system $\Sigma_2 = (f_2, g_2, h_2) \in \mathbf{Expl}(\Xi_2^{se})$ is given by

$$\Sigma_{2}: \left\{ \begin{array}{c} \dot{x} = \begin{bmatrix} a_{2}(x) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} \\ \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} \ln | \tan \frac{x_{1}}{2} | + (k-1)x_{3} \end{bmatrix} \right\}.$$
(9)

• The maximal output zeroing submanifold M_2^* of Σ_2 is

$$M_2^* = \left\{ x \left| \begin{array}{c} \ln|\tan\frac{x_1}{2}| + (k-1)x_3 = x_2 = x_4 = \\ 2lg - (x_5)^2 \cos x_1 = 0 \end{array} \right\} \right\}$$

The zero dynamics of Σ_2 is $\dot{x}_1 = 0$.

2 Explicitation and internal linearization of semi-explicit DAEs

3 External linearization of semi-explicit DAEs

For a nonlinear control system $\Sigma_{n,m,p} = (f, g, h)$, define sequences of distributions G_i , S_i and codistributions P_i by

$$\begin{array}{ll} G_1 & := G := \operatorname{span} \left\{ g_1, \dots, g_m \right\} \\ G_{i+1} & := G_i + [f, G_i] \\ G^* & := \sum_{i \ge 1} G_i. \\ S_1 & := G, \\ S_{i+1} & := S_i + [f, S_i \cap \ker dh] + \sum_{j=1}^m [g_j, S_i \cap \ker dh] \\ S^* & := \sum_{i \ge 1} S_i. \\ P_1 & := \operatorname{span} \left\{ dh_1, \dots, dh_p \right\}, \\ P_{i+1} & := P_i + L_f (P_i \cap G^{\perp}) + \sum_{j=1}^m L_{g_j} (P_i \cap G^{\perp}) \\ P^* & := \sum_{i \ge 1} P_i. \end{array}$$

and $V_i := P_i^{\perp}, V^* := (P^*)^{\perp}$.

Theorem 2

Consider $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ around a point x^0 . Then in a neighborhood X_0 of x^0 , Ξ^{se} is level-3 ex-equivalent to a linear SE DAE Δ^{se} of the form

 $\left\{ \begin{array}{ccc} \dot{z}^2 = A^2 z^2 & +K^2 y, & \mathbf{0} = \boldsymbol{w}^{\mathbf{0}}, \\ \dot{z}^3 = A^3 z^3 + B^3 w^3 & +K^3 y, & \mathbf{0} = C^3 z^3, \\ \dot{z}^4 = A^4 z^4 & +K^4 y, & \mathbf{0} = C^4 z^4, \end{array} \right.$

with constraint-free controllability if and only if a (and then any) control system $\Sigma = (f, g, h) \in \mathbf{Expl}(\Xi^{se})$ satisfies the following conditions in X_0 :

(i) The Toeplitz matrices
$$M_k = \begin{bmatrix} T_0(x) & T_1(x) & \cdots & T_k(x) \\ 0 & T_0(x) & \cdots & T_{k-1}(x) \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & T_0(x) \end{bmatrix}$$
 satisfy $r(M_k(x)) = r_{\mathbb{R}}(M_k(x))$
for all $k \le 2n - 1$, where $T_k(x) = L_g L_f^k h(x)$;

(ii) $G^* = TX_0;$

(iii) $[ad_{\tilde{f}}^k \tilde{g}_i, ad_{\tilde{f}}^l \tilde{g}_j] = 0$ for $1 \le i, j \le m, 0 \le l, k \le n$, where \tilde{f} and \tilde{g}_i are vector fields modified by a feedback transformation resulting from the structure algorithm;

(iv) $V^* \cap S^* = 0.$

Moreover, Δ^{se} is regular if and only if Ξ^{se} satisfies (i)-(iv) and, additionally, condition (v) $V^* \oplus S^* = TX_0$.

