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Introduction

We study differential-algebraic equations DAEs of semi-explicit SE form

Ξse :

{
R(x)ẋ= a(x)

0 = c(x),
(1)

R(x), a(x), and c(x) are smooth maps with values in Rr×n, Rr, and Rp, respectively;

assume R(x) is locally of full row rank in a neighborhood X0 of x0;

the “generalized” state x ∈ X and X is an open subset of Rn.

Why called semi-explicit?

A linear SE DAE is of the following form

∆se :

{
Rẋ= Ax
0 = Cx,

(2)

where R ∈ Rr×n, A ∈ Rr×n, C ∈ Rp×n.

When is Ξse ∼ ∆se? How to define “∼”?
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External equivalence of different levels

Definition 1 (external equivalence)

Consider two SE DAEs Ξsen,r,p = (R, a, c) and Ξ̃sen,r,p = (R̃, ã, c̃). If ∃ a diffeomorphism
ψ : X → X̃ and a smooth invertible r × r-matrix Qa(x) s.t.

R̃(ψ(x)) = Qa(x)R(x)

(
∂ψ(x)

∂x

)−1

, (3)

ã(ψ(x)) = Qa(x)a(x), (4)

and if, additionally,

(i) ∃ invertible p× p-matrix Qc(x) s.t. c̃(ψ(x)) = Qc(x)c(x), we call Ξse and Ξ̃se

externally equivalent, or shortly ex-equivalent, of level-1;

(ii)∃ a smooth invertible p× p-matrix Qc(x) s.t. c̃(ψ(x)) = Qc(x)c(x) and
Qc(x) = Q(c(x)) for some invertible Q(x), ...of level-2;

(iii)∃ a constant invertible p× p-matrix T s.t. c̃(ψ(x)) = Tc(x),....of level-3.

The level-i (i = 1, 2, 3) ex-equivalence of two SE DAEs will be denoted by Ξse
ex−i∼ Ξ̃se.
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A canonical form for linear semi-explicit DAE

Proposition 1

Any linear SE DAE ∆se
r,n,p = (R,A,C) is ex-equivalent to the following semi-explicit

canonical form:

SCF :



ż1 = A1z1 +B1w1 +K1y
ż2 = A2z2 +K2y
ż3 = A3z3 +B3w3 +K3y
ż4 = A4z4 +K4y
0 = w0

0 = C3z3

0 = C4z4,

where y = (y0, y3, y4), y0 = w0, y3 = C3z3 and y4 = C4z4, and the system matrices
satisfy Ak = diag [Ak1 , . . . , A

k
e ] for k = 1, 3, 4, Bk=diag [Bk1 , . . . , B

k
e ] for k = 1, 3 and Bk

is empty for k = 2, 4, Ck=diag [Ck1 , . . . , C
k
e ] for k = 3, 4 and Ck is empty for k = 1, 2,

with

Aki =

[
0 Iµi−1

0 0

]
, Bki =

[
0
1

]
∈ Rµi×1, Cki =

[
1 0

]
∈ R1×µi ,

for i = 1, . . . , e, where e depends on k and is equal to a, b, c, d for k = 1, 2, 3, 4,
respectively; A2 is in the Jordan canonical form for real matrices.

Compare the above canonical form SCF with the Kronecker canonical form
(Kronecker 1890) for linear DAEs and the Morse canonical form (Morse 1973) for
linear control systems.
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Explicitation of semi-explicit DAEs

Definition 2 (explicitation)

For Ξsen,r,p = (R, a, c), set m = n− r. Then the explicitation of Ξse, denoted by
Expl(Ξse), is a class of control systems of the following form:

Σ :

{
ẋ= f(x) + g(x)v
y= h(x),

(5)

where v ∈ Rm is called the driving variable, h(x) is a smooth Rp-valued function on X0,
and where f, g1, . . . , gm are smooth vector fields on X0 satisfying

f(x) = R†(x)a(x), Img(x) = kerR(x), h(x) = c(x).

R†(x) is the right inverse of R(x), i.e., R(x)R†(x) = Ir.
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System equivalence of control systems

Definition 3 (system equivalence)

Consider two control systems Σn,m,p = (f, g, h) and Σ̃n,m,p = (f̃ , g̃, h̃) defined on X and
X̃, respectively. If there exists a diffeomorphism ψ : X → X̃, an Rm-valued function α(x),
and an invertible m×m-matrix-valued function β(x) satisfying

f̃(ψ(x)) =
∂ψ(x)
∂x

(f + gα) (x),

g̃(ψ(x)) =
∂ψ(x)
∂x

(gβ)(x),
(6)

and, additionally,

(i) either ∃ a constant invertible matrix T such that h̃(ψ(x)) = Th(x), we call Σ and Σ̃
system equivalent, shortly sys-equivalent, of level-3,

(ii) or ∃ a diffeomorphism ϕ : Rp → Rp such that h̃(ψ(x)) = ϕ(h(x)), we call the two
control systems sys-equivalent of level-2.

