On geometric and differentiation index of nonlinear differential-algebraic equations

Yahao CHEN

Advisor: Stephan Trenn

Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence, University of Groningen, The Netherlands.

March 11th, 2020, Benelux meeting.

Acknowledgement: This work was supported by Vidi-grant 639.032.733.

Differential-algebraic equation DAE

Linear

Nonlinear

$$
E \dot{x}=A x \quad E(x) \dot{x}=F(x)
$$

■ If E is square and invertible, then

$$
E \dot{x}=H x \Rightarrow \dot{x}=E^{-1} H x
$$

Differential-algebraic equation DAE

Linear

$$
E \dot{x}=H x \quad E(x) \dot{x}=F(x)
$$

Example 1

$$
\left[\begin{array}{ll}
0 & 0 \tag{1}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Solutions exist only on $\left\{x_{1}=0\right\}$. (Existence)

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \tag{2}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

There exist infinite solutions. (Uniqueness)

Outline

I Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

11 Introduction

© Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

Nonlinear DAEs

Consider a nonlinear DAE:

$$
\begin{equation*}
\Xi: E(x) \dot{x}=F(x), \tag{3}
\end{equation*}
$$

- the generalized state $x \in X, X$ is an open subset of \mathbb{R}^{n};
- $E(x), F(x)$ are \mathcal{C}^{∞}-smooth functions with values in $\mathbb{R}^{l \times n}$ and \mathbb{R}^{l}, respectively;
- denote DAE (3) by $\Xi_{l, n}=(E, F)$;
- a special case of general form:

$$
\begin{equation*}
\Xi^{g e n}: G\left(t, x, x^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

where $G: I \times T X \rightarrow \mathbb{R}^{l}$.

Nonlinear DAEs

Consider a nonlinear DAE:

$$
\begin{equation*}
\Xi: E(x) \dot{x}=F(x), \tag{3}
\end{equation*}
$$

- the generalized state $x \in X, X$ is an open subset of \mathbb{R}^{n};
- $E(x), F(x)$ are \mathcal{C}^{∞}-smooth functions with values in $\mathbb{R}^{l \times n}$ and \mathbb{R}^{l}, respectively;
- denote DAE (3) by $\Xi_{l, n}=(E, F)$;
- a special case of general form:

$$
\begin{equation*}
\Xi^{g e n}: G\left(t, x, x^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

where $G: I \times T X \rightarrow \mathbb{R}^{l}$.

Index of DAEs

- For linear DAE $\Xi_{l, n}^{l i n}: E \dot{x}=A x$, if $l=n$ and $|s E-A| \not \equiv 0$ (i.e., regular), then \exists invertible Q, P s.t.

$$
\left(Q E P^{-1}, Q A P^{-1}\right)=\left(\left[\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{cc}
J & 0 \\
0 & I_{n_{2}}
\end{array}\right]\right)
$$

- Index of linear DAEs

$$
\nu_{l i n}:= \begin{cases}0, & \text { if } n_{1}=n \\ \min \left\{k \in \mathbb{N} \mid N^{k}=0\right\}, & \text { if } n_{1}<n\end{cases}
$$

- Various notions of index for nonlinear DAEs: differentiation index, geometric index, perturbation index, strangeness index, uniform differentiation index, etc.
- Some survey or survey-like papers on index of DAEs: Griepentrog et al. (1992), Campbell (1995), Campbell and Gear (1995), Mehrmann (2015).

1 Introduction

2 Solutions and the geometric index of DAEs

3 Geometric interpretation of the differentiation index

4 Conclusions

Solutions and invariant submanifold of DAEs

- A solution of Ξ is a \mathcal{C}^{1}-curve $x: I \rightarrow X$ with an open interval I such that for all $t \in I, x(t)$ solves (3).
- x_{a} : an admissible point $\left(\exists x(t)\right.$ and t_{0} s.t. $\left.x\left(t_{0}\right)=x_{a}\right), S_{a}$: the admissible set $\left(S_{a}:=\left\{x_{0} \mid x_{0}=x_{a}\right\}\right)$

Definition 1 (Locally invariant submanifold)

For a DAE Ξ defined on X, fix x_{a}, a smooth connected submanifold M of X is called locally invariant if \exists a neighborhood U of x_{a} s.t $\forall x_{0} \in M \cap U$, there exists a solution $x: I \rightarrow X$ of Ξ such that $x\left(t_{0}\right)=x_{0}$ and $x(t) \in M, \forall t \in I$.

