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Differential-algebraic equation DAE

Linear Nonlinear

Ei = Ax E(z)t = F(x)

m If F is square and invertible, then

Ei=Hxr=1i=FE 'Hzx.
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Differential-algebraic equation DAE

Linear

Nonlinear

EFir=Hz
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There exist infinite solutions. (Uniqueness)
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Introduction
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Nonlinear DAEs

Consider a nonlinear DAE:

2: E(z)t = F(x), (3)

m the generalized state x € X, X is an open subset of R™;

m E(z), F(z) are C*®-smooth functions with values in R**™ and R!, respectively;

denote DAE (3) by &, , = (E, F);
m a special case of general form:
=9 . G(t,z,2’) = 0, (4)

where G: I x TX — R
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Index of DAEs

m For linear DAE El'" : B4 = Az, if | = n and |sE — A| # 0 (i.e., regular), then 3

invertible @, P s. t
-1 1y _ [ [Iny O J 0

m Index of linear DAEs

o 0, if ny =n
Viin = min{k € N|N* =0}, if n; <n.

m Various notions of index for nonlinear DAEs: differentiation index, geometric index,
perturbation index, strangeness index, uniform differentiation index, etc.

Some survey or survey-like papers on index of DAEs: Griepentrog et al. (1992),
Campbell (1995), Campbell and Gear (1995), Mehrmann (2015).
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Solutions and the geometric index of DAEs
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Solutions and invariant submanifold of DAEs

m A solution of Z is a C'-curve x : I — X with an open interval I such that for all
t € I, z(t) solves (3).

m z,: an admissible point (3 x(t) and tg s.t. (to) = za), Sa: the admissible set
(Sa :={z0|x0 = x0a})

Definition 1 (Locally invariant submanifold)

For a DAE = defined on X, fix x4, a smooth connected submanifold M of X is called
locally invariant if 3 a neighborhood U of x4 s.t Vg € M N U, there exists a solution
z: I — X of E such that z(tg) = zo and z(t) € M, Vt € I.

m An invariant submanifold M* is called locally mazimal, if locally any other invariant
submanifold M C M*.

m What is the relation of M* and S,?

m How to calculate/construct M*?
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Locally maximal invariant submanifold algorithm and the geometric index

Algorithm 1

For a DAE B ,, = (E,F), set Mo = X. Step k > 0: assume that

(A) for some open neighborhood Up_1 C X of xp that the intersection My_1 NUk_1 is a
smooth submanifold.

Set
b {x € ME_| | F(z) € E(x)TzM,j_l}. (5)

where Mg_,: the connected component of My_1 NUk_1 s.t. xp € Mg_,

Definition 2 (Geometric index)

The geometric index of vy € N of a DAE Z is defined by

vg :=min {k > 0| (Mg = My11) A (My, #0)}.

Proposition 1

If vg exists, then M* = M, 1is a locally mazimal invariant submanifold.
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Realization of the maximal invariant submanifold algorithm

m Step 1: Consider 5, , = (E, F), fix ) € X, assume (to produce zero-level set)

(A1) 3U; C X of zp, s.t. rank E(x) = const. =11, Vo € U;.
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Realization of the maximal invariant submanifold algorithm

m Step 1: Consider 5, , = (E, F), fix ) € X, assume (to produce zero-level set)
(A1) 3U; C X of zp, s.t. rank E(x) = const. =11, Vo € U;.
m Find Q : U1 — GI(I,R) s.t. E! below if of full row rank l1:

ap@) =[], are = [fafl)].
Following (5), define

My = {z € U1| F(a) € Im E(0)} = { € U1 | F3(2) = 0} .
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Realization of the maximal invariant submanifold algorithm

m Step 1: Consider 5, , = (E, F), fix ) € X, assume (to produce zero-level set)
(A1) 3U; C X of zp, s.t. rank E(x) = const. =11, Vo € U;.
m Find Q : U1 — GI(I,R) s.t. E! below if of full row rank l1:

ap@) =[], are = [fafl)].

