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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new phi-
losophies…, new challenges. Much of this development work resides in industrial
reports, feasibility study papers, and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition of
such new work in all aspects of industrial control for wider and rapid dissemination.

One of the interesting aspects of editing a control monograph series like
Advances in Industrial Control is the insight gained as to how control systems
theory and control engineering is developing and the interaction between theory and
practice. An example is that of nonlinear systems theory, where there are slow but
increasing signs of applications using these techniques. We can cite the following
monographs from the series to support this thesis:

• Nonlinear Process Control by Peter L. Lee (Ed.) (ISBN 978-3-540-19856-7,
1993);

• Nonlinear H2/H∞ Constrained Feedback Control by Murad Abu-Khalaf, Jie
Huang and Frank L. Lewis (ISBN 978-1-84628-349-9, 2006);

• Induction Motor Control Design by Riccardo Marino, Patrizio Tomei and
Cristiano M. Verrelli (ISBN 978-1-84996-283-4, 2010); and

• Nonlinear Control of Vehicles and Robots by Béla Lantos and Lőrinc Márton
(ISBN 978-1-84996-121-9, 2011).

Nonlinear systems theory is a well-established field of study yet the usual
engineering response to system nonlinearity is linearization, multiple models,
controller scheduling, and occasional recourse to adaptive and robust control to
overcome the uncertainties, and mismatch that the initial linearization approach has
introduced. It is therefore interesting to observe some practitioners using existing
nonlinear systems theory directly with real-world systems and processes. The most
promising application areas are those where there is a well-established historical

vii



archive of nonlinear models, suitable for the procedures of nonlinear systems
theory. One such field is the control of electrical machines.

The models of electrical machine systems are quite well-defined and have been
known for many years. They have a fairly small number of state variables, are
nonlinear, and multivariable. Despite small state dimensions, these systems have
unmeasurable state variables or states that the engineer wishes to avoid measuring
because the appropriate sensors are either costly or difficult and expensive to
implement in the physical machine. Add to this model parameters that are uncertain
(only approximately known) and/or time-varying, along with the presence of sys-
tem noise and it is easily seen that the nonlinear control of electrical machines is
challenging.

With these difficult characteristics, electrical machines are often used as a
benchmark system by academic researchers to test out new control approaches but
they also constitute a real-world application field in their own right. Industrially and
commercially electrical machines are the essential technological workhorses in the
power industries, the utility industries, transport, and many other fields. Such
importance makes this Advances in Industrial Control monograph Sensorless AC
Electric Motor Control: Robust Advanced Design Techniques and Applications by
Alain Glumineau and Jesús De León Morales a valuable contribution to the series.
The authors focus on two issues:

i. AC electrical machine control (permanent magnet synchronous motors, and
induction motors); and

ii. the application of nonlinear system techniques.

After revising the models of permanent magnet synchronous motors, and
induction motors in Chap. 1, the reader is led through carefully structured chapters
that deal with system observability, observer construction, and on to four chapters
on control studies that use the observer–controller tandem. The ultimate objective
of this work is the sensorless control of AC machines, where the nonlinear
observers are used as “soft” sensors for the system controllers. An experimental
facility is described in Chap. 1 and this provides experimental validation results for
the later control chapters. This is a very instructive addition to the literature of AC
motor control and to the Advances in Industrial Control monograph series.

Industrial Control Centre, Glasgow, Scotland, UK Michael J. Grimble
Michael A. Johnson
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Preface

Thanks to the technology developments and the recent advances in control theory, it
is possible to implement new controllers to a large number of Alternative Current
(AC) machines. These controllers are more robust with respect to uncertainties, and
more efficient under a wide range of operation conditions in very useful applica-
tions. One the most attractive applications of the electrical machines is for transport:
vehicle traction that is currently in important development.

The control of AC machines is a challenging problem which has attracted
attention thanks to its several applications. For instance, the control problem of the
induction motor has recently attracted attention due to its complexity: the induction
motor is a nonlinear multi-variable system. Classically, the measurable outputs are
the stator currents and voltages. The rotor speed measurement is not always
available because of the high costs of sensors, their weakness, or noise sensitivity
(the performance at low speed can be poor). Furthermore, the rotor speed is a
function of the stator currents and rotor fluxes. The rotor fluxes measurement is not
an easy task: it is necessary to introduce sensors in the motor which is expensive
and physically complicated to install. When the rotor speed cannot directly be
computed from these variables, its control becomes more difficult. On the other
hand, the load torque and some parameters like the rotor resistance are usually
unknown or inaccurately known and, moreover, time varying. Then, the mathe-
matical models of the AC machines contain parametric uncertainties. Regarding the
permanent magnetic synchronous motors, the position and rotor speed knowledge
require sensors. However, the introduction of more sensors in the machine implies
more complexity and the possibility to introduce failures in the machine. This fact
weakens the motor robustness and increases the system cost. The rotor resistance is
a time varying parameter depending on the motor temperature. Generally, other
parameters (inductance and inertia for instance) are not well known with a sufficient
precision. All these elements introduce uncertainties in the model used to design the
control, so the control of the machines becomes more complex and its action less
efficient.

Clearly, to achieve high-performance objectives, the design of robust controllers
requires suitable models describing the dynamical behavior of the machines.
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For AC machines, the models are nonlinear and multi-variable (multi-state vari-
ables, multi-outputs to track, and multi-control inputs). Moreover, in practice, all
the state variables are not measurable, which implies that the implementation of the
controller is to be limited. To overcome this difficulty, observation theory provides
a solution to reconstruct the unmeasurable state by using observer. Moreover, when
the AC machine operates at low speed, some important difficulties appear owing to
the loss of the observability property. This property is very important for the
estimation of the system state and thus is a preliminary step in the observer design.

Sensorless control of electrical machines implies the new and interesting
challenging problem of eliminating the mechanical sensors. The solution to this
problem has focused the attention recently in the control community. For this
reason, the robust sensorless control of electrical machines is considered as an open
problem. To solve this problem, first, it is necessary to study the observability
property of these machines. It is well known that the observability of nonlinear
systems can depend on the input. In the sensorless case of electrical machines and
from the measurement of the inputs (stator voltages) and measured outputs (stator
currents), this property could be lost. This situation complicates the reconstruction
of the system state. Several concepts and results are introduced in this book as tools
to verify if a system is observable or under which conditions it is observable. For
that purpose, a precise analysis is necessary for AC machines.

If the system is observable then the design of an observer can begin: it is known
that for nonlinear systems there is no general observable form for which an observer
can be constructed. Nevertheless, there exist conditions for which a nonlinear
system can be exactly transformed into another one so that it is possible to design
an observer. The classes of nonlinear system for which an observer can be designed,
include: (1) “Luenberger type” (i.e., linear plus a nonlinear output injection),
(2) “triangular form” type, or (3) “extended Kalman like” type, like state affine
observers or adaptive state affine observers. Furthermore, in terms of convergence,
these observers can be divided into two classes: one based on asymptotic methods
and the other with finite-time convergence. Recently, the observer design for AC
machines is one of the most studied topics in electrical machines research.

The control of the induction motor and synchronous motors have important
developments thanks to the advances in power electronics, signal processing, and
the progress in computer technology allowing the implementation of sophisticated
control strategies. Among the classical control techniques to drive electrical
machines, we can find the field-oriented control, or those based on state space
representation such as feedback linearization, which have been used in many
applications. However, these controllers have shown some limitations in practice.

Recently, the sensorless control problem of AC electrical machines has been
intensively addressed and significant contributions have been published to give a
solution to this problem. Several observer–controller schemes have been proposed,
where conditions are obtained to guarantee the closed-loop stability of the system.

This book presents the basic fundamentals of electrical machines with an
emphasis on the permanent magnet synchronous motor and on the induction motor,
as well as their mathematical models in different frames and state space
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representation. After the observability of these AC machines is analyzed, an
important contribution is the machines nonlinear observer design. Furthermore,
robust control designs based on the backstepping technique and on the sliding mode
control are presented. The combination of the observer and controller designs is
analyzed and implemented on industrial benchmarks and their results are discussed.

It is clear that the objective of the book is to provide a framework that subsumes
significant developments on observer and controller designs for AC electric
machines. More precisely, the purpose of the book is to present robust AC machine
control designs based on backstepping techniques and sliding mode controls that
are combined with nonlinear observers based on either asymptotic or finite-time
convergence designs. These observer–controller schemes are evaluated on signifi-
cant industrial benchmarks with digital simulations and experimental results,
showing their performance.

The book is intended to be a reference for practicing engineers, students, and
academics, interested in knowing the most recent significant developments on
observer design and robust nonlinear sensor or sensorless control techniques
applied to AC electrical machines.
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Chapter 1
Dynamical Models of AC Machines

Abstract This chapter presents a detailed review of the basic concepts describing
the mechanical and electrical behavior of alternative current (AC) machines, which
will be used extensively in the following chapters. AC machines, specifically the
permanent magnet synchronous motor (PMSM) and the induction motor (IM), will
be studied. A particular emphasis on the modeling devoted to the control of such
machines is considered. The dynamical properties and the mathematical descrip-
tions are introduced. New applications of electric motors are appearing, for instance,
electric vehicles owing to their renewable nature and their reduced environmental
impact. These applications require controllers that achieve high performance. All
the control algorithms presented in this book are validated on specific benchmarks
checking the important features of the motor control under several operating con-
ditions. For instance, specific reference trajectories at low speed with nominal load
torque are defined and will be used to compare the performance of the controller
and observer algorithms. Moreover, most of these algorithms have been tested on an
experimental setup and the results are reported to illustrate their performances under
parametric uncertainties and unknown disturbances such as an abrupt load torque.

