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Differential-algebraic equation DAE

Linear Nonlinear

Eẋ = Ax E(x)ẋ = F (x)

If E is square and invertible, then

Eẋ = Hx ⇒ ẋ = E−1Hx.
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Differential-algebraic equation DAE

Linear Nonlinear

Eẋ = Hx E(x)ẋ = F (x)

Example 1

[
0 0
0 1

] [
ẋ1

ẋ2

]
=

[
1 0
1 1

] [
x1

x2

]
. (1)

Solutions exist only on {x1 = 0}. (Existence)[
1 0

] [ẋ1

ẋ2

]
=

[
0 1

] [x1

x2

]
. (2)

There exist infinite solutions. (Uniqueness)
2 / 22



Outline

1 Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

3 / 22



Plan

1 Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

4 / 22



Nonlinear DAEs

Consider a nonlinear DAE:

Ξ : E(x)ẋ = F (x), (3)

the generalized state x ∈ X, X is an open subset of Rn;

E(x), F (x) are C∞-smooth functions with values in Rl×n and Rl, respectively;

denote DAE (3) by Ξl,n = (E,F );

a special case of general form:

Ξgen : G(t, x, x′) = 0, (4)

where G : I × TX → Rl.
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Index of DAEs

For linear DAE Ξlinl,n : Eẋ = Ax, if l = n and |sE −A| 6≡ 0 (i.e., regular), then ∃
invertible Q,P s.t.

(QEP−1, QAP−1) =

([
In1 0
0 N

]
,

[
J 0
0 In2

])
,

Index of linear DAEs

νlin :=

{
0, if n1 = n,
min { k ∈ N |Nk = 0 }, if n1 < n.

Various notions of index for nonlinear DAEs: differentiation index, geometric index,
perturbation index, strangeness index, uniform differentiation index, etc.

Some survey or survey-like papers on index of DAEs: Griepentrog et al. (1992),
Campbell (1995), Campbell and Gear (1995), Mehrmann (2015).
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Solutions and invariant submanifold of DAEs

A solution of Ξ is a C1-curve x : I → X with an open interval I such that for all
t ∈ I, x(t) solves (3).

xa: an admissible point (∃ x(t) and t0 s.t. x(t0) = xa), Sa: the admissible set
(Sa := {x0 |x0 = xa})

Definition 1 (Locally invariant submanifold)

For a DAE Ξ defined on X, fix xa, a smooth connected submanifold M of X is called
locally invariant if ∃ a neighborhood U of xa s.t ∀x0 ∈M ∩ U , there exists a solution
x : I → X of Ξ such that x(t0) = x0 and x(t) ∈M , ∀t ∈ I.

An invariant submanifold M∗ is called locally maximal, if locally any other invariant
submanifold M ⊆M∗.

What is the relation of M∗ and Sa?

How to calculate/construct M∗?
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Locally maximal invariant submanifold algorithm and the geometric index

Algorithm 1

For a DAE Ξl,n = (E,F ), set M0 = X. Step k > 0: assume that

(A) for some open neighborhood Uk−1 ⊆ X of xp that the intersection Mk−1 ∩ Uk−1 is a
smooth submanifold.

Set

Mk :=
{
x ∈Mc

k−1 |F (x) ∈ E(x)TxM
c
k−1

}
. (5)

where Mc
k−1: the connected component of Mk−1 ∩ Uk−1 s.t. xp ∈Mc

k−1

Definition 2 (Geometric index)

The geometric index of νg ∈ N of a DAE Ξ is defined by

νg := min
{
k ≥ 0 | (Mk = Mk+1) ∧ (Mk 6= ∅)

}
.

Proposition 1

If νg exists, then M∗ = Mνg is a locally maximal invariant submanifold.
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Realization of the maximal invariant submanifold algorithm

Step 1: Consider Ξl,n = (E,F ), fix xp ∈ X, assume (to produce zero-level set)

(A1) ∃U1 ⊆ X of xp s.t. rankE(x) = const. = l1, ∀x ∈ U1.

Find Q : U1 → Gl(l,R) s.t. E1 below if of full row rank l1:

QE(x) =

[
E1(x)

0

]
, QF (x) =

[
F 1(x)
F 2(x)

]
,

Following (5), define

M1 =
{
x ∈ U1 |F (x) ∈ ImE(x)

}
=
{
x ∈ U1 |F 2(x) = 0

}
.

Assume that (to assure M1 is a smooth embedded submanifold)

(A2) xp ∈M1 and rank DF 2(x) = const. = n− n1 for x ∈M1 ∩ U1.