Following (5), define
My ={z €U |F(z) € mE(z)} = {x €Uy | F2(z) = o}.
m Assume that (to assure M; is a smooth embedded submanifold)
(A2) zp € M7 and rankDFg(x) = const. =n —n, forx € M; NU;.
m Then choose new coordinates z = (21, 21) = ¥(x) on U such that

Mf = {(z1,21)| 21 =0},

where Z are any complementary coordinates s.t. v is a local diffeomorphism.
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m Using Q(z) and z = (21, 2z1) = ¥(x), we get
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m Set z; = 0 to get the reduced DAE:

Ele : El(fl,o)fl = Fl(Zl,O),

where E' : M¢ — RU1*71. Notice that E|myg is again a DAE of form (3).
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m Set z; = 0 to get the reduced DAE:
Elug s B'(21,0)21 = F'(21,0),
where E' : M¢ — RU1*71. Notice that E|myg is again a DAE of form (3).

m Repeat the above procedure until Step k*, where k* is the smallest k s.t.
Mg = My41 (note that k* = vy and M* = Mg..).
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m Set z; = 0 to get the reduced DAE:

Elmyg : B (21,0021 = F'(21,0),
where E' : M¢ — RU1*71. Notice that E|myg is again a DAE of form (3).
m Repeat the above procedure until Step k*, where k* is the smallest k s.t.
Mg = My41 (note that k* = vy and M* = Mg..).

Proposition 2

EF . M* — Rle* Xnkex of the reduced DAE Elp= EF” (Zp* ) Z* = FE* (Zk=) s of full row
rank and thus E|pr+ can be seen as an ODE with free variables.
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m Using Q(z) and z = (21, 2z1) = ¥(x), we get
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Q(z)E(x) <

m Set z; = 0 to get the reduced DAE:
Elug s B'(21,0)21 = F'(21,0),
where E' : M¢ — RU1*71. Notice that E|myg is again a DAE of form (3).

m Repeat the above procedure until Step k*, where k* is the smallest k s.t.
Mg = My41 (note that k* = vy and M* = Mg..).

Proposition 2

EF . M* — Rle* Xnkex of the reduced DAE Elp= EF” (Zp* ) Z* = FE* (Zk=) s of full row
rank and thus E|pr+ can be seen as an ODE with free variables.

32 =

{ i = (B)7UFY () — (B1) 1 Ba (5 Ju
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Existence and uniqueness of solutions

Theorem 1

Consider a DAE E;,, = (E,F) and fiz a point x, € X. Assume the constant assumptions
(A1) and (A2) of the algorithm are satisfied. Then locally (on U* = Uy~ )

(i) M* = M{. = S,; (existence)

(ii) there exists a diffeormorphism which maps any solution of E to that of

EF" (230 )3pe = F* (Zg=), 21 =0, ..., 21 = 0;

where M* = {z |zg+ =0,...,21 = O}, EF . M* — Rlex Xnpx g of full row rank.
(iii) for any xo € M*, there passes only one solution if and only if
dim M* = dim E(z)T, M*

for all x € M*, i.e., ngx = lg=. (uniqueness)
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Remarks on the geometric index

m Relation to the existence of solutions: if zg € Uy, /Ml,g around xp, then there does
not exist a solution z(t) such that z(0) = zg.
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m Relation to the existence of solutions: if zg € Uy, /Ml,g around xp, then there does
not exist a solution z(t) such that z(0) = zg.

m The geometric index does not concern the uniqueness of the solutions. As an
example, consider two DAEs

Zas :{ &= flzr,@2) o = :{ 1= f(x1,22)

0 = =g, 0 =3,

where f: X7 X X2 — R is smooth. For both = and é, vg = 1.
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Remarks on the geometric index

m Relation to the existence of solutions: if zg € Uy, /Ml,g around xp, then there does
not exist a solution z(t) such that z(0) = zg.

m The geometric index does not concern the uniqueness of the solutions. As an
example, consider two DAEs

= . #1= f(z1,22) = . @&1= f(z1,22)
_2,2.{ 0 = o, and _2,3.{ 0 = 3,

where f: X7 X X2 — R is smooth. For both = and = vg = 1.

m Apply the above algorithm to a linear DAE Ex = Az and denote ¥ = M, we get (the
Wong sequence(1973))

Yo=R", ¥py={z€¥_1|Az € EYy_1} = AT ' E¥}_1.