1.1 Applications of AC Machines

The applications of AC machines play an important part in many types of domestic
and industrial areas.

One of the most important applications of AC machines is the traction system
for electric vehicles. The purpose of this subsection is to give an overview of the
state of the art for Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV), with
emphasis on AC machines for traction system.

1.2 Electric Vehicles: Traction System

The recent developments of the internal combustion engine (ICE) have changed the
industry and the lifestyle of society in the last years. The most important companies
producemanyautomobiles in theworld, satisfying the necessity of transport, comfort,
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2 1 Dynamical Models of AC Machines

and security of passengers. However, serious problems have appeared. For instance,
the air quality in the cities in the world has deteriorated, and the temperature of the
earth is increasing affecting wildlife and agriculture. The increase in oil consumption
is causing petroleum sources to be rapidly exhausted.

The governments of several countries are adopting laws to reduce gas emissions
and to develop safer, cleaner, and more efficient vehicles. New solutions have been
proposed to reduce emission of gases, one of them being the introduction of the
electric drive train technology.

Furthermore, electric transportation has received renewed interest, mainly the
electric vehicles, because they have many advantages over the conventional internal
combustion engine (ICE) vehicle, such as (i) no gas emissions, (ii) high efficiency,
(iii) no consumption of petroleum, and (iv) easy operation with minimal noise.

On the other hand, an attractive solution that satisfies the standards of opera-
tion and the reduction of gas emission is the hybrid electric vehicle. HEV combines
the advantages of internal combustion engines and electric vehicles, by introducing
significant improvements in energy efficiency (new energy sources), vehicle perfor-
mance, and gas emissions reduction.

HEV combines two or more sources of energy to power the vehicle. For example,
the internal combustion engine (ICE) is combined with an electric motor supplied by
batteries, solar energy, or fuel cells. An interesting way to optimize fuel consumption
and reduce emissions in an HEV, compared with ICE alone powered vehicles, is the
use of regenerative braking combined with a small ICE. Then, in accordance with
the above, HEV is one of the attractive alternatives to electric traction.

Application of electricmachines, used to provide the traction of hybrid and electric
vehicles, has attracted the interest ofmany automakers. The electricmotor is the heart
of the traction system of the EV that can provide a bidirectional torque quickly over a
wide speed range, satisfying a driving profile. To satisfy these operating conditions,
AC machines, such as the AC induction motor and the Interior Permanent Magnet
Synchronous motors (PMSM and IM), are the better choice.

The bidirectional power conversion units represent the major equipment for elec-
tric traction in electric vehicles. These bidirectional power conversion units consist
of the following elements: Electric machines for traction and generation, power elec-
tronics (converters), and battery.

Furthermore, to reduce fuel consumption, the performance improvement of EV
under different driving conditions and the use of low-cost systems are possible thanks
to the advances in several technological domains such as in the power electronic
converters, electric machines, energy storage, power management, or applying the
recent developments in linear and nonlinear control theory and optimization.

It is worth mentioning that vehicle makers have proposed various configurations
of HEVs and EVs, taking into account several criteria such as improving perfor-
mance, fuel consumption, lower weight, reasonable cost, volume, and so on. The
most important schemes are parallel and series configurations (see Fig. 1.1). In this
figure is shown the distribution of the main elements constituting the traction system
for structures in series and parallel of an HEV.
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Fig. 1.1 Serial and parallel configuration for HEV

The electric motor for traction is one of the most important components of an
electric vehicle. The choice of electric traction system depends on a number of
factors such as:

(i) Vehicle constraints. The most important are the volume and the weight, which
depend on the vehicle type and payload.

(ii) Energy source. The chemical batteries, fuel cells, ultracapacitors, andflywheels.
It is worth mentioning that these energy sources present some drawbacks:

(1) Heavy weight.
(2) Lower flexibility.
(3) Performance degradation.

(iii) Driver’s expectation defined by a driving profile, which takes into account the
(a) acceleration, (b) maximum speed, (c) climbing capability, (d) braking, and
(e) operation range determined from the configuration of the drivetrain, which
is made up of three subsystems

(1) Electric motor traction system: the power electronic subsystem, electric
motor, mechanical transmission, driven wheels.
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(2) Energy sources system: the energy source, energymanagement unit, energy
refueling unit.

(3) Auxiliary system: the power steering unit, climate control unit, and auxiliary
supply unit.

The performance of the electric vehicle is usually evaluated in terms of

(i) Acceleration time, i.e., the time to accelerate the vehicle from a low speed V1 =
0 km/h to a high speed V2 = 100 km/h.

(ii) Maximum speed depends on the speed-power characteristics of the traction
motor.

Traction electric motor characteristics

A review of the state of the art related to electric-traction systems shows that the
squirrel cage induction motor and the permanent magnets synchronous motor are
the more used machines for electric traction systems.

The requirements often encountered in electric traction systems are the
following:

(1) High power and high power density;
(2) High torque at low speed for starting and climbing;
(3) Wide speed range, especially for constant-torque and constant-power operating

conditions;
(4) Fast torque response;
(5) High efficiency over wide speed and torque ranges;
(6) High robustness for various vehicle operating conditions.

It is clear that if the above requirements are satisfied, an improved traction system
is obtained. However, it is necessary to have suitable control systems to reduce the
energy consumption, to improve the performance, and have a comfortable and safe
driving.

As we will see in the following chapters, to achieve the control objectives taking
into account the above requirements, the control design demands to analyze the
electricmachines. Thus, themain characteristics ofACmachines are now introduced,
and their advantages and limitations are discussed.

DC motors

At first, DC motors played an important role in electric traction thanks to their
torque-speed characteristics which are suitable for traction applications. Moreover,
their speed controls and electronics are simple. However, DC motors are bulky and
heavy; they usually have low efficiency and low reliability. Furthermore, due to the
mechanical commutator and brushes, the DC motor needs frequent maintenance.

The developments in power electronics, digital signal processors, and the progress
in control theory have made it possible to replace DC motors in traction applications
with induction and synchronous motors. It is worth mentioning that commutatorless
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motors are more attractive owing to their high reliability and low requirements of
maintenance during operation.

AC Machines

The main characteristics of an electric motor for vehicle traction are as follows:

(1) Ability to produce high torque at low speed, including zero speed.
(2) Operation at a constant power speed range.
(3) Operation of the motor and its drive circuits over the whole speed range with

high efficiency, high reliability, and low maintenance.
(4) Four-quadrant operation with regenerative breaking, returning the overhauling

energy into storage device.

Induction Motor

The popularity of induction motors is due to their robustness and operation relia-
bility. They are small in volume and weight, do not require much maintenance, and
are of reasonable cost compared to the DC motor. However, induction motors are
difficult to control because of their complexity and nonlinear behavior. They require
powerful and robust algorithms to achieve the control objectives under a wide range
of operations. These algorithms need information about the speed, rotor flux, and
load torque, which usually are not easy tomeasure; for example, the speed is polluted
by noise. Moreover, the installation of sensors to measure the rotor flux inside the
induction motor is difficult and expensive.

From a practical point of view, themaintenance and fragility of sensors, especially
the mechanical speed and load torque sensors, the variations of rotor and stator
resistances owing to temperature change are some serious problems. This limits the
implementation of efficient control strategies.

Comparing the advantages and limitations of AC machines, it follows that the
squirrel cage inductionmotor is one of themost usedmotors in industrial applications
owing to its high reliability, ruggedness, low maintenance, low cost, and the ability
to operate in diverse environments. However, conventional control strategies for
induction motors such as variable-voltage variable frequency cannot provide the
desired performance on a wide range of operations. Thanks to the advances in power
electronics and micro-controllers as well as to the advances in control theory, the
improvements for induction motor control are now possible. On the other hand, one
of themostwell-known control strategies applied in the industry is theField-Oriented
Controller (FOC), which has been implemented to overcome the most important
difficulties of AC motors. However, using the FOC to control induction motors for
traction applications does not prevent some drawbacks as low efficiency at light loads
and limited constant-power operation range. Thus, to improve the induction motor
efficiency, new control techniques have been proposed and developed and constitute
an important progress in EV applications, especially traction systems using induction
motors. One of the most difficult problems is the control without mechanical sensors
(or if the sensor breaks down) that induces the loss of motor control.
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Permanent Magnet Synchronous Motors

Another AC machine used in industrial applications is the permanent magnet syn-
chronous motor. The synchronous motor can be found in a variety of application
domains such as traction, energy generation (wind-powered systems), and robotics.
Regarding electric traction, the PMSM is more suitable than induction motor, owing
to the synchronous machine having interesting advantages, among which are:

(1) The overall weight and volume are significantly reduced for a given output
power;

(2) Better efficiency;
(3) Heat is efficiently dissipated, the Joule losses are smaller due to absence of rotor

currents.

However, the PMSMhave a short constant-power region owing to their rather limited
field weakening capability, resulting from the presence of the permanent magnet
field.

It is clear that with the recent technological advances it is now possible and attrac-
tive to implement robust and powerful nonlinear controllers to reduce energy con-
sumption and to improve performance under a wide range of power-speed operating
domains.