- An invariant submanifold M^{*} is called locally maximal, if locally any other invariant submanifold $M \subseteq M^{*}$.
- What is the relation of M^{*} and S_{a} ?
- How to calculate/construct M^{*} ?

Locally maximal invariant submanifold algorithm and the geometric index

Algorithm 1

For a $D A E \Xi_{l, n}=(E, F)$, set $M_{0}=X$. Step $k>0$: assume that
(A) for some open neighborhood $U_{k-1} \subseteq X$ of x_{p} that the intersection $M_{k-1} \cap U_{k-1}$ is a smooth submanifold.

Set

$$
\begin{equation*}
M_{k}:=\left\{x \in M_{k-1}^{c} \mid F(x) \in E(x) T_{x} M_{k-1}^{c}\right\} . \tag{5}
\end{equation*}
$$

where M_{k-1}^{c} : the connected component of $M_{k-1} \cap U_{k-1}$ s.t. $x_{p} \in M_{k-1}^{c}$

Definition 2 (Geometric index)

The geometric index of $\nu_{g} \in \mathbb{N}$ of a DAE Ξ is defined by

$$
\nu_{g}:=\min \left\{k \geq 0 \mid\left(M_{k}=M_{k+1}\right) \wedge\left(M_{k} \neq \emptyset\right)\right\} .
$$

Proposition 1

If ν_{g} exists, then $M^{*}=M_{\nu_{g}}$ is a locally maximal invariant submanifold.

Realization of the maximal invariant submanifold algorithm

- Step 1: Consider $\Xi_{l, n}=(E, F)$, fix $x_{p} \in X$, assume (to produce zero-level set)
(A1) $\exists U_{1} \subseteq X$ of x_{p} s.t. $\operatorname{rank} E(x)=$ const. $=l_{1}, \forall x \in U_{1}$.

Realization of the maximal invariant submanifold algorithm

- Step 1: Consider $\Xi_{l, n}=(E, F)$, fix $x_{p} \in X$, assume (to produce zero-level set)
(A1) $\exists U_{1} \subseteq X$ of x_{p} s.t. $\operatorname{rank} E(x)=$ const. $=l_{1}, \forall x \in U_{1}$.
- Find $Q: U_{1} \rightarrow G l(l, \mathbb{R})$ s.t. E^{1} below if of full row rank l_{1} :

$$
Q E(x)=\left[\begin{array}{c}
E^{1}(x) \\
0
\end{array}\right], \quad Q F(x)=\left[\begin{array}{l}
F^{1}(x) \\
F^{2}(x)
\end{array}\right],
$$

Following (5), define

$$
M_{1}=\left\{x \in U_{1} \mid F(x) \in \operatorname{Im} E(x)\right\}=\left\{x \in U_{1} \mid F^{2}(x)=0\right\} .
$$

Realization of the maximal invariant submanifold algorithm

- Step 1: Consider $\Xi_{l, n}=(E, F)$, fix $x_{p} \in X$, assume (to produce zero-level set)
(A1) $\exists U_{1} \subseteq X$ of x_{p} s.t. rank $E(x)=$ const. $=l_{1}, \forall x \in U_{1}$.
- Find $Q: U_{1} \rightarrow G l(l, \mathbb{R})$ s.t. E^{1} below if of full row rank l_{1} :

$$
Q E(x)=\left[\begin{array}{c}
E^{1}(x) \\
0
\end{array}\right], \quad Q F(x)=\left[\begin{array}{l}
F^{1}(x) \\
F^{2}(x)
\end{array}\right],
$$

Following (5), define

$$
M_{1}=\left\{x \in U_{1} \mid F(x) \in \operatorname{Im} E(x)\right\}=\left\{x \in U_{1} \mid F^{2}(x)=0\right\} .
$$

- Assume that (to assure M_{1} is a smooth embedded submanifold)
(A2) $x_{p} \in M_{1}$ and $\operatorname{rank} \mathrm{D} F^{2}(x)=$ const. $=n-n_{1}$ for $x \in M_{1} \cap U_{1}$.