The sys-equivalence of level-i (i = 2, 3) of two control systems will be denoted by

Σ
sys−i∼ Σ̃.

Coordinates transformations in the output space ?
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Explicitation of semi-explicit DAEs

Proposition 2

(i) Consider two control systems Σn,m,p = (f, g, h) and Σn,m,p = (f̃ , g̃, h̃), that belong to
the explicitation class of Ξsen,r,p, i.e. Σ, Σ̃ ∈ Expl(Ξse). Then there exist α(x), β(x) with
values in Rm and invertible m×m-matrices such that

f̃(x) = f(x) + g(x)α(x), g̃(x) = g(x)β(x). (7)

(ii) Two SE DAEs Ξsen,r,p = (R, a, c) and Ξ̃sen,r,p = (R̃, ã, c̃) are ex-equivalent of level-2
(respectively, level-3) if and only if two control systems (f, g, h) = Σ ∈ Expl(Ξse) and
(f̃ , g̃, h̃) = Σ̃ ∈ Expl(Ξ̃se) are sys-equivalent of level-2 (respectively, level-3).

The explicitation of SE DAEs is a control system defined up to feedback
transformations.

Sys-equivalence (of level-2, and, respectively, level-3) is for explicitation systems the
same as ex-equivalence (of level-2, and respectively, level-3) for DAE’s.

Ξse

Σ ∈ Expl(Ξse)

Ξ̃se

Σ̃ ∈ Expl(Ξ̃se)

explicitation

Ex-equivalence of level i

explicitation

Sys-equivalence of level i
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Internal equivalence of SE DAEs

A solution of Ξse is a curve x(t) ∈ C 1(I;X) with an open interval I such that for all
t ∈ I, x(t) solves (1).

A submanifold M∗ is called a maximal invariant submanifold (for details, see Chen
and Respondek (2018)) of Ξse if M∗ is the largest submanifold of X s.t. ∀ x0 ∈M∗,
∃ x(t) such that x(0) = x0 and x(t) ∈M∗, t ∈ I. (M∗ is where the solutions exist)

Definition 4 (internal equivalence)

Consider two SE DAEs Ξsen,r,p = (R, a, c) and Ξ̃sen,r,p = (R̃, ã, c̃). Let M∗ and M̃∗ be their
maximal invariant submanifolds. We call Ξse and Ξ̃se internally equivalent, shortly
in-equivalent, if Ξse|M∗ and Ξ̃se|M̃∗ are ex-equivalent.
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Internal linearizability of SE DAEs

Theorem 1
For Ξsen,r,p = (R, a, c), the following are locally equivalent:

(i) Ξse is in-equivalent to a linear SE DAE ∆se with internal reachability;

(ii) A (and then any) control system (f∗, g∗) = Σ∗ ∈ Expl(Ξse|M∗ ) is feedback
linearizable;

(iii) The linearizability distributions Gi(Σ∗) (given below) are involutive and of constant
rank and G∗(Σ∗) = TM∗.

The equivalence of (ii) and (iii) is proved in Jakubczyk and Respondek (1980), Hunt
and Su (1983), as classical results of feedback linearization of nonlinear control
systems.
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The Kapitsa pendulum under holonomic constraints

Example 1 (Fliess 1995)

z

gα

The dynamics of the system:
α̇ =p+

u1
l

sinα

ṗ =

(
g
l
− (u1)2

l2
cosα− (u2)2

2l2
cosα

)
sinα−u1

l
p cosα

ż =u1,

(8)

Case 1: under holonomic constraint z + l cosα = c10, where c10 denotes a fixed constant.
Our DAE is Ξse1 = (R1, a1, c1) where

R1(x) =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, c1(x) = x3 + l cosx1 − c10,

a1(x) =

 x2+
x4
l

sin x1(
g
l
− (x4)2

l2
cos x1−

(x5)2

2l2
cos x1

)
sin x1−

x4
l
x2 cos x1

x4

 .
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Internal linearization of the Kapitsa pendulum

Example 1

Case 1: Our DAE is Ξse1 = (R1, a1, c1). A control system Σ1 = (f1, g1, h1) ∈ Expl(Ξse1 ) is

Σ1 :

 ẋ =

[
a1(x)

0
0

]
+

[
0 0
1 0
0 1

] [ v1
v2

]
y = x3 + l cosx1 − c10.