Then choose new coordinates z = (z̄1, z1) = ψ(x) on U1 such that

Mc
1 =

{
(z̄1, z1) | z1 = 0

}
,

where z̄ are any complementary coordinates s.t. ψ is a local diffeomorphism.
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Using Q(x) and z = (z̄1, z1) = ψ(x), we get

Q(x)E(x)

(
∂ψ(x)

∂x

)−1(
∂ψ(x)

∂x

)
ẋ = Q(x)F (x)⇔

[
Ē1(z) Ẽ1(z)

0 0

] [
˙̄z1
ż1

]
=

[
F 1(z)
F 2(z)

]
.

Set z1 = 0 to get the reduced DAE:

Ξ|Mc
1

: Ē1(z̄1, 0) ˙̄z1 = F 1(z̄1, 0),

where Ē1 : Mc
1 → Rl1×n1 . Notice that Ξ|Mc

1
is again a DAE of form (3).

Repeat the above procedure until Step k∗, where k∗ is the smallest k s.t.
Mc
k = Mk+1 (note that k∗ = νg and M∗ = Mc

k∗ ).

Proposition 2

Ēk
∗

: M∗ → Rlk∗×nk∗ of the reduced DAE Ξ|M∗ : Ēk
∗
(z̄k∗ ) ˙̄zk∗ = Fk

∗
(z̄k∗ ) is of full row

rank and thus Ξ|M∗ can be seen as an ODE with free variables.

Ēk
∗
(z̄k∗ ) ˙̄zk∗ = Fk

∗
(z̄k∗ )⇒

[
Ē1(z̄k∗ ) Ē2(z̄k∗ )

] [ ˙̄z1k∗
˙̄z2k∗

]
= Fk

∗
(z̄k∗ )

⇒
{

˙̄z1k∗ = (Ē1)−1Fk
∗
(z̄k∗ )− (Ē1)−1E2(z̄k∗ )u

˙̄z2k∗ = u
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Ē1(z) Ẽ1(z)
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∗
(z̄k∗ ) ˙̄zk∗ = Fk

∗
(z̄k∗ ) is of full row

rank and thus Ξ|M∗ can be seen as an ODE with free variables.

Ēk
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∗
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Existence and uniqueness of solutions

Theorem 1
Consider a DAE Ξl,n = (E,F ) and fix a point xp ∈ X. Assume the constant assumptions
(A1) and (A2) of the algorithm are satisfied. Then locally (on U∗ = Uk∗)

(i) M∗ = Mc
k∗ = Sa; (existence)

(ii) there exists a diffeomorphism which maps any solution of Ξ to that of

Ēk
∗
(z̄k∗ ) ˙̄zk∗ = Fk

∗
(z̄k∗ ), zk∗ = 0, . . . , z1 = 0;

where M∗ =
{
z | zk∗ = 0, . . . , z1 = 0

}
, Ēk

∗
: M∗ → Rlk∗×nk∗ is of full row rank.

(iii) for any x0 ∈M∗, there passes only one solution if and only if

dim M∗ = dim E(x)TxM
∗

for all x ∈M∗, i.e., nk∗ = lk∗ . (uniqueness)
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Remarks on the geometric index

Relation to the existence of solutions: if x0 ∈ Uνg/Mνg around xp, then there does
not exist a solution x(t) such that x(0) = x0.

The geometric index does not concern the uniqueness of the solutions. As an
example, consider two DAEs

Ξ2,2 :

{
ẋ1 = f(x1, x2)
0 = x2,

and Ξ̃2,3 :

{
ẋ1 = f(x1, x2)
0 = x3,

where f : X1 ×X2 → R is smooth. For both Ξ and Ξ̃, νg = 1.

Apply the above algorithm to a linear DAE Eẋ = Ax and denote V = M , we get (the
Wong sequence(1973))

V0 = Rn, Vk =
{
x ∈ Vk−1 |Ax ∈ EVk−1

}
= A−1EVk−1.

Note that νlin = k∗. As a result, the geometric index νg of nonlinear DAEs is a
nonlinear generalization of the index νlin of linear DAEs.
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Classical definition of the differentiation index

The notion of differentiation index is originally proposed for (see Campbell(1995)):

Ξgen : G(t, x, x′) = 0.

Define the differential array by

Gk(t, x, x′, w)=


G

DtG + DxGx′ + D
x′Gx′′

.

.

.
dk

dtk
G

 (t, x, x′, w)=0, (6)

where w =
[
x(2), . . . , x(k+1)

]
.