Realization of the maximal invariant submanifold algorithm

- Step 1: Consider $\Xi_{l, n}=(E, F)$, fix $x_{p} \in X$, assume (to produce zero-level set)
(A1) $\exists U_{1} \subseteq X$ of x_{p} s.t. rank $E(x)=$ const. $=l_{1}, \forall x \in U_{1}$.
- Find $Q: U_{1} \rightarrow G l(l, \mathbb{R})$ s.t. E^{1} below if of full row rank l_{1} :

$$
Q E(x)=\left[\begin{array}{c}
E^{1}(x) \\
0
\end{array}\right], \quad Q F(x)=\left[\begin{array}{l}
F^{1}(x) \\
F^{2}(x)
\end{array}\right],
$$

Following (5), define

$$
M_{1}=\left\{x \in U_{1} \mid F(x) \in \operatorname{Im} E(x)\right\}=\left\{x \in U_{1} \mid F^{2}(x)=0\right\} .
$$

- Assume that (to assure M_{1} is a smooth embedded submanifold)
(A2) $x_{p} \in M_{1}$ and $\operatorname{rank} \mathrm{D}^{2}(x)=$ const. $=n-n_{1}$ for $x \in M_{1} \cap U_{1}$.
- Then choose new coordinates $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$ on U_{1} such that

$$
M_{1}^{c}=\left\{\left(\bar{z}_{1}, z_{1}\right) \mid z_{1}=0\right\},
$$

where \bar{z} are any complementary coordinates s.t. ψ is a local diffeomorphism.

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Set $z_{1}=0$ to get the reduced DAE:

$$
\left.\Xi\right|_{M_{1}^{c}}: \bar{E}^{1}\left(\bar{z}_{1}, 0\right) \dot{\bar{z}}_{1}=F^{1}\left(\bar{z}_{1}, 0\right),
$$

where $\bar{E}^{1}: M_{1}^{c} \rightarrow \mathbb{R}^{l_{1} \times n_{1}}$. Notice that $\left.\Xi\right|_{M_{1}^{c}}$ is again a DAE of form (3).

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Set $z_{1}=0$ to get the reduced DAE:

$$
\left.\Xi\right|_{M_{1}^{c}}: \bar{E}^{1}\left(\bar{z}_{1}, 0\right) \dot{\bar{z}}_{1}=F^{1}\left(\bar{z}_{1}, 0\right),
$$

where $\bar{E}^{1}: M_{1}^{c} \rightarrow \mathbb{R}^{l_{1} \times n_{1}}$. Notice that $\left.\Xi\right|_{M_{1}^{c}}$ is again a DAE of form (3).
■ Repeat the above procedure until Step k^{*}, where k^{*} is the smallest k s.t. $M_{k}^{c}=M_{k+1}$ (note that $k^{*}=\nu_{g}$ and $M^{*}=M_{k^{*}}^{c}$).

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Set $z_{1}=0$ to get the reduced DAE:

$$
\left.\Xi\right|_{M_{1}^{c}}: \bar{E}^{1}\left(\bar{z}_{1}, 0\right) \dot{\bar{z}}_{1}=F^{1}\left(\bar{z}_{1}, 0\right),
$$

where $\bar{E}^{1}: M_{1}^{c} \rightarrow \mathbb{R}^{l_{1} \times n_{1}}$. Notice that $\left.\Xi\right|_{M_{1}^{c}}$ is again a DAE of form (3).
■ Repeat the above procedure until Step k^{*}, where k^{*} is the smallest k s.t. $M_{k}^{c}=M_{k+1}$ (note that $k^{*}=\nu_{g}$ and $M^{*}=M_{k^{*}}^{c}$).

Proposition 2

$\bar{E}^{k^{*}}: M^{*} \rightarrow \mathbb{R}^{l_{k^{*}} \times n_{k^{*}}}$ of the reduced DAE $\left.\Xi\right|_{M^{*}}: \bar{E}^{k^{*}}\left(\bar{z}_{k^{*}}\right) \dot{\bar{z}}_{k^{*}}=F^{k^{*}}\left(\bar{z}_{k^{*}}\right)$ is of full row rank and thus $\left.\Xi\right|_{M^{*}}$ can be seen as an ODE with free variables.