1.3 The Concordia/Clark and Park Transformations

In the following section, themathematicalmodels ofACelectricmachines describing
their electromechanical behaviors are derived. The three-phase mathematical mod-
els of the induction and permanent magnet synchronous motors are developed. The
classical models using the Concordia/Clarke and Park transformations are derived
to define the two-phase equivalent models of AC machines. Using these transfor-
mations, many concepts, interpretations, and simplified models can be obtained to
analyze the AC machine behavior.

An approach to study AC machines is to transform the variables (voltages, cur-
rents, and flux linkages) stated in a fixed reference frame to a rotating frame defined
by the Concordia/Clarke and Park transformations. These transformations are used
in the analysis of AC machines to reduce the complexity of the differential equation
describing the behavior of the AC machines by eliminating time-varying terms in
the inductances.

The transformation from a three-phase (stationary (a, b, c) frame) to a two-phase
(rotatory direct-quadrature frame or (d, q) frame) transformation is referred as the
Park transformation. However, this transformation can be decomposed in two trans-
formations. A first transformation from a fixed three-phase system to a fixed two-
phase system (Clarke’s/Concordia’s transformations).Next, by a transformation from
afixed two-phase frame to a rotating two-phase frame associated to a rotating variable
(mechanical position and flux, for instance).
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Before applying these transformations to AC machines, some assumptions are
introduced (see [54]):

Modeling assumptions

• Uniform gap thickness and no notch effect;
• Sinusoidal distribution of the induction in the air gap;
• Linear magnetic characteristic (no saturation);
• Temperature effect, skin effect, hysteresis phenomenon, and Foucault’s currents
are neglected.

Using the overall Park transformation, the electric equations of a three-phase model
(stationary (a, b, c) frame) of the motor are transformed into the two-phase model
(rotatory (d, q, 0) frame). The (d, q, 0) transformation can reduce threeACvariables
(voltages, currents, …) to two DC variables.

A general representation of the Park transformation is given as

⎡
⎣

xd

xq

x0

⎤
⎦ = P(ξ)

⎡
⎣

xa

xb

xc

⎤
⎦ (1.1)

where

P(ξ) = η

⎡
⎢⎢⎣
cos(ξ) cos(ξ − 2π

3 ) cos(ξ + 2π
3 )

sin(ξ) sin(ξ − 2π
3 ) sin(ξ + 2π

3 )

λ λ λ

⎤
⎥⎥⎦ (1.2)

with ξ as the angle between the axis α of the stationary reference frame and the real
axis-d of the rotating reference frame, and with η as the ratio between the amplitude
of the three-phase system variables xa, xb, xc (voltages, currents, ... ) with respect
to the amplitude of the corresponding two-phase system variables xd , xq , x0 and λ
being a constant.

Then, two different Park transformations can be defined:

(1) Park transformation preserving amplitude and
(2) Park transformation preserving power.

1.3.1 The Park Transformation Preserving Amplitude

TheP(ξ) transformationpreserving amplitude transforms a three-phase systemstated
in a stationary (a, b, c) frame into a rotatory (d, q, 0) frame by choosing

η = 2

3
, λ = 1

2
(1.3)
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in (1.2), i.e.
⎡
⎣

xd

xq

x0

⎤
⎦ = P(ξ)

⎡
⎣

xa

xb

xc

⎤
⎦ (1.4)

where

P(ξ) = 2

3

⎡
⎢⎣
cos(ξ) cos(ξ − 2π

3 ) cos(ξ + 2π
3 )

sin(ξ) sin(ξ − 2π
3 ) sin(ξ + 2π

3 )

1
2

1
2

1
2

⎤
⎥⎦ . (1.5)

The inverse transformation of (1.2) is given by

P−1(ξ) =
⎡
⎢⎣

cos(ξ) sin(ξ) 1

cos(ξ − 2π
3 ) sin(ξ − 2π

3 ) 1

cos(ξ + 2π
3 ) sin(ξ + 2π

3 ) 1

⎤
⎥⎦ . (1.6)

1.3.2 The Clarke Transformation

By choosing ξ = 0, in the Park transformation (1.5), the resultingmatrixC32 = P(0)
is given as

C32 = 2

3

⎡
⎢⎢⎣
1 − 1

2 − 1
2

0
√
3
2

−√
3

2
1
2

1
2

1
2

⎤
⎥⎥⎦ , and (C32)

−1 =

⎡
⎢⎢⎣

1 0 1

− 1
2

√
3

2 1

− 1
2

−√
3

2 1

⎤
⎥⎥⎦ . (1.7)

The matrix C32 is known as the Clarke transformation. The Clarke transformation
converts the balanced three-phase quantities into balanced two-phase orthogonal
quantities by keeping the amplitude of the variables. For an electric system, for
example, this implies that power is not kept.

Furthermore, the Park transformation (1.5) can be expressed in terms of the Clarke
transformation C32 and a Rotation matrix R(ξ), as

R(ξ) =
⎡
⎢⎣
cos ξ − sin ξ 0

sin ξ cos ξ 0

0 0 1

⎤
⎥⎦ (1.8)

as follows

P(ξ) = R(ξ)C32. (1.9)

For a symmetrical three-phasemachine in a stationary (a, b, c) frame, the three-phase
variables can be represented in a two-phase stationary reference (α,β) frame.
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Fig. 1.2 The Clark/Concordia-Park transformations

Defining the plane (α,β) with direct and quadrature axes as shown in Fig. 1.2, if
the source is a symmetric balanced three-phase, then the currents satisfy

∑
i = 0.

Equation (1.1) verifies easily that the current in the homopolar axis i0 = (1/
√
3)(ia +

ib + ic) is null.
Hereinafter, the 0-axis is not considered. Then, the three-phase to two-phase trans-

formation (abc ⇒ αβ) is now given by

[
xα

xβ

]
= CT

32

⎡
⎣

xa

xb

xc

⎤
⎦ (1.10)

where

CT
32 = 2

3

[
1 − 1

2 − 1
2

0
√
3
2

−√
3

2

]
. (1.11)

Notice that the inverse transformation is given as
⎡
⎣

xa

xb

xc

⎤
⎦ = C32

[
xα

xβ

]
(1.12)

where C32 =
⎡
⎢⎣

1 0

− 1
2

√
3
2

− 1
2

−√
3

2

⎤
⎥⎦ .

1.3.3 The Park Transformation Preserving Power

In order to pass from the three-phase system ((a, b, c) frame) to the two-phase system
((d, q) frame) preserving the instantaneous power, the following conditionmust hold:

[Vdq ]T [Idq ] = [Vabc]T [Iabc]
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or
vd id + vq iq = vaia + vbib + vcic.

Then, the modified Park transformation preserving power of the system is obtained
by choosing

η =
√
2

3
, λ = 1√

2
(1.13)

in (1.2), i.e., the transformation from a three-phase stationary (a, b, c) frame to a
three-phase rotatory (d, q, 0) frame is given as

Po(ξ) =
√
2

3

⎡
⎢⎢⎣
cos(ξ) cos(ξ − 2π

3 ) cos(ξ + 2π
3 )

sin(ξ) sin(ξ − 2π
3 ) sin(ξ + 2π

3 )

1√
2

1√
2

1√
2

⎤
⎥⎥⎦ , (1.14)

and its inverse is given as

(Po)−1(ξ) =
√
2

3

⎡
⎢⎣

cos(ξ) sin(ξ) 1

cos(ξ − 2π
3 ) sin(ξ − 2π

3 ) 1

cos(ξ + 2π
3 ) sin(ξ + 2π

3 ) 1

⎤
⎥⎦ . (1.15)

1.3.4 The Concordia Transformation

Choosing the angle ξ = 0 in (1.14), the resulting Park transformation matrix pre-
serving power (1.14) is of the form

Co =
√
2

3

⎡
⎢⎢⎣

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

⎤
⎥⎥⎦ , (Co)−1 =

√
2

3

⎡
⎢⎢⎢⎣

1 0 1√
2

− 1
2

√
3
2

1√
2

− 1
2 −

√
3
2

1√
2

⎤
⎥⎥⎥⎦ . (1.16)

The matrix Co is known as the Concordia transformation matrix.
Furthermore, the Park transformation preserving the power (1.14) can be

expressed in terms of theConcordia transformationCo and aRotationmatrixR(ξ) as

R(ξ) =
⎡
⎢⎣
cos ξ − sin ξ 0

sin ξ cos ξ 0

0 0 1

⎤
⎥⎦ (1.17)

as follows

Po(ξ) = R(ξ)Co. (1.18)
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1.3.5 Transformation Matrices

The following transformation transforms variables from the stationary reference
(α,β) frame into the rotating reference (d, q) frame (αβ → dq)

[
xd

xq

]
= Pαβ→dq(ξ)

[
xα

xβ

]
(1.19)

where

Pαβ→dq(ξ) =
[

cos ξ sin ξ

− sin ξ cos ξ

]
(1.20)

with Pαβ→dq(ξ) is the Park transformation.
The angle ξ can be chosen as follows:

(i) ξ = ξs , for the stator variables and
(ii) ξ = ξs − ξr , for the rotor variables.

The Park Matrix can be easily obtained as

xαβ = P−1
αβ→dq(ξ)xdq

where

P−1
αβ→dq(ξ) =

[
cos ξ − sin ξ

sin ξ cos ξ

]
.