Theorem 3

Consider $\Xi_{n,r,p}^{se} = (\mathcal{R}, a, c)$ around a point x_0 . Then in a neighborhood X_0 of x_0 , Ξ^{se} is level-3 ex-equivalent to a linear SE DAE Δ^{se} of the form

$$\begin{cases} \dot{z}^1 = A^1 z^1 + B^1 w^1, & \mathbf{0} = w^0 \\ \dot{z}^3 = A^3 z^3 + B^3 w^3 + K^3 y, & \mathbf{0} = C^3 z^3, \end{cases}$$
(10)

where all matrices are as in the SCF, if and only if a (and then any) control system $\Sigma \in \mathbf{Expl}(\Xi^{se})$ satisfies the following conditions in X_0 :

(i) The Toeplitz matrices
$$M_k = \begin{bmatrix} T_0(x) T_1(x) \cdots T_k(x) \\ 0 & T_0(x) \cdots T_{k-1}(x) \\ 0 & 0 & \cdots & m \\ 0 & 0 & \cdots & T_0(x) \end{bmatrix}$$
 satisfy $r(M_k(x)) = r_{\mathbb{R}}(M_k(x))$
for all $k \leq 2n-1$, where $T_k(x) = L_g L_f^k h(x)$;

(ii) S_i and G_i are involutive and of constant rank;

(iii) $S^* = TX_0;$

(iv) $S_i \cap V^* = G_i \cap V^*$.

Example 2 (continuation of Example 1)

Case 1: Σ_1 satisfies conditions (i)-(iv) of the above theorem and is level-3 sys-equivalent to $\tilde{\Sigma}_1$ below. Thus Ξ_1^{se} is level-3 ex-equivalent to the following Δ_1^{se} :

$$\tilde{\Sigma}_{1}: \begin{cases} \dot{\tilde{x}}_{3} &= \tilde{x}_{4}, \quad y = \tilde{x}_{3} \\ \dot{\tilde{x}}_{4} &= \tilde{v}_{1} \\ \dot{\tilde{x}}_{1} &= \tilde{x}_{2} \\ \dot{\tilde{x}}_{2} &= \tilde{x}_{5} \\ \dot{\tilde{x}}_{5} &= \tilde{v}_{2} \end{cases} \Rightarrow \Delta_{1}^{se}: \begin{cases} \dot{\tilde{x}}_{1} &= \tilde{x}_{2} \\ \dot{\tilde{x}}_{2} &= \tilde{x}_{5} \\ \dot{\tilde{x}}_{3} &= \tilde{x}_{4} \\ 0 &= \tilde{x}_{3} \end{cases}$$

Case 2: Σ_2 satisfies conditions (i)-(v) of the above theorem and is level-3 sys-equivalent to the following $\tilde{\Sigma}_2$. Thus Ξ_2^{se} is level-3 ex-equivalent to the following Δ_2^{se} .

$$\tilde{\Sigma}_{2}: \begin{cases} \dot{\tilde{x}}_{3} &= \tilde{x}_{4} \\ \dot{\tilde{x}}_{4} &= \tilde{v}_{1}, \\ \dot{\tilde{x}}_{1} &= \tilde{x}_{2} + ky_{1}, \\ \dot{\tilde{x}}_{2} &= \tilde{x}_{5} \\ \dot{\tilde{x}}_{5} &= \tilde{v}_{2} \end{cases} \begin{pmatrix} \dot{\tilde{x}}_{1} &= \tilde{x}_{2} + k\tilde{x}_{4} \\ \dot{\tilde{x}}_{2} &= \tilde{x}_{5} \\ \dot{\tilde{x}}_{3} &= \tilde{x}_{4} \\ 0 &= \tilde{x}_{4} \\ 0 &= \tilde{x}_{1}. \end{cases}$$

Although internally Ξ_2^{se} is equivalent to $\dot{x}_1 = 0$, it is level-3 ex-equivalent to the above linear SE DAE !!!