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Set $z_{1}=0$ to get the reduced DAE:

$$
\left.\Xi\right|_{M_{1}^{c}}: \bar{E}^{1}\left(\bar{z}_{1}, 0\right) \dot{\bar{z}}_{1}=F^{1}\left(\bar{z}_{1}, 0\right),
$$

where $\bar{E}^{1}: M_{1}^{c} \rightarrow \mathbb{R}^{l_{1} \times n_{1}}$. Notice that $\left.\Xi\right|_{M_{1}^{c}}$ is again a DAE of form (3).
■ Repeat the above procedure until Step k^{*}, where k^{*} is the smallest k s.t. $M_{k}^{c}=M_{k+1}$ (note that $k^{*}=\nu_{g}$ and $M^{*}=M_{k^{*}}^{c}$).

Proposition 2

$\bar{E}^{k^{*}}: M^{*} \rightarrow \mathbb{R}^{l_{k^{*}} \times n_{k^{*}}}$ of the reduced DAE $\left.\Xi\right|_{M^{*}}: \bar{E}^{k^{*}}\left(\bar{z}_{k^{*}}\right) \dot{\bar{z}}_{k^{*}}=F^{k^{*}}\left(\bar{z}_{k^{*}}\right)$ is of full row rank and thus $\left.\Xi\right|_{M^{*}}$ can be seen as an ODE with free variables.

- Using $Q(x)$ and $z=\left(\bar{z}_{1}, z_{1}\right)=\psi(x)$, we get

$$
Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=Q(x) F(x) \Leftrightarrow\left[\begin{array}{cc}
\bar{E}^{1}(z) & \tilde{E}^{1}(z) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{1}
\end{array}\right]=\left[\begin{array}{c}
F^{1}(z) \\
F^{2}(z)
\end{array}\right] .
$$

- Set $z_{1}=0$ to get the reduced DAE:

$$
\left.\Xi\right|_{M_{1}^{c}}: \bar{E}^{1}\left(\bar{z}_{1}, 0\right) \dot{\bar{z}}_{1}=F^{1}\left(\bar{z}_{1}, 0\right),
$$

where $\bar{E}^{1}: M_{1}^{c} \rightarrow \mathbb{R}^{l_{1} \times n_{1}}$. Notice that $\left.\Xi\right|_{M_{1}^{c}}$ is again a DAE of form (3).
■ Repeat the above procedure until Step k^{*}, where k^{*} is the smallest k s.t. $M_{k}^{c}=M_{k+1}$ (note that $k^{*}=\nu_{g}$ and $M^{*}=M_{k^{*}}^{c}$).

Proposition 2

$\bar{E}^{k^{*}}: M^{*} \rightarrow \mathbb{R}^{l_{k^{*}} \times n_{k^{*}}}$ of the reduced DAE $\left.\Xi\right|_{M^{*}}: \bar{E}^{k^{*}}\left(\bar{z}_{k^{*}}\right) \dot{\bar{z}}_{k^{*}}=F^{k^{*}}\left(\bar{z}_{k^{*}}\right)$ is of full row rank and thus $\left.\Xi\right|_{M^{*}}$ can be seen as an ODE with free variables.

$$
\begin{aligned}
& \bar{E}^{k^{*}}\left(\bar{z}_{k^{*}}\right) \dot{\bar{z}}_{k^{*}}=F^{k^{*}}\left(\bar{z}_{k^{*}}\right) \Rightarrow\left[\begin{array}{ll}
\bar{E}_{1}\left(\bar{z}_{k^{*}}\right) & \bar{E}_{2}\left(\bar{z}_{k^{*}}\right)
\end{array}\right]\left[\begin{array}{l}
\dot{\bar{z}}_{k^{*}}^{1} \\
\bar{z}_{k^{*}}
\end{array}\right]=F^{k^{*}}\left(\bar{z}_{k^{*}}\right) \\
& \Rightarrow\left\{\begin{array}{l}
\dot{z}_{k^{*}}^{1}=\left(\bar{E}_{1}\right)^{-1} F^{k^{*}}\left(\bar{z}_{k^{*}}\right)-\left(\bar{E}_{1}\right)^{-1} E_{2}\left(\bar{z}_{k^{*}}\right) u \\
\dot{\bar{z}}_{k^{*}}^{*}=u
\end{array}\right.
\end{aligned}
$$