1.3.6 Transformation from a Stationary Reference (α,β, 0)
Frame to a Rotating Reference (d, q, 0) Frame

The previous transformation can be completed as follows. Depending on the frame
alignment at t=0, the (d, q, 0) components are deduced from the (α,β, 0) com-
ponents as follows: if the rotating frame is aligned with the a-axis, the change in
variable transforming the (α,β, 0) variables into the (d, q, 0) frame is:

⎡
⎣

xd

xq

x0

⎤
⎦ = R(ξs)

⎡
⎣

xα

xβ

x0

⎤
⎦ (1.21)

where the rotation matrix R(ξ) is given as

R(ξ) =
⎡
⎢⎣
cos ξ − sin ξ 0

sin ξ cos ξ 0

0 0 1

⎤
⎥⎦

with the d-axis angle ξ located with respect to the fixed (α,β) frame.
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1.4 Permanent Magnet Synchronous Motor

1.4.1 Description

The permanent-magnet synchronous motor (PMSM) has been widely used in the
industry for variable speed applications due to its high performance reliability and
power density. Owing to the progress in the permanent magnet materials, micro
and power electronics, fast digital signal processors, and modern control technolo-
gies, permanent magnet synchronous machines have become more widespread in
industrial applications, such as in automobiles, robotics, aeronautics, and aerospace
domains.

In the sequel, we introduce the most important characteristics of the PMSM.

1.4.2 Classification of Permanent Magnet Synchronous
Motors (PMSM)

The physical characteristics of the PMSM are associated with its rotor and stator
structures.

The Stator is composed of a three-phase wound such that the Electromotive
Forces (EMF) are generated by the rotation of the rotor field. Furthermore, the EMF
can be sinusoidal or trapezoidal. This wound is represented by the three axes (a, b, c)
phase shifted, one from the other, by 120 electrical degrees.

The Rotor incorporates permanent magnets to produce a magnetic field. Regard-
ing winding, the permanent magnets have the advantage to eliminate the brushes,
the rotor losses, and the need for a controlled DC source to provide the excitation
current. However, the amplitude of the rotor flux is constant.

On the other hand, there exist several ways to place the magnets in the rotor (see
Fig. 1.3).

Following the magnet position, the PMSM can be classified into four major types:

• Surface mounted magnets type
The magnets are placed on the surface of the rotor using high strength glue. They
present a homogeneous gap, the motor is a non-salient pole. The inductances do
not depend on the rotor position (Fig. 1.3a). The inductance of the axe-d is equal
to those of the axe-q. This configuration of the rotor is simple to obtain. This
type of rotor is the most usual. On the other hand, the magnets are exposed to a
demagnetizing field. Moreover, they are subject to the centrifuge forces which can
cause the detachment of the rotor.

• Inset magnets type
The inset magnets are placed on the surface of the rotor. However, the space
between the magnets is filled with iron (see Fig. 1.3b). Alternation between the
iron and the magnets causes a salient effect. The inductance in the d-axe is slightly
different from the inductance in the q-axe.
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Fig. 1.3 PMSM rotor permanent magnets layout: a surface permanent magnets, b inset permanent
magnets, c interior permanent magnets, d flux concentrating

• Interior magnets type
Themagnets are integrated in the rotor’s body (Fig. 1.3c): themotor is a salient pole
type. In this case, the rotor magnetism is anisotropic, the inductances depend on
the rotor position. The magnets are placed in the rotor, providing more mechanical
durability and robustness at high speeds. On the other hand, this motor is more
expensive to manufacture and more complex to control.

• Flux concentrating type
As shown in Fig. 1.3d, the magnets are deeply placed in the rotor’s body. The
magnets and their axes are radial. The flux on a polar arc of the rotor is a result
of two separated magnets. The advantage of this configuration is the possibility to
concentrate the flux generated by the permanent magnets in the rotor and to obtain
a stronger induction in the gap. This type of machine has a salience effect.

However, surface permanent magnet synchronous motors and interior permanent
magnet synchronous motors are the most used in the industry. Furthermore, the per-
manent magnet synchronous motors can be classified according to the electromotive
force profiles (see [9, 91]):

• Sinusoidal,
• Trapezoidal.



14 1 Dynamical Models of AC Machines

Particularly, the synchronous machines with sinusoidal EMF are classified into two
subcategories in terms of magnets position

1. Non-salient Poles: themagnets are located in the rotor surface (Fig. 1.3a): Surface
Permanent Magnet Synchronous Motor (SPMSM)

2. Salient Poles: the magnets are buried into the rotor (Fig. 1.3c, d): Interior Perma-
nent Magnet Synchronous Motor (IPMSM).

1.4.3 Modeling Assumptions

The study of an electric motor behavior is a hard task and requires, first of all, good
knowledge of its model to properly predict its dynamic behavior under different
operating conditions.

Modeling a permanent magnet synchronous motor is similar to a classical syn-
chronousmachine, except that the flux from themagnets is constant. Then, themodel
is derived from the classical synchronous machine [17]. In the following study, the
machine has a stator and a rotor with symmetric distribution with p pairs of poles
(p = 2 on Fig. 1.3).

To simplify the modeling of the machine, the following assumptions are
introduced (see [9]):

Assumptions

• The damping effect of the rotor is neglected.
• The magnetic circuit of the machine is not saturated.
• The distribution of the magnetomotive forces (MMF) is sinusoidal.
• The coupling capacitors between the windings are neglected.
• The hysteresis phenomena and the Foucault’s currents are neglected.
• The gap irregularities owing to the stator slots are neglected.

Under these assumptions and using basic concepts, the electrical and mechanical
equations describing the dynamical behavior of the PMSM are obtained. The model
will be essential to design and implement the controllers and the observers introduced
in the following chapters.

1.4.3.1 Electric Equations

The three-phase stator voltage equations can be expressed as

[
Vsabc

] = Rs
[
Isabc

] + d
[
Ψsabc

]
dt

(1.22)

where
[
Vsabc

] = [
vsa, vsb, vsc

]T are the voltages of each stator phase phase; Rs

is the stator resistance;
[
Isabc

] = [isa, isb, isc]T are the phase stator currents and
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[
Ψsabc

] = [Ψsa, Ψsb, Ψsc]T are the stator fluxes, which are given as

[
Ψsabc

] = [
Lss

] [
Isabc

] + [
Ψrabc

]
(1.23)

where
[
Ψrabc

] = [Ψra, Ψrb, Ψrc]T is given by

⎡
⎢⎣

Ψra

Ψrb

Ψrc

⎤
⎥⎦ = Ψr

⎡
⎢⎣

cos(pθm)

cos(pθm − 2π/3)

cos(pθm + 2π/3)

⎤
⎥⎦ (1.24)

with Ψr as the amplitude of the flux generated by the permanent magnets, θm as the
rotor position angle, and p as the pole pair number. For the pole salient machines,
the inductance matrix

[
Lss

]
can be expressed as

[
Lss

] = [
Lso

] + [
Lsv

]
,

where

[
Lss

] =
⎡
⎣

Laa Mab Mac

Mba Lbb Mbc

Mca Mcb Lcc

⎤
⎦ , (1.25)

with

[
Lso

] =
⎡
⎣

Lso Mso Mso

Mso Lso Mso

Mso Mso Lso

⎤
⎦ , (1.26)

and

[
Lsv

] = Lsv

⎡
⎢⎣

cos(2pθm) cos(2pθm) − 2π
3 ) cos(2pθm + 2π

3 )

cos(2pθm − 2π
3 ) cos(2pθm + 2π

3 ) cos(2pθm)

cos(2pθm + 2π
3 ) cos(2pθm) cos(2pθm − 2π

3 )

⎤
⎥⎦ (1.27)

Lso, Lsv and Mso are positive parameters depending on the machine.
Replacing (1.23) in (1.22), it follows that

[
Vsabc

] = Rs
[
Isabc

] + d

dt

{[
Lss

] [
Isabc

] + [
Ψrabc

]}
. (1.28)

Notice the stator phase voltage equation of the three-phase PMSM represented in the
three-phase stationary frame (abc-axis: three-phase stationary frame) is time varying
and nonlinear.

Now, an equivalent two-phase representation in a fixed frame is introduced.
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Using the Concordia transformation (1.16)

[
xsα

xsβ

]
= CoT

⎡
⎣

xsa

xsb

xsc

⎤
⎦ (1.29)

where

Co =
√
2

3

⎡
⎢⎢⎣

1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

⎤
⎥⎥⎦ , (1.30)

multiplying by Co the left side of Eq. (1.28) and using the identity CoT Co = I2×2
with x a variable (voltage, current or flux), it follows that

[
Vsαβ

] = Rs
[
Isαβ

] + d
[
Λss

]
dt

[
Isαβ

]

+ [
Λss

] d
[
Isαβ

]

dt
+ d

[
Ψrαβ

]

dt
(1.31)

with [Λss] = {CoT [
Lss

]
Co}.

