On geometric and differentiation index of nonlinear differential-algebraic equations

Yahao CHEN

Advisor: Stephan Trenn

Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, The Netherlands.

March 11th, 2020, Benelux meeting.

Acknowledgement: This work was supported by Vidi-grant 639.032.733.

Linear	Nonlinear
$E\dot{x} = Ax$	$E(x)\dot{x} = F(x)$

 \blacksquare If E is square and invertible, then

$$E\dot{x} = Hx \Rightarrow \dot{x} = E^{-1}Hx.$$

Differential-algebraic equation DAE

Example 1

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Solutions exist only on $\{x_1 = 0\}$. (Existence)

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

.

There exist infinite solutions. (Uniqueness)

(1)

(2)

Outline

1 Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

1 Introduction

2 Solutions and the geometric index of DAEs

B Geometric interpretation of the differentiation index

4 Conclusions

Consider a nonlinear DAE:

$$\Xi: E(x)\dot{x} = F(x), \tag{3}$$

- the generalized state $x \in X$, X is an open subset of \mathbb{R}^n ;
- E(x), F(x) are \mathcal{C}^{∞} -smooth functions with values in $\mathbb{R}^{l \times n}$ and \mathbb{R}^{l} , respectively;
- denote DAE (3) by $\Xi_{l,n} = (E, F);$
- a special case of general form:

$$\Xi^{gen}: G(t, x, x') = 0, \tag{4}$$

where $G: I \times TX \to \mathbb{R}^l$.

Consider a nonlinear DAE:

$$\Xi: E(x)\dot{x} = F(x), \tag{3}$$

- the generalized state $x \in X$, X is an open subset of \mathbb{R}^n ;
- E(x), F(x) are \mathcal{C}^{∞} -smooth functions with values in $\mathbb{R}^{l \times n}$ and \mathbb{R}^{l} , respectively;
- denote DAE (3) by $\Xi_{l,n} = (E, F);$
- a special case of general form:

$$\Xi^{gen}: G(t, x, x') = 0, \tag{4}$$

where $G: I \times TX \to \mathbb{R}^l$.

■ For linear DAE $\Xi_{l,n}^{lin}$: $E\dot{x} = Ax$, if l = n and $|sE - A| \neq 0$ (i.e., regular), then \exists invertible Q, P s.t.

$$(QEP^{-1}, QAP^{-1}) = \left(\begin{bmatrix} I_{n_1} & 0\\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0\\ 0 & I_{n_2} \end{bmatrix} \right),$$

Index of linear DAEs

$$\nu_{lin} := \begin{cases} 0, & \text{if } n_1 = n, \\ \min \left\{ k \in \mathbb{N} \, | \, N^k = 0 \right\}, & \text{if } n_1 < n. \end{cases}$$

- Various notions of index for nonlinear DAEs: differentiation index, geometric index, perturbation index, strangeness index, uniform differentiation index, etc.
- Some survey or survey-like papers on index of DAEs: Griepentrog et al. (1992), Campbell (1995), Campbell and Gear (1995), Mehrmann (2015).

1 Introduction

2 Solutions and the geometric index of DAEs

B Geometric interpretation of the differentiation index

4 Conclusions

Solutions and invariant submanifold of DAEs

- A solution of Ξ is a C^1 -curve $x: I \to X$ with an open interval I such that for all $t \in I, x(t)$ solves (3).
- x_a : an admissible point $(\exists x(t) \text{ and } t_0 \text{ s.t. } x(t_0) = x_a), S_a$: the admissible set $(S_a := \{x_0 \mid x_0 = x_a\})$

Definition 1 (Locally invariant submanifold)

For a DAE Ξ defined on X, fix x_a , a smooth connected submanifold M of X is called locally *invariant* if \exists a neighborhood U of x_a s.t $\forall x_0 \in M \cap U$, there exists a solution $x: I \to X$ of Ξ such that $x(t_0) = x_0$ and $x(t) \in M$, $\forall t \in I$.

- An invariant submanifold M^* is called locally maximal, if locally any other invariant submanifold $M \subseteq M^*$.
- What is the relation of M^* and S_a ?
- How to calculate/construct M^* ?