Existence and uniqueness of solutions

Theorem 1

Consider a DAE $\Xi_{l, n}=(E, F)$ and fix a point $x_{p} \in X$. Assume the constant assumptions (A1) and (A2) of the algorithm are satisfied. Then locally (on $U^{*}=U_{k^{*}}$)
(i) $M^{*}=M_{k^{*}}^{c}=S_{a}$; (existence)
(ii) there exists a diffeomorphism which maps any solution of Ξ to that of

$$
\bar{E}^{k^{*}}\left(\bar{z}_{k^{*}}\right) \dot{\bar{z}}_{k^{*}}=F^{k^{*}}\left(\bar{z}_{k^{*}}\right), z_{k^{*}}=0, \ldots, z_{1}=0
$$

where $M^{*}=\left\{z \mid z_{k^{*}}=0, \ldots, z_{1}=0\right\}, \bar{E}^{k^{*}}: M^{*} \rightarrow \mathbb{R}^{l_{k^{*}} \times n_{k^{*}}}$ is of full row rank.
(iii) for any $x_{0} \in M^{*}$, there passes only one solution if and only if

$$
\operatorname{dim} M^{*}=\operatorname{dim} E(x) T_{x} M^{*}
$$

for all $x \in M^{*}$, i.e., $n_{k^{*}}=l_{k^{*}}$. (uniqueness)

Remarks on the geometric index

- Relation to the existence of solutions: if $x_{0} \in U_{\nu_{g}} / M_{\nu_{g}}$ around x_{p}, then there does not exist a solution $x(t)$ such that $x(0)=x_{0}$.

Remarks on the geometric index

- Relation to the existence of solutions: if $x_{0} \in U_{\nu_{g}} / M_{\nu_{g}}$ around x_{p}, then there does not exist a solution $x(t)$ such that $x(0)=x_{0}$.
- The geometric index does not concern the uniqueness of the solutions. As an example, consider two DAEs

$$
\Xi_{2,2}:\left\{\begin{array}{c}
\dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
0=x_{2},
\end{array} \quad \text { and } \quad \tilde{\Xi}_{2,3}:\left\{\begin{array}{c}
\dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
0=x_{3},
\end{array}\right.\right.
$$

where $f: X_{1} \times X_{2} \rightarrow \mathbb{R}$ is smooth. For both Ξ and $\tilde{\Xi}, \nu_{g}=1$.

Remarks on the geometric index

- Relation to the existence of solutions: if $x_{0} \in U_{\nu_{g}} / M_{\nu_{g}}$ around x_{p}, then there does not exist a solution $x(t)$ such that $x(0)=x_{0}$.
- The geometric index does not concern the uniqueness of the solutions. As an example, consider two DAEs

$$
\Xi_{2,2}:\left\{\begin{array}{c}
\dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
0=x_{2},
\end{array} \quad \text { and } \quad \tilde{\Xi}_{2,3}:\left\{\begin{array}{c}
\dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
0=x_{3},
\end{array}\right.\right.
$$

where $f: X_{1} \times X_{2} \rightarrow \mathbb{R}$ is smooth. For both Ξ and $\tilde{\Xi}, \nu_{g}=1$.

- Apply the above algorithm to a linear DAE $E \dot{x}=A x$ and denote $\mathscr{V}=M$, we get (the Wong sequence(1973))

$$
\mathscr{V}_{0}=\mathbb{R}^{n}, \mathscr{V}_{k}=\left\{x \in \mathscr{V}_{k-1} \mid A x \in E \mathscr{V}_{k-1}\right\}=A^{-1} E \mathscr{V}_{k-1} .
$$

Note that $\nu_{l i n}=k^{*}$. As a result, the geometric index ν_{g} of nonlinear DAEs is a nonlinear generalization of the index $\nu_{l i n}$ of linear DAEs.

1 Introduction

2 Solutions and the geometric index of DAEs

B Geometric interpretation of the differentiation index

4 Conclusions

Classical definition of the differentiation index

- The notion of differentiation index is originally proposed for (see Campbell(1995)):

$$
\Xi^{g e n}: G\left(t, x, x^{\prime}\right)=0 .
$$

- Define the differential array by

$$
G_{k}\left(t, x, x^{\prime}, w\right)=\left[\begin{array}{c}
G \tag{6}\\
D_{t} G+D_{x} G x^{\prime} \\
\vdots \\
\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} G
\end{array}\right]\left(t, x, D_{x^{\prime}} G x^{\prime \prime}, w\right)=0
$$

where $w=\left[x^{(2)}, \ldots, x^{(k+1)}\right]$.