Taking Mso = − 1
2 Lso and using the following trigonometric equivalences:

cos(pθm − 2π/3) = cos(pθm) cos(2π/3) + sin(pθm) sin(2π/3)

and
cos(pθm + 2π/3) = cos(pθm) cos(2π/3) − sin(pθm) sin(2π/3)

where cos(2π/3) = − 1
2 and sin(2π/3) = √

3/2, it follows that

[
Λss

] = 3

2
Lsv

[
cos(2pθm) sin(2pθm)

sin(2pθm) cos(2pθm)

]
+ 3

2
Lso

[
1 0
0 1

]
(1.32)

=
[

Lα Lαβ

Lαβ Lβ

]
(1.33)

whose the time derivative is given by

d
[
Λss

]

dt
= Lsv pΩ

[
− sin(2pθm) cos(2pθm)

cos(2pθm) sin(2pθm)

]
. (1.34)

Furthermore, using the Concordia transformation, the fluxes Ψrα and Ψrβ can be
expressed as
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[
Ψrα

Ψrβ

]
= CoT

⎡
⎣

Ψra

Ψrb

Ψrc

⎤
⎦ (1.35)

=
√
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
Ψr

⎡
⎢⎣

cos(pθm)

cos(pθm − 2π/3)

cos(pθm + 2π/3)

⎤
⎥⎦ . (1.36)

It follows that
[

Ψrα

Ψrβ

]
=

√
3

2
Ψr

[
cos(pθm)

sin(pθm)

]
(1.37)

whereJ =
[
0 1

−1 0

]
is a skew-symmetricmatrix, satisfying the following property:

J TJ = I

The time derivative of (1.37) is of the form

⎡
⎢⎢⎣

dΨrα

dt

dΨrβ

dt

⎤
⎥⎥⎦ =

[
−pΩΨrβ

pΩΨrα

]
(1.38)

or expressed in compact form

d[Ψrαβ]
dt

= −pΩJ [Ψrαβ]. (1.39)

The electromagnetic model of the PMSM is

d
[
Isαβ

]

dt
= [

Λss
]−1

{
−

[
Rs + d

[
Λss

]

dt

] [
Isαβ

]

+pΩJ [Ψrαβ] + [
Vsαβ

]}
(1.40)

d[Ψrαβ]
dt

= −pΩJ [Ψrαβ].
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IPMSM model

Now, from (1.40) the IPMSM model can be obtained. Defining the constant induc-
tances Lsv and Lso, in terms of the new parameters Ld and Lq , we obtain

Lsv = Ld − Lq

3
(1.41)

Lso = Ld + Lq

3
. (1.42)

The matrix Λss can be expressed, in terms of Ld and Lq , as follows:

[
Λss

] = Ld − Lq

2

[
cos(2pθm) sin(2pθm)

sin(2pθm) cos(2pθm)

]
+ Ld + Lq

2

[
1 0
0 1

]
. (1.43)

whose time derivative is given as

d
[
Λss

]
dt

= 3pΩ{Ld − Lq}
[
− sin(2pθm) cos(2pθm)

cos(2pθm) sin(2pθm)

]
. (1.44)

Then substituting (1.43) and (1.44) into (1.40) will be used to define the state space
IPMSM model in the following subsections.

SPMSM model

From (1.40) for the case of non-salient poles, Ld = Lq = Ls , a simplified model is
obtained. The SPMSM model is given as

Ls
d

[
Isαβ

]
dt

= −Rs
[
Isαβ

] + pΩJ [Ψrαβ] + [
Vsαβ

]
(1.45)

d[Ψrαβ]
dt

= −pΩJ [Ψrαβ].

1.4.3.2 Transformation from a Fixed (a, b, c) Frame
to a Rotating (d, q) Frame

To derive an equivalent two-phase representation in order to facilitate the analysis and
control design, the Park transformation is usually employed to obtain the expression
of the model in the (d, q) frame. This transformation renders simpler the dynamical
equations of the PMSM.

As introduced previously in this chapter, this method is divided into two steps:

1. Three-phase-Two-phase Transformation: from an (a, b, c) three-phase stationary
frame to an (α,β) two-phase stationary frame. This transformation is called
the Concordia (obtained form Park transformation preserving energy) or Clarke
transformation (obtained from Park transformation preserving amplitudes).
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2. Fixed frame-Rotating frame Transformation: from an (α,β) two-phase stationary
frame to a two-phase synchronous rotating (d, q) frame, this transformation is
called the Park transformation.

By applying the first transformation, i.e., the Concordia transformation Co, then
the second step is the application of the Park transformation P to Eq. (1.29), in
order to obtain the two-phase synchronous rotating representation of the PMSM.
The resulting voltage equations are given as

[
xsd

xsq

]
= P(θe)

T
[

xsα

xsβ

]
(1.46)

where P(θe) =
[
cos θe − sin θe

sin θe cos θe

]
, with θe = pθm is the rotor electrical position, i.e.,

the electrical angle defined from the position of the rotor with respect to stator. Then,

[
xsd

xsq

]
= P(θe)

T
[

xsα

xsβ

]

= P(θe)
TCoT

⎡
⎣

xsa

xsb

xsc

⎤
⎦ . (1.47)

Combining Eq. (1.47) with (1.28), it follows that

CoP(θe)P(θe)
TCoT [

Vsabc
] = RsCoP(θe)P(θe)

TCoT [
Isabc

] + d

dt

{[
Ψrabc

]}

+ d

dt

{[
Lss

]
CoP(θe)P(θe)

TCoT [
Isabc

]}
(1.48)

or

CoP(θe)
[
Vsdq

] = RsCoP(θe)
[
Isdq

]

+ d

dt

{[
Lss

]
CoP(θe)

[
Isdq

]} − pΩCoJCoT [
Ψrabc

]
.

Now, multiplying both sides of the above equation by P(θe)
TCoT, and using the

following expressions:

P(θe)JP(θe)
T = J , (1.49)

P(θe)[Diag]P(θe)
T = [Diag] (1.50)

P(θe)
dP(θe)

T

dt
= J (1.51)
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where [Diag] is a diagonal matrix, after straightforward computations, we obtain
the model of the PMSM in the (d, q) frame

[
Vsdq

] = Rs
[
Isdq

] + P(θe)
T d

dt
{[Λss]P(θe)}

[
Isdq

]

+ P(θe)
T [Λss]P(θe)

d

dt

{[
Isdq

]} − pΩJ [
Ψrdq

]
. (1.52)

IPMSM case

Defining

[Ldq ] = P(θe)
TCoT [

Lss
]

CoP(θe)

=
[

Ld 0

0 Lq

]

=
⎡
⎢⎣
3(Lso + Lsv)

2
0

0
3(Lso − Lsv)

2

⎤
⎥⎦ (1.53)

and assuming that the amplitude of the flux produced by the permanent magnets is
constant, after some computations, the voltage equation of the IPMSM is given as

[Vsdq ] = {[Rs] − pΩ[Ldq ]J }[Isdq ] + [Ldq ]d[Isdq ]
dt

− pΩJ [Ψrdq ]. (1.54)

Moreover, for a specific value of θe, the q-component of the rotor flux equal to zero
(i.e., Ψrq = 0) and the d-component of the rotor flux equal to Ψr , (Ψrd = Ψr ), it
follows that

[
vsd

vsq

]
=

[
Rs −pΩLq

pΩLd Rs

] [
isd

isq

]
+

[
Ld 0
0 Lq

]⎡
⎢⎣

disd

dt
disq

dt

⎤
⎥⎦ −

[
0

pΩΨr

]
. (1.55)

The Electromagnetic model of the IPMSM in the rotor

flux oriented (d,q) frame is

disd

dt
= − Rs

Ld
isd − pΩ

Lq

Ld
isq + vsd

Ld
(1.56)

disq

dt
= − Rs

Lq
isq + pΩ

Ld

Lq
isd + vsq

Lq
− pΩ

Ψr

Lq
.
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1.4.3.3 Mechanical Equations

The rotor electrical position θe is determined by the equation

dθe

dt
= ω. (1.57)

and the rotor speed Ω is given by

J
dΩ

dt
+ fvΩ = Te − Tl (1.58)

where ω = pΩ , ω is the angular electrical speed, p is the pole pair number, Ω is the
rotor angular speed, Te is the electromagnetic torque, Tl is the load torque, J is the
inertia moment, i.e., the inertia of the synchronous machine plus the load inertia, fv
is the viscous friction coefficient.

1.4.3.4 Electromagnetic Torque

IPMSM case

The electromagnetic torque Te is generated by the interaction between the rotor
magnets poles and the poles induced by the magnetomotive forces in the air gap.
Then, the electromagnetic torque Te is given as [17]

Te = p(Ld − Lq)isd isq + p(Ψrd isq − Ψrq isd). (1.59)

Then replacing (1.59) in (1.58), it follows that

J
dΩ

dt
+ fvΩ = p(Ld − Lq)isd isq + p(Ψrd isq − Ψrq isd) − Tl . (1.60)

Furthermore, choosing the orientation of the (d, q) frame such that the q-component
of the rotor flux is equal to zero (Ψrq = 0) and the d-component of the rotor flux is
equal to Ψr (Ψrd = Ψr ), then (1.60) can be expressed as follows

J
dΩ

dt
+ fvΩ = p(Ld − Lq)isd isq + pΨr isq − Tl . (1.61)

The model of the IPMSM, in the rotor flux oriented

(d, q) frame is

disd

dt
= − Rs

Ld
isd − pΩ

Lq

Ld
isq + vsd

Ld

disq

dt
= − Rs

Lq
isq + pΩ

Ld

Lq
isd + vsq

Lq
− pΩ

Ψr

Lq
(1.62)

dΩ

dt
= − fv

J
Ω + 1

J
p(Ld − Lq)isd isq + pΨr isq − 1

J
Tl .
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SPMSM case

For the SPMSM, the stator inductances in the d-axis and q-axis are the same (Ld =
Lq = Ls). The reluctance torque p(Ld − Lq)isd isq is then equal to zero. The
electromagnetic torque is only given as

Te = pΨr isq . (1.63)

Equation (1.63) shows that the torque is proportional to the current in the q-axe. This
confirms the analogy between this machine and the DC machine.