Algorithm 1

- For a DAE $\Xi_{l,n} = (E, F)$, set $M_0 = X$. Step k > 0: assume that
- (A) for some open neighborhood $U_{k-1} \subseteq X$ of x_p that the intersection $M_{k-1} \cap U_{k-1}$ is a smooth submanifold.

Set

$$M_k := \left\{ x \in M_{k-1}^c \,|\, F(x) \in E(x) T_x M_{k-1}^c \right\}.$$
(5)

where M_{k-1}^c : the connected component of $M_{k-1} \cap U_{k-1}$ s.t. $x_p \in M_{k-1}^c$

Definition 2 (Geometric index)

The geometric index of $\nu_g \in \mathbb{N}$ of a DAE Ξ is defined by

$$\nu_g := \min \left\{ k \ge 0 \, | \, (M_k = M_{k+1}) \land (M_k \neq \emptyset) \right\}.$$

Proposition 1

If ν_g exists, then $M^* = M_{\nu_g}$ is a locally maximal invariant submanifold.

Step 1: Consider $\Xi_{l,n} = (E, F)$, fix $x_p \in X$, assume (to produce zero-level set)

(A1) $\exists U_1 \subseteq X \text{ of } x_p \text{ s.t. rank } E(x) = const. = l_1, \forall x \in U_1.$

Step 1: Consider $\Xi_{l,n} = (E, F)$, fix $x_p \in X$, assume (to produce zero-level set)

(A1)
$$\exists U_1 \subseteq X \text{ of } x_p \text{ s.t. rank } E(x) = const. = l_1, \forall x \in U_1.$$

Find $Q: U_1 \to Gl(l, \mathbb{R})$ s.t. E^1 below if of full row rank l_1 :

$$QE(x) = \begin{bmatrix} E^1(x) \\ 0 \end{bmatrix}, \quad QF(x) = \begin{bmatrix} F^1(x) \\ F^2(x) \end{bmatrix},$$

Following (5), define

$$M_1 = \left\{ x \in U_1 \mid F(x) \in \operatorname{Im} E(x) \right\} = \left\{ x \in U_1 \mid F^2(x) = 0 \right\}.$$

Step 1: Consider $\Xi_{l,n} = (E, F)$, fix $x_p \in X$, assume (to produce zero-level set)

(A1)
$$\exists U_1 \subseteq X \text{ of } x_p \text{ s.t. rank } E(x) = const. = l_1, \forall x \in U_1.$$

Find $Q: U_1 \to Gl(l, \mathbb{R})$ s.t. E^1 below if of full row rank l_1 :

$$QE(x) = \begin{bmatrix} E^1(x) \\ 0 \end{bmatrix}, \quad QF(x) = \begin{bmatrix} F^1(x) \\ F^2(x) \end{bmatrix},$$

Following (5), define

$$M_1 = \left\{ x \in U_1 \,|\, F(x) \in \operatorname{Im} E(x) \right\} = \left\{ x \in U_1 \,|\, F^2(x) = 0 \right\}.$$

- Assume that (to assure M_1 is a smooth embedded submanifold)
 - (A2) $x_p \in M_1$ and rank $DF^2(x) = const. = n n_1$ for $x \in M_1 \cap U_1$.

Step 1: Consider $\Xi_{l,n} = (E, F)$, fix $x_p \in X$, assume (to produce zero-level set)

(A1)
$$\exists U_1 \subseteq X \text{ of } x_p \text{ s.t. rank } E(x) = const. = l_1, \forall x \in U_1.$$

Find $Q: U_1 \to Gl(l, \mathbb{R})$ s.t. E^1 below if of full row rank l_1 :

$$QE(x) = \begin{bmatrix} E^1(x) \\ 0 \end{bmatrix}, \quad QF(x) = \begin{bmatrix} F^1(x) \\ F^2(x) \end{bmatrix},$$

Following (5), define

$$M_1 = \left\{ x \in U_1 \, | \, F(x) \in \operatorname{Im} E(x) \right\} = \left\{ x \in U_1 \, | \, F^2(x) = 0 \right\}.$$

- Assume that (to assure M_1 is a smooth embedded submanifold)
 - (A2) $x_p \in M_1$ and rank $DF^2(x) = const. = n n_1$ for $x \in M_1 \cap U_1$.
- Then choose new coordinates $z = (\bar{z}_1, z_1) = \psi(x)$ on U_1 such that

$$M_1^c = \left\{ (\bar{z}_1, z_1) \, | \, z_1 = 0 \right\},\,$$

where \bar{z} are any complementary coordinates s.t. ψ is a local diffeomorphism.