- The differentiation index ν_{d} is the least integer k such that equation (6) uniquely determines x^{\prime} as a function of (x, t), i.e., $x^{\prime}=v(x, t)$.

Drawbacks of the classical definition of the differentiation index

Example 1

$$
\Xi_{2,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right) \quad \text { and } \quad \tilde{\Xi}_{3,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right) \\
0=x_{1}
\end{array}, . ~\right.
\end{array}\right.
$$

where $F(0,0) \neq 0$. Initial point: $\left(x_{10}, x_{20}\right)=(0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_{d}=0$.

- Such a definition does not identify M^{*} and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).

Drawbacks of the classical definition of the differentiation index

Example 1

$$
\Xi_{2,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right) \quad \text { and } \quad \tilde{\Xi}_{3,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right) \\
0=x_{1}
\end{array}, . ~\right.
\end{array}\right.
$$

where $F(0,0) \neq 0$. Initial point: $\left(x_{10}, x_{20}\right)=(0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_{d}=0$.

- Such a definition does not identify M^{*} and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).
- $\tilde{\Xi}$ has no solutions since $v(x)=\left(x_{2}, F\left(x_{1}, x_{2}\right)\right)$ is not tangent to

$$
M_{2}=\left\{x \mid x_{1}=x_{2}=0\right\} \text { at }\left(x_{10}, x_{20}\right)=(0,0) .
$$

Drawbacks of the classical definition of the differentiation index

Example 1

$$
\Xi_{2,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right)
\end{array} \quad \text { and } \quad \tilde{\Xi}_{3,2}:\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=F\left(x_{1}, x_{2}\right) \\
0=x_{1}
\end{array}\right.\right.
$$

where $F(0,0) \neq 0$. Initial point: $\left(x_{10}, x_{20}\right)=(0,0)$. Both $\Xi_{2,2}$ and $\tilde{\Xi}_{3,2}$ have $\nu_{d}=0$.

■ Such a definition does not identify M^{*} and thus does not allows for a conclusion about existence of solutions (Ξ has a solution and $\tilde{\Xi}$ has not).

- $\tilde{\Xi}$ has no solutions since $v(x)=\left(x_{2}, F\left(x_{1}, x_{2}\right)\right)$ is not tangent to $M_{2}=\left\{x \mid x_{1}=x_{2}=0\right\}$ at $\left(x_{10}, x_{20}\right)=(0,0)$.
- Mix up the difference between an ODE and an "over-determined" DAE. E.g., in order to derive solutions: $\Xi_{2,2}$-no differentiation needed and $\tilde{\Xi}_{3,2}$-need two times of differentiation.

Our definition of the differentiation index (inspired by (Griepentrog1991))

- Consider a nonlinear DAE $\Xi_{l, n}=(E, F)$, let $H\left(x, \zeta_{1}\right)=E(x) \zeta_{1}-F(x)$, denote $\left(\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} H\right)=H^{(k)}$ and define

$$
H_{k}\left(x, \bar{\zeta}_{k+1}\right)=\left[\begin{array}{c}
H^{(0)}\left(x, \zeta_{1}\right) \tag{7}\\
\vdots \\
H^{(k)}\left(x, \bar{\zeta}_{k+1}\right)
\end{array}\right]=0,
$$

where $\bar{\zeta}_{k+1}=\left(\zeta_{1}, \ldots, \zeta_{k+1}\right)$.

- Set $N_{0}=X, \mathcal{Z}_{1}^{0}=\mathbb{R}^{n}$ and for $k>1$, define

$$
\begin{align*}
& N_{k}:=\left\{x \in X \mid H_{k-1}\left(x, \bar{\zeta}_{k}\right)=0\right\} \\
& \mathcal{Z}_{1}^{k}:=\left\{\zeta_{1} \in \mathbb{R}^{n} \mid H_{k-1}\left(x, \bar{\zeta}_{k}\right)=0, x \in N_{k}\right\}, \tag{8}
\end{align*}
$$

and assume that for each $k>0, N_{k}$ is a smooth connected submanifold.