Example 3

Consider a SE DAE $\Xi_3^{se} = (\mathcal{R}_3, a_3, c_3)$, described by

$$\mathcal{R}_{3}(x) = \begin{bmatrix} 1 & 0 & -x_{1} & 0 & 0 & 0 \\ 0 & 0 & e^{3x_{3}} & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad a_{3}(x) = \begin{bmatrix} 2(x_{1}e^{x_{3}})^{\frac{1}{2}}x_{2} \\ -(x_{5}+ke^{x_{3}}) \\ x_{6} \end{bmatrix}, \quad c_{3}(x) = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix}.$$

A control system $(f_3, g_3, h_3) = \Sigma_3 \in \mathbf{Expl}(\Xi_3^{se})$, given by

$$\Sigma_{3}: \left\{ \begin{array}{c} \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \\ \dot{x}_{5} \\ \dot{x}_{6} \end{bmatrix} = \begin{bmatrix} 2(x_{1}e^{x_{3}})^{\frac{1}{2}}x_{2} \\ 0 \\ 0 \\ x_{5}+ke^{x_{3}} \\ x_{6} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & x_{1} & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & e^{3x_{3}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} \\ y_{1} = x_{3} \\ y_{2} = x_{4}. \end{array} \right]$$

• Σ_3 is not level-3 input-output linearizable (since the Toeplitz matrices $M_k(\Sigma_3)$ do not satisfy the rank condition).

• However, via $\tilde{y}_1 = e^{y_1}$, $\tilde{y}_2 = y_2 - \frac{1}{3}e^{3y_1}$, the system with the new outputs \tilde{y}_1 , \tilde{y}_2 is level-3 input-output linearizable.

Example 3

• The system with the new outputs satisfies conditions (i)-(iv). In fact, Σ_3 is level-2 sys-equivalent to the linear control system $\tilde{\Sigma}_3$ below Ξ_3^{se} is level-2 ex-equivalent to the linear DAE Δ_3^{se} below

$$\tilde{\Sigma}_{3}: \begin{cases} \dot{\tilde{x}}_{1} &= \tilde{x}_{2} \\ \dot{\tilde{x}}_{2} &= \tilde{v}_{1} \\ \dot{\tilde{x}}_{3} &= \tilde{v}_{2}, & \tilde{y}_{1} = \tilde{x}_{3} \\ \dot{\tilde{x}}_{4} &= \tilde{x}_{5} + k\tilde{y}_{1}, & \tilde{y}_{2} = \tilde{x}_{4} \\ \dot{\tilde{x}}_{5} &= \tilde{x}_{6} \\ \dot{\tilde{x}}_{6} &= \tilde{v}_{3} \end{cases} \Rightarrow \Delta_{3}^{se}: \begin{cases} \dot{\tilde{x}}_{1} &= \tilde{x}_{2} \\ \dot{\tilde{x}}_{4} &= \tilde{x}_{5} + k\tilde{y}_{1} \\ \dot{\tilde{x}}_{5} &= \tilde{x}_{6} \\ 0 &= \tilde{x}_{3} \\ 0 &= \tilde{x}_{4}. \end{cases}$$

- Even if an explicit control system is not level-3 input-output linearizable, it may be so under level-2 sys-equivalence.
- The future work should be focused on level-2 (and level-1) input-output linearizability of control systems and corresponding SE DAEs.

2 Explicitation and internal linearization of semi-explicit DAEs

3 External linearization of semi-explicit DAEs

- Notion of level-i (i=1,2,3) ex-equivalence;
- Explicitation of SE DAEs;
- Difference between internal equivalence and external equivalence;
- Characterization of the internal linearizability of SE DAEs;
- Necessary and sufficient conditions for Level-3 external linearization;
- An example to show level-2 external linearization of SE DAEs.

Thank you for listening !!!