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \bar{E}^{1}(z)\\ 0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \bar{E}^{1}(z)\\ 0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

• Set $z_1 = 0$ to get the reduced DAE:

$$\Xi|_{M_1^c}: \bar{E}^1(\bar{z}_1, 0)\dot{\bar{z}}_1 = F^1(\bar{z}_1, 0),$$

where $\bar{E}^1: M_1^c \to \mathbb{R}^{l_1 \times n_1}$. Notice that $\Xi|_{M_1^c}$ is again a DAE of form (3).

.

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \bar{E}^{1}(z)\\ 0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

• Set $z_1 = 0$ to get the reduced DAE:

$$\Xi|_{M_1^c}: \bar{E}^1(\bar{z}_1, 0)\dot{\bar{z}}_1 = F^1(\bar{z}_1, 0),$$

where $\bar{E}^1: M_1^c \to \mathbb{R}^{l_1 \times n_1}$. Notice that $\Xi|_{M_1^c}$ is again a DAE of form (3).

Repeat the above procedure until Step k^* , where k^* is the smallest k s.t. $M_k^c = M_{k+1}$ (note that $k^* = \nu_g$ and $M^* = M_{k^*}^c$).

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \bar{E}^{1}(z)\\ 0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

• Set $z_1 = 0$ to get the reduced DAE:

$$\Xi|_{M_1^c}: \bar{E}^1(\bar{z}_1, 0)\dot{\bar{z}}_1 = F^1(\bar{z}_1, 0),$$

where $\bar{E}^1: M_1^c \to \mathbb{R}^{l_1 \times n_1}$. Notice that $\Xi|_{M_1^c}$ is again a DAE of form (3).

Repeat the above procedure until Step k^* , where k^* is the smallest k s.t. $M_k^c = M_{k+1}$ (note that $k^* = \nu_g$ and $M^* = M_{k^*}^c$).

Proposition 2

 $\overline{E}^{k^*}: M^* \to \mathbb{R}^{l_{k^*} \times n_{k^*}}$ of the reduced DAE $\Xi|_{M^*}: \overline{E}^{k^*}(\overline{z}_{k^*})\dot{z}_{k^*} = F^{k^*}(\overline{z}_{k^*})$ is of full row rank and thus $\Xi|_{M^*}$ can be seen as an ODE with free variables.

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \bar{E}^{1}(z)\\ 0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

• Set $z_1 = 0$ to get the reduced DAE:

$$\Xi|_{M_1^c}: \bar{E}^1(\bar{z}_1, 0)\dot{\bar{z}}_1 = F^1(\bar{z}_1, 0),$$

where $\bar{E}^1: M_1^c \to \mathbb{R}^{l_1 \times n_1}$. Notice that $\Xi|_{M_1^c}$ is again a DAE of form (3).

Repeat the above procedure until Step k^* , where k^* is the smallest k s.t. $M_k^c = M_{k+1}$ (note that $k^* = \nu_g$ and $M^* = M_{k^*}^c$).

Proposition 2

 $\overline{E}^{k^*}: M^* \to \mathbb{R}^{l_{k^*} \times n_{k^*}}$ of the reduced DAE $\Xi|_{M^*}: \overline{E}^{k^*}(\overline{z}_{k^*})\dot{z}_{k^*} = F^{k^*}(\overline{z}_{k^*})$ is of full row rank and thus $\Xi|_{M^*}$ can be seen as an ODE with free variables.

$$Q(x)E(x)\left(\frac{\partial\psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial\psi(x)}{\partial x}\right)\dot{x} = Q(x)F(x) \Leftrightarrow \begin{bmatrix}\bar{E}^{1}(z) & \tilde{E}^{1}(z)\\0 & 0\end{bmatrix}\begin{bmatrix}\dot{z}_{1}\\\dot{z}_{1}\end{bmatrix} = \begin{bmatrix}F^{1}(z)\\F^{2}(z)\end{bmatrix}$$

• Set $z_1 = 0$ to get the reduced DAE:

$$\Xi|_{M_1^c}: \bar{E}^1(\bar{z}_1, 0)\dot{\bar{z}}_1 = F^1(\bar{z}_1, 0),$$

where $\bar{E}^1: M_1^c \to \mathbb{R}^{l_1 \times n_1}$. Notice that $\Xi|_{M_1^c}$ is again a DAE of form (3).