The maximal output zeroing submanifold M∗1 of Σ1:

M∗1 =
{
x |x3 + l cosx1 − c10 =x4 cos2 x1 − lx2 sinx1 =0

}
.

Thus

Σ1|M∗
1

:


ẋ1 = x2

cos2 x1

ẋ2 =

(
g
l
− (x2)

2

cos3 x1
− (x5)

2

2l2
cosx1

)
sinx1

ẋ5 = v2,

which is locally static feedback equivalent to

˙̃x1 = x̃2, ˙̃x2 = x̃5, ˙̃x5 = ṽ2,

Ξse1 is internally equivalent to the following linear DAE:{
˙̃x1 = x̃2
˙̃x2 = x̃5. 14 / 25



Example 1

Case 2: We change the holonomic constrains to{
0 = z
0 = ln | tan α

2
|+ (k − 1)z,

.

Our DAE is Ξse2 = (R2, a2, c2), where R2(x) = R1(x), a2(x) = a1(x) and

c2(x) =

[
x3

ln | tan x1
2
|+ (k − 1)x3

]
.

A control system Σ2 = (f2, g2, h2) ∈ Expl(Ξse2 ) is given by

Σ2 :


ẋ =

[
a2(x)

0
0

]
+

[
0 0
1 0
0 1

] [ v1
v2

]
[ y1
y2

]
=
[ x4
ln | tan x1

2
|+(k−1)x3

]
.

(9)

The maximal output zeroing submanifold M∗2 of Σ2 is

M∗2 =

x
∣∣∣∣∣ ln | tan x1

2
|+ (k − 1)x3 = x2 = x4 =

2lg − (x5)2 cosx1 = 0

 .

The zero dynamics of Σ2 is ẋ1 = 0.

It implies that the solution of Ξse2 consists of a fixed admissible point x0 only (note
x0 ∈M∗2 ).
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Level-3 external linearization of SE DAEs

For a nonlinear control system Σn,m,p = (f, g, h), define sequences of distributions Gi,
Si and codistributions Pi by

G1 := G := span {g1, . . . , gm}
Gi+1 := Gi + [f,Gi]
G∗ :=

∑
i≥1

Gi.

S1 := G,
Si+1 := Si + [f, Si ∩ ker dh] +

∑m
j=1[gj , Si ∩ ker dh]

S∗ :=
∑
i≥1

Si.

P1 := span
{
dh1, . . . , dhp

}
,

Pi+1 := Pi + Lf (Pi ∩G⊥) +
∑m
j=1 Lgj (Pi ∩G⊥)

P ∗ :=
∑
i≥1

Pi.

and Vi := P⊥i , V ∗ := (P ∗)⊥.
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Level-3 external linearization of SE DAEs

Theorem 2
Consider Ξsen,r,p = (R, a, c) around a point x0. Then in a neighborhood X0 of x0, Ξse is
level-3 ex-equivalent to a linear SE DAE ∆se of the form ż2 = A2z2 +K2y,

ż3 = A3z3 +B3w3 +K3y,
ż4 = A4z4 +K4y,

0 = w0,
0 = C3z3,
0 = C4z4,

with constraint-free controllability if and only if a (and then any) control system
Σ = (f, g, h) ∈ Expl(Ξse) satisfies the following conditions in X0:

(i) The Toeplitz matrices Mk =

 T0(x) T1(x) ··· Tk(x)
0 T0(x) ··· Tk−1(x)
··· ··· ··· ···
0 0 ··· T0(x)

 satisfy r(Mk(x)) = rR(Mk(x))

for all k ≤ 2n− 1, where Tk(x) = LgLkfh(x);

(ii) G∗ = TX0;

(iii) [adk
f̃
g̃i, ad

l
f̃
g̃j ]=0 for 1≤ i, j≤m, 0≤ l, k≤n, where f̃ and g̃i are vector fields

modified by a feedback transformation resulting from the structure algorithm;

(iv) V ∗ ∩ S∗ = 0.