Note that vy, = k*. As a result, the geometric index vy of nonlinear DAEs is a
nonlinear generalization of the index v;, of linear DAEs.
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Geometric interpretation of the differentiation index
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Classical definition of the differentiation index

m The notion of differentiation index is originally proposed for (see Campbell(1995)):

29" G(t,z,2') = 0.

m Define the differential array by

e}
DG + Dy Gz + DT/G:E'/

Gk(tywvxlrw): : (t’xleyw)zov (6)
e

where w = [x(z), . ,m(’ﬁLl)] .

m The differentiation index vy is the least integer k such that equation (6) uniquely
determines z’ as a function of (z,t), i.e., ' = v(z,t).
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Drawbacks of the classical definition of the differentiation index

Example 1

T1 = T2

—_ 1= T2 = .
Eoo: X and Z32: zo= F(x1,x
22 { &g = F(x1,x2) e 02:z1( 1L,22)

where F(0,0) # 0. Initial point: (19, 220) = (0,0). Both 23 2 and =3 2 have vy = 0.

m Such a definition does not identify M* and thus does not allows for a conclusion
about existence of solutions (E has a solution and = has not).
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Drawbacks of the classical definition of the differentiation index

Example 1

T1 = T2

—_ 1= T2 = .
Eoo: X and Z32: zo= F(x1,x
22 { &g = F(x1,x2) e 02:z1( 1L,22)

where F(0,0) # 0. Initial point: (19, 220) = (0,0). Both 23 2 and =3 2 have vy = 0.

m Such a definition does not identify M* and thus does not allows for a conclusion
about existence of solutions (E has a solution and = has not).

m = has no solutions since v(z) = (z2, F(z1,22)) is not tangent to
Mz = {z|z1 =2 =0} at (z10,220) = (0,0).

m Mix up the difference between an ODE and an “over-determined” DAE. E.g., in

order to derive solutions: Z2 2-no differentiation needed and Z3,2-need two times of
differentiation.
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Our definition of the differentiation index (inspired by (Griepentrog1991))

m Consider a nonlinear DAE Z; ,, = (E, F), let H(z,(1) = E(x)¢1 — F(z), denote
(&% H) = H®) and define
HO) (z,¢1)
Hi(z,Crq1) = =0, (7)
H®) (2, Coq1)
where Crq1 = (C1,- -+, Crg1)-
m Set No = X, 29 =R" and for k > 1, define

Nk = {LE € X|Hk71(w) C_k_) = 0}7 (8)
2k :={¢ €eR"|Hp_1(2,() = 0,2 € Ny},

and assume that for each k > 0, Ni is a smooth connected submanifold.

Definition 3 (Differentiation index)

The differentiation index vy of E is defined by
0, if (1 =n)A(E:X — GI(,R)),

Vg = . N #0 A (Z2F = ZF(2) is a singleton)
— { k>0 \(Z¥(z) € TulNy, ¥z € Ny)

, otherwise.
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Relations of the differentiation index and geometric index

For a DAE B, ,, = (E,F), fix a point x and assume locally that

(A1)’ Ng is a smooth embedded submanifold and x, € Ny;
(A2)" dim E(x)TyNg_; = const..
Then we have locally around x, that for each k > 0,
Ny = M.
Thus there ezists a smallest k, denoted by k* < n such that Ny« 11 = Ng. and the
geometric index vg = k*.

Moreover, vq of B ewists and satisfies vqg = vg if and only if

dim N« = dim E(x)Tz N« .
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An example

Consider a mathematical model of a pendulum with a mass attached to its end
(Rabier(1994)):

1 0 0 0 O T1 T2
0O 1 0 0 O To —T5T1
=:lo0 0 1 0 o |is]| = T4 . ()
0 0 0 1 O] |24 —T523 — g
0 0 0 0 0| |25 i
We consider the point xo=(z10, 20, 230, Z40, Z50), Where z19 = 0, 20 = 0, z30 = —I,

x40 = 0, x50 = g/l.

m By applying the algorithm, we get

M, = $6X|x%+x§—l2:0}.
My = $€M1|Z‘3z4+$1$2:0}.
M*:Mg:{xEM2|xﬁ+x§—z5l2—g:c3:O}

Notice that the assumptions of (Al) and (A2) are satisfied and the solution passing
through z¢ exists and is unique (since dim M* = rank Ep+ = 2). Indeed, since

= |1 0f |z1| _ T2
Elm=: g Za| — |—zs521]
where x5 = l%(x%x%(l — x%)’l + x% + g(l2 - m%)l/Q).

m By calculating the differential array, it is seen that Ny = My for k =0,1,2,3.
Moreover, Since dim M* = dim(E(z)T»M*) = 2 we have vg = vy = 3.
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Conclusions
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Conclusions

m Maximal invariant submanifold algorithm (how to solve a DAE using geometric
method).

m Existence and uniqueness of solutions.

m The two indices related to the existence and uniqueness of solutions in a different
manner.

m The two indices coincide with each other when some constant rankness and
smoothness assumptions are satisfied
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Thank you for listening !!
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