Repeat the above procedure until Step k^* , where k^* is the smallest k s.t. $M_k^c = M_{k+1}$ (note that $k^* = \nu_g$ and $M^* = M_{k^*}^c$).

Proposition 2

 $\overline{E}^{k^*}: M^* \to \mathbb{R}^{l_{k^*} \times n_{k^*}}$ of the reduced DAE $\Xi|_{M^*}: \overline{E}^{k^*}(\overline{z}_{k^*})\dot{z}_{k^*} = F^{k^*}(\overline{z}_{k^*})$ is of full row rank and thus $\Xi|_{M^*}$ can be seen as an ODE with free variables.

$$\begin{split} \bar{E}^{k^*}(\bar{z}_{k^*})\dot{\bar{z}}_{k^*} &= F^{k^*}(\bar{z}_{k^*}) \Rightarrow \begin{bmatrix} \bar{E}_1(\bar{z}_{k^*}) & \bar{E}_2(\bar{z}_{k^*}) \end{bmatrix} \begin{bmatrix} \bar{\bar{z}}_{k^*}^1 \\ \bar{\bar{z}}_{k^*}^2 \\ \bar{\bar{z}}_{k^*}^2 \end{bmatrix} = F^{k^*}(\bar{z}_{k^*}) \\ &\Rightarrow \begin{cases} \dot{\bar{z}}_{k^*}^1 &= (\bar{E}_1)^{-1}F^{k^*}(\bar{z}_{k^*}) - (\bar{E}_1)^{-1}E_2(\bar{z}_{k^*})u \\ \bar{\bar{z}}_{k^*}^2 &= u \end{cases} \end{split}$$

Theorem 1

Consider a DAE $\Xi_{l,n} = (E, F)$ and fix a point $x_p \in X$. Assume the constant assumptions (A1) and (A2) of the algorithm are satisfied. Then locally (on $U^* = U_{k^*}$)

(i) $M^* = M_{k^*}^c = S_a$; *(existence)*

(ii) there exists a diffeomorphism which maps any solution of Ξ to that of

$$\bar{E}^{k^*}(\bar{z}_{k^*})\dot{\bar{z}}_{k^*} = F^{k^*}(\bar{z}_{k^*}), z_{k^*} = 0, \dots, z_1 = 0;$$

where $M^* = \{ z \mid z_{k^*} = 0, \dots, z_1 = 0 \}$, $\bar{E}^{k^*} : M^* \to \mathbb{R}^{l_{k^*} \times n_{k^*}}$ is of full row rank.

(iii) for any $x_0 \in M^*$, there passes only one solution if and only if

 $\dim M^* = \dim E(x)T_xM^*$

for all $x \in M^*$, i.e., $n_{k^*} = l_{k^*}$. (uniqueness)

Remarks on the geometric index

• Relation to the existence of solutions: if $x_0 \in U_{\nu_g}/M_{\nu_g}$ around x_p , then there does not exist a solution x(t) such that $x(0) = x_0$.

Remarks on the geometric index

- Relation to the existence of solutions: if $x_0 \in U_{\nu_g}/M_{\nu_g}$ around x_p , then there does not exist a solution x(t) such that $x(0) = x_0$.
- The geometric index *does not* concern the uniqueness of the solutions. As an example, consider two DAEs

$$\Xi_{2,2}: \left\{ \begin{array}{c} \dot{x}_1 = f(x_1, x_2) \\ 0 = x_2, \end{array} \right. \text{ and } \tilde{\Xi}_{2,3}: \left\{ \begin{array}{c} \dot{x}_1 = f(x_1, x_2) \\ 0 = x_3, \end{array} \right.$$

where $f: X_1 \times X_2 \to \mathbb{R}$ is smooth. For both Ξ and $\tilde{\Xi}, \nu_g = 1$.