Definition 3 (Differentiation index)

The differentiation index ν_{d} of Ξ is defined by

$$
\nu_{d}:=\left\{\begin{array}{l}
0, \\
\min \left\{\begin{array}{l|l}
k>0 & \begin{array}{l}
\text { if }(l=n) \wedge(E: X \rightarrow G l(l, \mathbb{R})) \\
N_{k} \neq \emptyset \wedge\left(\mathcal{Z}_{1}^{k}=\mathcal{Z}_{1}^{k}(x) \text { is a singleton }\right) \\
\wedge\left(\mathcal{Z}_{1}^{k}(x) \in T_{x} N_{k}, \forall x \in N_{k}\right)
\end{array}
\end{array}\right\}, \text { otherwise. }
\end{array}\right.
$$

Relations of the differentiation index and geometric index

Theorem 2

For a $D A E \Xi_{l, n}=(E, F)$, fix a point x_{p} and assume locally that
(A1)' N_{k} is a smooth embedded submanifold and $x_{p} \in N_{k}$;
(A2)' $\operatorname{dim} E(x) T_{x} N_{k-1}^{c}=$ const..
Then we have locally around x_{p} that for each $k \geq 0$,

$$
N_{k}=M_{k} .
$$

Thus there exists a smallest k, denoted by $k^{*} \leq n$ such that $N_{k^{*}+1}=N_{k^{*}}^{c}$ and the geometric index $\nu_{g}=k^{*}$.
Moreover, ν_{d} of Ξ exists and satisfies $\nu_{d}=\nu_{g}$ if and only if

$$
\operatorname{dim} N_{k^{*}}^{c}=\operatorname{dim} E(x) T_{x} N_{k^{*}}^{c} .
$$

An example

Consider a mathematical model of a pendulum with a mass attached to its end (Rabier(1994)):

$$
\Xi:\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{9}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{5} x_{1} \\
x_{4} \\
-x_{5} x_{3}-g \\
x_{1}^{2}+x_{3}^{2}-l^{2}
\end{array}\right] .
$$

We consider the point $x_{0}=\left(x_{10}, x_{20}, x_{30}, x_{40}, x_{50}\right)$, where $x_{10}=0, x_{20}=0, x_{30}=-l$, $x_{40}=0, x_{50}=g / l$.

- By applying the algorithm, we get

$$
\begin{aligned}
& M_{1}=\left\{x \in X \mid x_{1}^{2}+x_{3}^{2}-l^{2}=0\right\} \\
& M_{2}=\left\{x \in M_{1} \mid x_{3} x_{4}+x_{1} x_{2}=0\right\} . \\
& M^{*}=M_{3}=\left\{x \in M_{2} \mid x_{4}^{2}+x_{2}^{2}-x_{5} l^{2}-g x_{3}=0\right\}
\end{aligned}
$$

Notice that the assumptions of (A1) and (A2) are satisfied and the solution passing through x_{0} exists and is unique (since $\operatorname{dim} M^{*}=\operatorname{rank} E_{k^{*}}=2$). Indeed, since

$$
\left.\Xi\right|_{M^{*}}:\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{5} x_{1}
\end{array}\right],
$$

where $x_{5}=\frac{1}{l^{2}}\left(x_{1}^{2} x_{2}^{2}\left(l-x_{1}^{2}\right)^{-1}+x_{2}^{2}+g\left(l^{2}-x_{1}^{2}\right)^{1 / 2}\right)$.

- By calculating the differential array, it is seen that $N_{k}=M_{k}$ for $k=0,1,2,3$.

Moreover, Since $\operatorname{dim} M^{*}=\operatorname{dim}\left(E(x) T_{x} M^{*}\right)=2$ we have $\nu_{g}=\nu_{d}=3$.

1 Introduction

Solutions and the geometric index of DAEs
3. Geometric interpretation of the differentiation index

4 Conclusions

Conclusions

- Maximal invariant submanifold algorithm (how to solve a DAE using geometric method).
- Existence and uniqueness of solutions.
- The two indices related to the existence and uniqueness of solutions in a different manner.
- The two indices coincide with each other when some constant rankness and smoothness assumptions are satisfied

Thank you for listening !!!