Replacing (1.63) in (1.61) with Ld = Lq = Ls , it follows that the rotor speed
dynamics is given as

J
dΩ

dt
= − fvΩ + pΨr isq − Tl . (1.64)

By combining the electric Eq. (1.56) with the mechanical Eq. (1.64), it follows that:

The complete model of the SPMSM, in the rotor

flux oriented (d,q) frame, is

disd

dt
= − Rs

Ls
isd + pΩisq + vsd

Ls

disq

dt
= − Rs

Ls
isq − pΩisd + vsq

Ls
− pΩ

Ψr

Ls
(1.65)

dΩ

dt
= − fv

J
Ω + pΨr

J
isq − 1

J
Tl .

1.4.4 Nonlinear Model in State-Space Representation

Generally, the behavior of a physical process and its interaction with the outside
world can be mathematically modeled, and the resulting mathematical description is
called the system. It interacts with the outside world in three different ways.

Inputs variables: (1) Input controls are variables that can be designed to influence
the system dynamics, (2) perturbations are generally unmeasured external signals
that have an effect on the system behavior but they are not controlled.

Output variables: Variables that are measured and/or for which the control objec-
tives are defined. They are a subset of all the variables describing the system.

The state of the system represents all the variables of the system dynamics. It is
represented by a vector, denoted by x(t).

The evolution at time t of the system state is described by an ordinary differential
equation

ẋ(t) = F(x(t), u(t)) (1.66)
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with F is a smooth vector field. Furthermore, the relation between the state and the
output is described by means of the function h as follows:

y(t) = h(x(t))

where the components of h are C∞ functions (the class of functions continuously
differentiable). Then a dynamical system is defined in a state-space representation,
as follows:

Σ :
{

ẋ(t) = F(x(t), u(t))
y(t) = h(x(t)).

(1.67)

However, for most of the systems, the input acts in an affine manner and so the
following representation is used:

Σ :
{

ẋ = f (x) + g(x)u
y = h(x).

(1.68)

This representation will be used for control design, while the representation (1.67)
will be used for the dynamics observation analysis of all the AC machines studied
in this book.

Usually, to obtain a model in a state-space representation of electric machines, it
is necessary to define a vector state x , the input u, and the output y. Here, the vector
state is represented by the electrical variables (currents) and the mechanical variables
(speed and/or position). The input ismainly composedof the stator voltages.A special
input: the disturbance forces the dynamics of the system but it is not controllable:
the load torque Tl . The outputs are the stator currents and the mechanical speed. For
the mechanical sensorless purpose only the currents are measured.

Now, the mathematical models of the PMSM (SPMSM or IPMSM) machines
are introduced in a state-space representation, and will be used to the control and
observer designs.

1.4.4.1 Model in the (d, q) Frame

For the torque or angular speed control, the nonlinear state-space model of the
IPMSM (1.56) in the (d, q) frame, is given as

⎡
⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dΩ

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− Rs

Ld
isd + pLq

Ld
isqΩ

− Rs

Lq
isq − pLd

Lq
isdΩ − pΨr

Lq
Ω

pΨr

J
isq − p

(
Lq − Ld

)

J
isd isq − fv

J Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

Ld
0 0

0
1

Lq
0

0 0 − 1

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

vsd

vsq

Tl

⎤
⎥⎦

(1.69)
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where the state is [isd , isq ,Ω], the input is [vsd , vsq , Tl ], where Tl is assumed to be
an unknown input. The measurable output is the stator currents [isd , isq ].

For the rotor position control, it is necessary to take into account the rotor position
θm as a new state variable.

The complete model of the IPMSM, in the rotor rotating frame, is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dΩ

dt
dθm

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Rs

Ld
isd + pLq

Ld
isqΩ

− Rs

Lq
isq − pLd

Lq
isdΩ − pΨr

Lq
Ω

pΨr

J
isq − p

(
Lq − Ld

)

J
isd isq − fv

J
Ω

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ld
0 0

0
1

Lq
0

0 0 − 1

J

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

vsd

vsq

Tl

⎤
⎥⎥⎦ ,

(1.70)

where the state is now defined as [isd , isq ,Ω, θm], the input is [vsd , vsq , Tl ], and the
measurable output is [isd , isq ,Ω, θm] or only [isd , isq ] for the sensorless case (i.e.,
without mechanical sensor).

Remark 1.1 The load torque Tl can also be considered as a component of the vector
state or as an unknown parameter to be estimated. It depends on the observation
strategy.

If the permanent magnet synchronous machine is without salient poles (SPMSM
case), i.e., the inductances in d-axis and q-axis are equal (Ld = Lq = Ls), then
model (1.70) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dΩ

dt
dθm

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Rs

Ls
isd + pisqΩ

− Rs

Ls
isq − pisdΩ − pΨr

Ls
Ω

pΨr

J
isq − fv

J
Ω

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ls
0 0

0
1

Ls
0

0 0 − 1

J
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

vsd

vsq

Tl

⎤
⎥⎦ (1.71)

where the vector state is [isd , isq ,Ω, θm], the input is [vsα, vsβ, Tl ], and the measur-
able output is [isd , isq ,Ω]. Notice that in this model, the load torque is considered
as an input for the PMSM. For the sensorless case, the measurable output is only the
stator currents [isd , isq ] (see Remark 1.1).
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1.4.4.2 The Two-Phase Equivalent Model in the (α,β) Frame

The two-phase frame equivalent model of a three-phasemotor, in the stator stationary
(α,β) frame, is obtained from model (1.54) (see [14]), by using the transformation

[
xsα

xsβ

]
= P(θe)

[
xsd

xsq

]
. (1.72)

Bymultiplying the left side of the electric equation of the IPMSMbyP(θe), it follows
that

[Vsdq ] = {[Rs] − pΩ[Ldq ]J }[Isdq ] + [Ldq ]d[Isdq ]
dt

− pΩJ [Ψrdq ]. (1.73)

By using (1.72) and the identity P(θe)
TP(θe) = I2×2 and after some simplifications,

it can be rewritten as

[Vsαβ] = P(θe){[Rs] − pΩ[Ldq ]J }P(θe)
T[Isαβ]

+ P(θe)[Ldq ] d

dt
{P(θe)

T[Isαβ]} (1.74)

− pΩP(θe)JP(θe)
T[Ψrαβ].

The following expressions hold:

P(θe)JP(θe)
T = J , (1.75)

P(θe)[Diag]P(θe)
T = [Diag] (1.76)

P(θe)
dP(θe)

T

dt
= J . (1.77)

It turns out that

[Vsαβ] = [Rs][Isαβ] + [Ldq ]d[Isαβ]
dt

− pΩJ [Ψrαβ] (1.78)

or equivalently

[
vsα

vsβ

]
=

[
Rs 0

0 Rs

] [
isα

isβ

]
+

[
Ld 0

0 Lq

] ⎡
⎢⎣

disα

dt
disβ

dt

⎤
⎥⎦ +

[−pΩΨrα

pΩΨrβ

]
. (1.79)

The complete model of the IPMSM, in the stationary (α,β) frame, is given as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
dΨrα

dt
dΨrβ

dt
dΩ

dt
dθm

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rs

Ld
isα − Ψrα

Ld

−Rs

Lq
isβ + Ψrβ

Lq

−pΩΨrβ

pΩΨrα

pΨr

J
(isβ cos θe − isα sin(θe) − fv

J
Ω

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ld
0 0

0
1

Lq
0

0 0 0

0 0 0

0 0
−1

J
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

vsα

vsβ

Tl

⎤
⎥⎦

(1.80)

where the vector state is [isα, isβ, Ψrα, Ψrβ,Ω, θm], the input is [vsα, vsβ, Tl ], and
the measurable output is [isα, isβ,Ω]. For the sensorless case, the measurable output
is composed by the stator currents [isα, isβ].

Furthermore, define eα and eβ as the electromotive forces that are expressed as

⎧⎪⎨
⎪⎩

erα = −
√

3
2Ψrω sin(θe),

erβ =
√

3
2Ψrω cos(θe).

(1.81)

Notice that the rotor electrical position is given as

tg(θe) = −erα

erβ
. (1.82)

The model of the IPMSM, in the stationary (α,β) frame, is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
derα

dt
derβ

dt
dΩ

dt
dθm

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rs

Ld
isα − erα

Ld

−Rs

Lq
isβ + erβ

Lq

−pΩerβ

pΩerα

pΨr

J
(isβ cos θe − isα sin(θe) − fv

J
Ω

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ld
0 0

0
1

Lq
0

0 0 0

0 0 0

0 0
−1

J
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

vsα

vsβ

Tl

⎤
⎥⎦ .