Remarks on the geometric index

- Relation to the existence of solutions: if $x_0 \in U_{\nu_g}/M_{\nu_g}$ around x_p , then there does not exist a solution x(t) such that $x(0) = x_0$.
- The geometric index *does not* concern the uniqueness of the solutions. As an example, consider two DAEs

$$\Xi_{2,2}: \left\{ \begin{array}{ll} \dot{x}_1 = f(x_1, x_2) \\ 0 = x_2, \end{array} \right. \quad \text{and} \quad \tilde{\Xi}_{2,3}: \left\{ \begin{array}{ll} \dot{x}_1 = f(x_1, x_2) \\ 0 = x_3, \end{array} \right.$$

where $f: X_1 \times X_2 \to \mathbb{R}$ is smooth. For both Ξ and $\tilde{\Xi}$, $\nu_g = 1$.

Apply the above algorithm to a linear DAE $E\dot{x} = Ax$ and denote $\mathscr{V} = M$, we get (the Wong sequence(1973))

$$\mathscr{V}_0 = \mathbb{R}^n, \ \mathscr{V}_k = \left\{ x \in \mathscr{V}_{k-1} \, | \, Ax \in E\mathscr{V}_{k-1} \right\} = A^{-1}E\mathscr{V}_{k-1}$$

Note that $\nu_{lin} = k^*$. As a result, the geometric index ν_g of nonlinear DAEs is a nonlinear generalization of the index ν_{lin} of linear DAEs.

1 Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

■ The notion of differentiation index is originally proposed for (see Campbell(1995)):

$$\Xi^{gen}: G(t, x, x') = 0.$$

Define the differential array by

where

$$G_{k}(t, x, x', w) = \begin{bmatrix} G_{D_{t}G + D_{x}Gx'' + D_{x'}Gx''} \\ \vdots \\ \frac{d^{k}}{dt^{k}}G \end{bmatrix} (t, x, x', w) = 0,$$
(6)
$$w = \begin{bmatrix} x^{(2)}, \dots, x^{(k+1)} \end{bmatrix}.$$

The differentiation index ν_d is the least integer k such that equation (6) uniquely determines x' as a function of (x, t), i.e., x' = v(x, t).

Example 1

$$\Xi_{2,2}: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \end{cases} \quad \text{and} \quad \tilde{\Xi}_{3,2}: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \\ 0 = x_1 \end{cases},$$

where $F(0,0) \neq 0$. Initial point: $(x_{10}, x_{20}) = (0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_d = 0$.

Such a definition does not identify M^* and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).

Example 1

$$\Xi_{2,2}: \left\{ \begin{array}{ll} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \end{array} \right. \quad \text{and} \quad \tilde{\Xi}_{3,2}: \left\{ \begin{array}{ll} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \\ 0 = x_1 \end{array} \right.,$$

where $F(0,0) \neq 0$. Initial point: $(x_{10}, x_{20}) = (0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_d = 0$.

- Such a definition does not identify M^* and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).
- $\tilde{\Xi}$ has no solutions since $v(x) = (x_2, F(x_1, x_2))$ is not tangent to $M_2 = \{x \mid x_1 = x_2 = 0\}$ at $(x_{10}, x_{20}) = (0, 0)$.

Example 1

$$\Xi_{2,2}: \left\{ \begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \end{array} \right. \quad \text{and} \quad \tilde{\Xi}_{3,2}: \left\{ \begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = F(x_1, x_2) \\ 0 = x_1 \end{array} \right.,$$

where $F(0,0) \neq 0$. Initial point: $(x_{10}, x_{20}) = (0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_d = 0$.

- Such a definition does not identify M^* and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).
- $\tilde{\Xi}$ has no solutions since $v(x) = (x_2, F(x_1, x_2))$ is not tangent to $M_2 = \{x \mid x_1 = x_2 = 0\}$ at $(x_{10}, x_{20}) = (0, 0)$.
- Mix up the difference between an ODE and an "over-determined" DAE. E.g., in order to derive solutions: $\Xi_{2,2}$ -no differentiation needed and $\tilde{\Xi}_{3,2}$ -need two times of differentiation.