Moreover, ∆se is regular if and only if Ξse satisfies (i)-(iv) and, additionally, condition

(v) V ∗ ⊕ S∗ = TX0.
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Level-3 external linearization of SE DAEs

Theorem 3
Consider Ξsen,r,p = (R, a, c) around a point x0. Then in a neighborhood X0 of x0, Ξse is
level-3 ex-equivalent to a linear SE DAE ∆se of the form{

ż1 = A1z1 +B1w1,
ż3 = A3z3 +B3w3 +K3y,

0 = w0

0 = C3z3,
(10)

where all matrices are as in the SCF, if and only if a (and then any) control system
Σ ∈ Expl(Ξse) satisfies the following conditions in X0:

(i) The Toeplitz matrices Mk =

 T0(x) T1(x) ··· Tk(x)
0 T0(x) ··· Tk−1(x)
··· ··· ··· ···
0 0 ··· T0(x)

 satisfy r(Mk(x)) = rR(Mk(x))

for all k ≤ 2n− 1, where Tk(x) = LgLkfh(x);

(ii) Si and Gi are involutive and of constant rank;

(iii) S∗ = TX0;

(iv) Si ∩ V ∗ = Gi ∩ V ∗.
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Continuation of the Kapitsa pendulum example

Example 2 (continuation of Example 1)

Case 1: Σ1 satisfies conditions (i)-(iv) of the above theorem and is level-3 sys-equivalent
to Σ̃1 below. Thus Ξse1 is level-3 ex-equivalent to the following ∆se

1 :

Σ̃1 :



˙̃x3 = x̃4, y = x̃3
˙̃x4 = ṽ1
˙̃x1 = x̃2
˙̃x2 = x̃5
˙̃x5 = ṽ2

⇒ ∆se
1 :


˙̃x1 = x̃2
˙̃x2 = x̃5
˙̃x3 = x̃4
0 = x̃3.

Case 2: Σ2 satisfies conditions (i)-(v) of the above theorem and is level-3 sys-equivalent to
the following Σ̃2. Thus Ξse2 is level-3 ex-equivalent to the following ∆se

2 .

Σ̃2 :



˙̃x3 = x̃4
˙̃x4 = ṽ1, y1 = x̃4
˙̃x1 = x̃2 + ky1, y2 = x̃1
˙̃x2 = x̃5
˙̃x5 = ṽ2

⇒ ∆se
2 :



˙̃x1 = x̃2 + kx̃4
˙̃x2 = x̃5
˙̃x3 = x̃4
0 = x̃4
0 = x̃1.

Although internally Ξse2 is equivalent to ẋ1 = 0, it is level-3 ex-equivalent to the
above linear SE DAE !!!
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An example which is not level-3 externally linearizable but so is level-2

Example 3

Consider a SE DAE Ξse3 = (R3, a3, c3), described by

R3(x) =

[
1 0 −x1 0 0 0

0 0 e3x3 −1 0 0
0 0 0 0 1 0

]
, a3(x) =

[
2(x1e

x3 )
1
2 x2

−(x5+ke
x3 )

x6

]
, c3(x) =

[ x3
x4

]
.

A control system (f3, g3, h3) = Σ3 ∈ Expl(Ξse3 ), given by

Σ3 :




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =


2(x1e

x3 )
1
2 x2

0
0

x5+ke
x3

x6
0

+


0 x1 0
1 0 0
0 1 0
0 e3x3 0
0 0 0
0 0 1

[ v1v2
v3

]
y1 = x3
y2 = x4.

Σ3 is not level-3 input-output linearizable (since the Toeplitz matrices Mk(Σ3) do
not satisfy the rank condition).

However, via ỹ1 = ey1 , ỹ2 = y2 − 1
3
e3y1 , the system with the new outputs ỹ1, ỹ2 is

level-3 input-output linearizable.
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An example which is not level-3 externally linearizable but so is level-2

Example 3

The system with the new outputs satisfies conditions (i)-(iv). In fact, Σ3 is level-2
sys-equivalent to the linear control system Σ̃3 below Ξse3 is level-2 ex-equivalent to
the linear DAE ∆se

3 below

Σ̃3 :



˙̃x1 = x̃2
˙̃x2 = ṽ1
˙̃x3 = ṽ2, ỹ1 = x̃3
˙̃x4 = x̃5 + kỹ1, ỹ2 = x̃4
˙̃x5 = x̃6
˙̃x6 = ṽ3

⇒ ∆se
3 :



˙̃x1 = x̃2
˙̃x4 = x̃5 + kỹ1
˙̃x5 = x̃6
0 = x̃3
0 = x̃4.

Even if an explicit control system is not level-3 input-output linearizable, it may be
so under level-2 sys-equivalence.

The future work should be focused on level-2 (and level-1) input-output
linearizability of control systems and corresponding SE DAEs.
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Conclusions

Notion of level-i (i=1,2,3) ex-equivalence;

Explicitation of SE DAEs;

Difference between internal equivalence and external equivalence;

Characterization of the internal linearizability of SE DAEs;

Necessary and sufficient conditions for Level-3 external linearization;

An example to show level-2 external linearization of SE DAEs.
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Thank you for listening !!!
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