The differentiation index νd is the least integer k such that equation (6) uniquely
determines x′ as a function of (x, t), i.e., x′ = v(x, t).
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Drawbacks of the classical definition of the differentiation index

Example 1

Ξ2,2 :

{
ẋ1 = x2
ẋ2 = F (x1, x2)

and Ξ̃3,2 :

 ẋ1 = x2
ẋ2 = F (x1, x2)
0 = x1

,

where F (0, 0) 6= 0. Initial point: (x10, x20) = (0, 0). Both Ξ2,2 and Ξ̃3,2 have νd = 0.

Such a definition does not identify M∗ and thus does not allows for a conclusion
about existence of solutions (Ξ has a solution and Ξ̃ has not).

Ξ̃ has no solutions since v(x) = (x2, F (x1, x2)) is not tangent to
M2 =

{
x |x1 = x2 = 0

}
at (x10, x20) = (0, 0).

Mix up the difference between an ODE and an “over-determined” DAE. E.g., in
order to derive solutions: Ξ2,2-no differentiation needed and Ξ̃3,2-need two times of
differentiation.
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Our definition of the differentiation index (inspired by (Griepentrog1991))

Consider a nonlinear DAE Ξl,n = (E,F ), let H(x, ζ1) = E(x)ζ1 − F (x), denote

( dk

dtk
H) = H(k) and define

Hk(x, ζ̄k+1) =


H(0)(x, ζ1)

...
H(k)(x, ζ̄k+1)

 = 0, (7)

where ζ̄k+1 = (ζ1, . . . , ζk+1).

Set N0 = X, Z0
1 = Rn and for k > 1, define

Nk :=
{
x ∈ X |Hk−1(x, ζ̄k) = 0

}
,

Zk1 :=
{
ζ1 ∈ Rn |Hk−1(x, ζ̄k) = 0, x ∈ Nk

}
,

(8)

and assume that for each k > 0, Nk is a smooth connected submanifold.

Definition 3 (Differentiation index)

The differentiation index νd of Ξ is defined by

νd :=


0, if (l = n) ∧ (E : X → Gl(l,R)),

min

 k > 0

∣∣∣∣∣ Nk 6=∅ ∧ (Zk
1 =Zk

1 (x) is a singleton)
∧(Zk

1 (x) ∈ TxNk, ∀x ∈ Nk)

 , otherwise.

17 / 22



Relations of the differentiation index and geometric index

Theorem 2
For a DAE Ξl,n = (E,F ), fix a point xp and assume locally that

(A1)’ Nk is a smooth embedded submanifold and xp ∈ Nk;

(A2)’ dim E(x)TxNc
k−1 = const..

Then we have locally around xp that for each k ≥ 0,

Nk = Mk.

Thus there exists a smallest k, denoted by k∗ ≤ n such that Nk∗+1 = Nc
k∗ and the

geometric index νg = k∗.
Moreover, νd of Ξ exists and satisfies νd = νg if and only if

dimNc
k∗ = dimE(x)TxN

c
k∗ .
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An example

Consider a mathematical model of a pendulum with a mass attached to its end
(Rabier(1994)):

Ξ :


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


x2

−x5x1

x4

−x5x3 − g
x2
1 + x2

3 − l
2

 . (9)

We consider the point x0 =(x10, x20, x30, x40, x50), where x10 = 0, x20 = 0, x30 = −l,
x40 = 0, x50 = g/l.

By applying the algorithm, we get

M1 =
{
x ∈ X |x21 + x23 − l2 = 0

}
.

M2 =
{
x ∈M1 |x3x4 + x1x2 = 0

}
.

M∗ = M3 =
{
x ∈M2 |x24 + x22 − x5l2 − gx3 = 0

}
Notice that the assumptions of (A1) and (A2) are satisfied and the solution passing
through x0 exists and is unique (since dimM∗ = rankEk∗ = 2). Indeed, since

Ξ|M∗ :

[
1 0
0 1

] [
ẋ1

ẋ2

]
=

[
x2

−x5x1

]
,

where x5 = 1
l2

(x21x
2
2(l − x21)−1 + x22 + g(l2 − x21)1/2).

By calculating the differential array, it is seen that Nk = Mk for k = 0, 1, 2, 3.
Moreover, Since dimM∗ = dim(E(x)TxM∗) = 2 we have νg = νd = 3.
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Conclusions

Maximal invariant submanifold algorithm (how to solve a DAE using geometric
method).

Existence and uniqueness of solutions.

The two indices related to the existence and uniqueness of solutions in a different
manner.

The two indices coincide with each other when some constant rankness and
smoothness assumptions are satisfied
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Thank you for listening !!!
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