Our definition of the differentiation index (inspired by (Griepentrog1991))

Consider a nonlinear DAE $\Xi_{l,n} = (E, F)$, let $H(x, \zeta_1) = E(x)\zeta_1 - F(x)$, denote $(\frac{d^k}{dt^k}H) = H^{(k)}$ and define

$$H_k(x, \bar{\zeta}_{k+1}) = \begin{bmatrix} H^{(0)}(x, \zeta_1) \\ \vdots \\ H^{(k)}(x, \bar{\zeta}_{k+1}) \end{bmatrix} = 0,$$
(7)

where $\bar{\zeta}_{k+1} = (\zeta_1, ..., \zeta_{k+1}).$

• Set $N_0 = X$, $\mathcal{Z}_1^0 = \mathbb{R}^n$ and for k > 1, define

$$N_k := \left\{ x \in X \mid H_{k-1}(x, \bar{\zeta}_k) = 0 \right\}, Z_1^k := \left\{ \zeta_1 \in \mathbb{R}^n \mid H_{k-1}(x, \bar{\zeta}_k) = 0, x \in N_k \right\},$$
(8)

and assume that for each k > 0, N_k is a smooth connected submanifold.

Definition 3 (Differentiation index)

The differentiation index ν_d of Ξ is defined by

$$\nu_d := \left\{ \begin{array}{c} 0, & \text{if } (l=n) \wedge (E: X \to Gl(l, \mathbb{R})), \\ \min \left\{ k > 0 \left| \begin{array}{c} N_k \neq \emptyset \wedge (\mathcal{Z}_1^k = \mathcal{Z}_1^k(x) \text{ is a singleton}) \\ \wedge (\mathcal{Z}_1^k(x) \in T_x N_k, \forall x \in N_k) \end{array} \right\}, \text{ otherwise.} \end{array} \right\}$$

Theorem 2

For a DAE $\Xi_{l,n} = (E, F)$, fix a point x_p and assume locally that

(A1)' N_k is a smooth embedded submanifold and $x_p \in N_k$;

(A2)' dim $E(x)T_xN_{k-1}^c = const.$

Then we have locally around x_p that for each $k \ge 0$,

 $N_k = M_k.$

Thus there exists a smallest k, denoted by $k^* \leq n$ such that $N_{k^*+1} = N_{k^*}^c$ and the geometric index $\nu_g = k^*$. Moreover, ν_d of Ξ exists and satisfies $\nu_d = \nu_g$ if and only if

 $\dim N_{k^*}^c = \dim E(x)T_x N_{k^*}^c.$

An example

Consider a mathematical model of a pendulum with a mass attached to its end (Rabier(1994)):

$$\Xi : \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_5 x_1 \\ x_4 \\ -x_5 x_3 - g \\ x_1^2 + x_3^2 - l^2 \end{bmatrix}.$$
 (9)

We consider the point $x_0 = (x_{10}, x_{20}, x_{30}, x_{40}, x_{50})$, where $x_{10} = 0$, $x_{20} = 0$, $x_{30} = -l$, $x_{40} = 0$, $x_{50} = g/l$.

By applying the algorithm, we get

$$\begin{split} &M_1 = \left\{ x \in X \, | \, x_1^2 + x_3^2 - l^2 = 0 \right\}. \\ &M_2 = \left\{ x \in M_1 \, | \, x_3 x_4 + x_1 x_2 = 0 \right\}. \\ &M^* = M_3 = \left\{ x \in M_2 \, | \, x_4^2 + x_2^2 - x_5 l^2 - g x_3 = 0 \right\}. \end{split}$$

Notice that the assumptions of (A1) and (A2) are satisfied and the solution passing through x_0 exists and is unique (since dim $M^* = \operatorname{rank} E_{k^*} = 2$). Indeed, since

$$\Xi|_{M^*}: \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2\\ -x_5x_1 \end{bmatrix},$$

where $x_5 = \frac{1}{l^2} (x_1^2 x_2^2 (l - x_1^2)^{-1} + x_2^2 + g(l^2 - x_1^2)^{1/2}).$

By calculating the differential array, it is seen that $N_k = M_k$ for k = 0, 1, 2, 3. Moreover, Since dim $M^* = \dim(E(x)T_xM^*) = 2$ we have $\nu_g = \nu_d = 3$.

1 Introduction

2 Solutions and the geometric index of DAEs

B Geometric interpretation of the differentiation index

4 Conclusions

- Maximal invariant submanifold algorithm (how to solve a DAE using geometric method).
- Existence and uniqueness of solutions.
- The two indices related to the existence and uniqueness of solutions in a different manner.
- The two indices coincide with each other when some constant rankness and smoothness assumptions are satisfied

Thank you for listening !!!