(1.83)
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The model of the SPMSM, in the stationary (α,β) frame, is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
derα

dt
derβ

dt
dΩ

dt
dθm

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rs

Ls
isα − erα

Ls

−Rs

Ls
isβ + erβ

Ls

−pΩerβ

pΩerα

pΨr

J
(isβ cos θe − isα sin(θe) − fv

J
Ω

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ls
0 0

0
1

Ls
0

0 0 0

0 0 0

0 0
−1

J
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

vsα

vsβ

Tl

⎤
⎥⎦

(1.84)

with the vector state is [isα, isβ, erα, erβ,Ω, θm], the input is [vsα, vsβ, Tl ], and the
measurable output is [isα, isβ,Ω]. In the sensorless case, the measurable output is
[isα, isβ].

1.5 Induction Motor

1.5.1 Motor Description and Modeling Assumptions

An induction machine can be decomposed into two main parts: stator and rotor. The
stator is the static part of the machine with coils, most often three-phase, housed in
slots and connected to the power source. The rotor is the rotating part of the machine
that can be of two main types:

• The coiled rotor, which is of cylindrical form, carrying on coil windings in the
interior of a magnetic circuit consisting of disks stacked on the machine shaft. The
coil windings are usually identical to those of the stator. An electrical connection
of the coil winding is available thanks to three rings and brushes.

• Squirrel cage rotor, which is the most common induction motor, is composed of a
set of conductive bars placed around the periphery of the rotor forming a cylinder
and connected to conducting end rings at each end. No electrical connection is
necessary. The rotor coils are then in short-circuit and the rotor voltages are zero.
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1.5.2 Dynamic Model of the Induction Motor

Electric and Mechanical Equations of the Induction Motor

The three-phase induction motor model is obtained from the application of the elec-
tromagnetic and mechanical principles.

The three-phase stator voltage equations, represented in a stationary (a, b, c)
frame, can be expressed as

[
Vsabc

] = Rs
[
Isabc

] + d
[
Φsabc

]

dt
(1.85)

and

[
Vrabc

] = Rr
[
Irabc

] + d
[
Φrabc

]

dt
(1.86)

where
[
Vsabc

] = [vsa, vsb, vsc]T
([

Vrabc
] = [vra, vrb, vrc]T

)
are the voltages of

each stator (rotor) phase; Rs is the stator resistance;
[
Isabc

] = [isa, isb, isc]T([
Irabc

] = [ira, irb, irc]T
)
are the phase stator (rotor) currents; and

[
Φsabc

] =
[φsa,φsb,φsc]T

([
Φrabc

] = [φra,φrb,φrc]T
)
are the stator (rotor) fluxes.

Let Λ be the inductance matrix of the induction motor, which is defined as

Λ =
[

Los Mosr

MT
osr Lor

]
(1.87)

where

Los =
⎡
⎣

las Mas Mas

Mas las Mas

Mas Mas las

⎤
⎦ , Lor =

⎡
⎣

lar Mar Mar

Mar lar Mar

Mar Mar lar

⎤
⎦ ,

Mosr = M

⎡
⎢⎣

cos(pθm) cos(pθm + 2π
3 ) cos(pθm − 2π

3 )

cos(pθm − 2π
3 ) cos(pθm) cos(pθm + 2π

3 )

cos(pθm + 2π
3 ) cos(pθm − 2π

3 ) cos(pθm)

⎤
⎥⎦ ,

where θe is the electrical position with θe = pθm , lar are the self-inductances, Mar is
the mutual inductance between two rotor phases, and Mas is the mutual inductance
between two stator phases.

The magnetic fluxes are given as

[
Φsabc

] = [
Los

] [
Isabc

] + [
Mosr

] [
Irabc

]
(1.88)
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and

[
Φrabc

] = [
Lor

] [
Irabc

] + [
Mosr

] [
Isabc

]
. (1.89)

Applying the Park transformation (1.47) to the electric equations (1.85) and (1.86),
where θs is the (d, q) frame angular position and θr is the rotor relative angular
position w.r.t. the (d, q) frame. Then, the equations of the squirrel cage induction
motor in the (d, q) frame are given by

[
Vsdq

] = Rs
[
Isdq

] + d
[
Φsdq

]
dt

− dθs

dt
J [

Φsdq
]

(1.90)

and

[
Vrdq

] = 0 = Rr
[
Irdq

] + d
[
Φrdq

]
dt

− dθr

dt
J [

Φrdq
]
. (1.91)

Writting the magnetic fluxes (1.88) and (1.89), in the rotating (d, q) frame, yields:

[
Φsdq

] = Ls
[
Isdq

] + Msr
[
Irdq

]
(1.92)

and

[
Φrdq

] = Lr
[
Irdq

] + Msr
[
Isdq

]
(1.93)

where Ls, Lr are respectively the stator and rotor cyclic inductances and Msr the
mutual cyclic inductance.

From (1.90) and (1.91), the dynamics of the fluxes, expressed in the rotatory (d, q)

frame, are given by

d
[
Φsdq

]

dt
= −Rs

[
Isdq

] + ωsJ
[
Φsdq

] + [
Vsdq

]
(1.94)

and

d
[
Φrdq

]

dt
= −Rr

[
Irdq

] + (ωs − pΩ)J [
Φrdq

]
. (1.95)

Replacing (1.92) and (1.93) in (1.94) and (1.95) respectively, it follows that

⎡
⎢⎢⎣

Ls
d[Isdq ]

dt
+ Msr

d[Irdq ]
dt

Msr
d[Isdq ]

dt
+ Lr

d[Irdq ]
dt

⎤
⎥⎥⎦ =

[−Rs
[
Isdq

] + ωsJ
[
Φsdq

] + [
Vsdq

]

−Rr
[
Irdq

] + (ωs − pΩ)J [
Φrdq

]
]
(1.96)
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Written (1.96) in terms of Irdq and Φrdq , it follows that

d[Isdq ]
dt

=
{
− Rs

Lsσ
I2x2 − Rr M2

sr

σLs L2
r
I2x2 + ωsJ

}
[Isdq ]

+
{

Rr Msr

σLs L2
r
I2x2 + Msr

σLs Lr
pΩJ

}
[Φrdq ] + 1

Lsσ
[Vsdq ] (1.97)

d[Φrdq ]
dt

=
{

Rr Msr

Lr

}
[Isdq ] +

{
− Rr

Lr
I2x2 + (ωs − pΩ)J

}
[Φrdq ] (1.98)

where ωs is the stator pulsation given by

ωs = pΩ + aMsr isq

φrd
, (1.99)

σ is the Blondel leakage coefficient:

σ = 1 − (M2
sr/Ls Lr ), (1.100)

and I2x2 is the identity matrix of dimension 2.

On the other hand,
dθs

dt
= ωs (1.101)

dθm

dt
= Ω (1.102)

dθr

dt
= ωr = ωs − p. (1.103)

Moreover, the electromagnetic torque Te expressed in the (d, q) frame, is given by

Te = pMsr

Lr
(φrd isq − φrq isd). (1.104)

Equation (1.104) shows that the torque is a nonlinear function of fluxes and currents.

To obtain a complete model of the inductionmotor, it is necessary to add themechan-
ical equation

dΩ

dt
= Te

J
− Tl

J
− fv

J
Ω

= 1

J

{
pMsr

Lr
(φrd isq − φrq isd)

}
− Tl

J
− fv

J
Ω. (1.105)
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Then, the Induction Motor Model, in the rotating (d, q) frame, is given by

d[Isdq ]
dt

=
{
− Rs

Lsσ
I2x2 − Rr M2

sr

σLs L2
r
I2x2 + ωsJ

}
[Isdq ]

+
{

Rr Msr

σLs L2
r
I2x2 + Msr

σLs Lr
pΩJ

}
[Φrdq ] + 1

Lsσ
[Vsdq ]

d[Φrdq ]
dt

=
{

Rr Msr

Lr

}
[Isdq ] +

{
− Rr

Lr
I2x2 + (ωs − pΩ)J

}
[Φrdq ](1.106)

dΩ

dt
= 1

J

{
pMsr

Lr
(φrd isq − φrq isd)

}
− Tl

J
− fv

J
Ω.

1.5.3 IM Model in the State-Space Representation

The state-space model of the induction motor requires to define the state x , the
input u and the output y. Usually, the flux of the induction motor is not available
through measurements, then the stator currents are selected as the measured output
of the model. However, in the case of a control with a speed sensor, the speed is an
additional measurable output.

Moreover, the load torque is considered as a boundednon-controlled input (usually
unknown). The load torque could be also considered as a state variable which can
be estimated by means of an observer.

The input of the model is composed by the stator voltages. The state vector
consists of the currents, the magnetic variables (fluxes), and the mechanical variables
(angular speed and the positionwhen necessary). For themagnetic variables, we have
considered the rotor fluxes instead of the stator fluxes. In the following, for modeling
purpose, the rotating frame reference could be chosen according to the rotor field
orientation.

1.5.3.1 IM Model in the Rotatory (d, q) Frame

Consider the induction motor model (1.106) written in the rotatory (d, q) frame:

disd

dt
= −γisd + ωs isq + baφrd + bpΩφrq + m1vsd

disq

dt
= −ωs isd − γisq − bpΩφrd + baφrq + m1vsq

dφrd

dt
= aMsr isd − aφrd + (ωs − pΩ)φrq (1.107)

dφrq

dt
= aMsr isq − (ωs − pΩ)φrd − aφrq
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dΩ

dt
= m(φrd isq − φrq isd) − cΩ − 1

J
Tl

where a, b, c, γ, σ, m and m1 are parameters defined as

a = Rr/Lr , b = Msr/σLs Lr , c = fv/J, γ = (L2
r Rs + M2

sr Rr )/(σLs L2
r ),

σ = 1 − (M2
sr/Ls Lr ), m = pMsr/J Lr , m1 = 1/σLs .

Defining the state vector xdq , the input u and the output y as

xdq =

⎡
⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

⎤
⎥⎥⎥⎥⎦

, u =
⎡
⎣

vsd

vsq

Tl

⎤
⎦ , y = h(xdq) =

[
isd

isq

]
,

where xdq ∈ �5, u ∈ �3 and y ∈ �2. Then the state-space dynamics of the IM
(1.107), in the (d, q) frame, is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt
dΩ

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + ωs isq + baφrd + bpΩφrq

−ωs isd − γisq − bpΩφrd + baφrq

aMsr isd − aφrd + (ωs − pΩ)φrq

aMsr isq − (ωs − pΩ)φrd − aφrq

m(φrd isq − φrq isd) − cΩ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0

0 m1 0

0 0 0

0 0 0

0 0 − 1

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

vsd

vsq

Tl

⎤
⎦

y = h(xdq) =
[

isd

isq

]
, (1.108)

which is a nonlinear system of the form

ẋ = f (x) + g(x)u

y = h(x). (1.109)

Notice that if the angular speed Ω is measurable, then the electric equations can be
represented as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−γ ωs ba bpΩ

−ωs −γ −bpΩ ba
aMsr 0 −a (ωs − pΩ)

0 aMsr −(ωs − pΩ) −a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

isd

isq

φrd

φrq

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

m1vsd

m1vsq

0
0

⎤
⎥⎥⎦

y = h(xdq) =
⎡
⎣

isd

isq

Ω

⎤
⎦ (1.110)

which can be expressed in a compact form as

{
ẋ = A(Ω(t))x + φ(u(t))
y = h(x).

(1.111)

When the mechanical speed Ω(t) is available through measurements, then system
(1.111) can be considered as a linear time variant system plus an injection term
depending on the input, i.e.,

{
ẋ = A(t)x + φ(u(t))
y = h(x).

(1.112)

Furthermore, in the mechanical equation of (1.108), the load torque Tl is considered
as perturbation. For robustness purpose, it could be necessary to estimate the load
torque. Then, in order to overcome this difficulty a solution is to extend the state
vector x by introducing the load torque Tl as a new state variable.

A way to model the load torque dynamics is to assume that Tl changes slowly or
is piecewise constant. A good approximation of these dynamics is given as

dTl

dt
= 0. (1.113)

The extended nonlinear model of the induction motor (1.108), in the rotatory (d, q)

frame, is then given as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt
dΩ

dt
dTl

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + ωs isq + baφrd + bpΩφrq

−ωs isd − γisq − bpΩφrd + baφrq

aMsr isd − aφrd + (ωs − pΩ)φrq

aMsr isq − (ωs − pΩ)φrd − aφrq

m(φrd isq − φrq isd) − cΩ − 1

J
Tl

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0

0 m1

0 0

0 0

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
vsd

vsq

]
(1.114)

with a state vector xdq = [
isd isq φrd φrq Ω Tl

]T .
If the angular speed Ω is available through measurement, system (1.114) can be

rewritten in a special form:

Cascade model of the IM, in the rotating (d, q) frame⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−γ ωs ba bpΩ

−ωs −γ −bpΩ ba
aMsr 0 −a (ωs − pΩ)

0 aMsr −(ωs − pΩ) −a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

isd

isq

φrd

φrq

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

m1vsd

m1vsq

0
0

⎤
⎥⎥⎦

y1 =
[

isd

isq

]

⎡
⎢⎢⎢⎣

dΩ

dt

dTl

dt

⎤
⎥⎥⎥⎦ =

[
−c − 1

J
0 0

] [
Ω

Tl

]
+

[
m(φrd isq − φrq isd)

0

]

y2 = [
Ω

]
. (1.115)

If the rotor position and the angular speed are not available by measurement, other
alternative representation has to be used to estimate the fluxes, load torque, and rotor
resistance of the IM from the only measurement of the stator currents. Furthermore,
assuming that the load torque and the stator resistance are slowly varyingwith respect
to the electromagnetic time constant, the dynamics of these two variables can be
approximated by
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dTl

dt
= 0,

d Rs

dt
= 0. (1.116)

Remark 1.2 The load torque Tl is an unknown variable. Only its bound is assumed
available. The stator resistance Rs changeswith the temperature. The resistance value
bound is also available. Thus the load torque and stator resistance values are assumed
to be approximated by piecewise constant functions.

Define γ = γ1 + m1Rs , where γ1 = M2
sr Rr/σLs L2

r . Thus, without the mechan-
ical sensors, the extended IM model (1.115) may be seen as the interconnection
between the subsystems:

⎡
⎢⎢⎢⎢⎢⎢⎣

disd

dt
dΩ

dt
d Rs

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣

0 bpφrq −m1isd

−mφrq −c 0
0 0 0

⎤
⎦

⎡
⎣

isd

Ω

Rs

⎤
⎦

+
⎡
⎣

−γ1isd + abφrd + m1usd + ωs isq

mφrd isq

0

⎤
⎦ +

⎡
⎢⎣

0

− 1

J
0

⎤
⎥⎦ Tl (1.117)

y1 = isd

and
⎡
⎢⎢⎢⎢⎢⎢⎣

disq

dt
dφrd

dt
dφrq

dt

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣

−γ1 −bpΩ ab
0 −a −pΩ

0 pΩ −a

⎤
⎦

⎡
⎣

isq

φrd

φrq

⎤
⎦

+
⎡
⎣

−m1Rsisq − ωs isd + m1usq

ωsφrq + aMsr isd

−ωsφrd + aMsr isq

⎤
⎦ (1.118)

y2 = isq

or, in a compact form:

Σ1 :
{

Ẋ1 = A1(X2, y)X1 + g1(u, y, X2, X1) + ΦTl

y1 = C1X1

Σ2 :
{

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2)

y2 = C2X2
(1.119)
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with

A1(·) =
⎡
⎣

0 bpφrq −m1isd

−mφrq −c 0
0 0 0

⎤
⎦ , g1(·) =

⎡
⎣

ωs isq − γ1isd + abφrd + m1usd

mφrd isq

0

⎤
⎦

A2(·) =
⎡
⎣

−γ1 −bpΩ ab
0 −a −pΩ

0 pΩ −a

⎤
⎦ , g2(·) =

⎡
⎣

−m1Rsisq − ωs isd + m1usq

ωsφrq + aMsr isd

−ωsφrd + aMsr isq

⎤
⎦

Φ =
⎡
⎢⎣

0

− 1

J
0

⎤
⎥⎦ , C1 = C2 = [ 1 0 0 ] ,

and X1 = [isd Ω Rs]T and X2 = [
isq φrd φrq

]T are the state vectors;u = [
usd usq

]T

is the input, and y = [
isd isq

]T is the output of the IMmodel. Finally, Tl is considered
as an unknown parameter which can be identified by means of an observer (see
Remark 1.2).

1.5.3.2 IM Model in the Stator Fixed (α,β) Frame

The nonlinear model of the induction motor, written in the fixed (α,β) frame, can be
easily obtained from model (1.108) in the (d, q) frame, by imposing the projection
angle θs and its derivative equal to zero (θs = 0 and θ̇s = ωs = 0). Then the state
vector x , the input u, and the output y, on (α,β) frame, are given as

xαβ =

⎡
⎢⎢⎢⎢⎣

isα

isβ
φrα

φrβ

Ω

⎤
⎥⎥⎥⎥⎦

, u =
⎡
⎣

vsα

vsβ
Tl

⎤
⎦ , y =

[
isα

isβ

]
.

The model of the induction motor, in the (α,β) frame, is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
dφrα

dt
dφrβ

dt
dΩ

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γisα + baφrα + bpΩφrβ

−γisβ − bpΩφrα + baφrβ

aMsr isα − aφrα − pΩφrβ

aMsr isβ + pΩφrα − aφrβ

m(φrαisβ − φrβisα) − cΩ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0

0 m1 0

0 0 0

0 0 0

0 0 − 1
J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

vsα

vsβ
Tl

⎤
⎦ (1.120)
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Furthermore, assuming that the load torque changes slowly, and considering the load
torque as a component of the state vector, it follows that the extended model of the
induction motor, in the (α,β) frame, is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
dφrα

dt
dφrβ

dt
dΩ

dt
dTl

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisα + baφrα + bpΩφrβ

−γisβ − bpΩφrα + baφrβ

aMsr isα − aφrβ − pΩφrβ

aMsr isβ + pΩφrα − aφrβ

m(φrαisβ − φrβisα) − cΩ − 1

J
Tl

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0

0 m1

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
vsα

vsβ

]
(1.121)

where the components of the state vector are xαβ = [
isα isβ φrα φrβ Ω Tl

]T .
Assuming that the rotor speed Ω is available through measurements, the IM model
can also be represented as two interconnected subsystems (electric-magnetic and
mechanical parts) in the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disα

dt
disβ

dt
dφrα

dt
dφrβ

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−γ 0 ba bpΩ

0 −γ −bpΩ ba
aMsr 0 −a −pΩ

0 aMsr pΩ −a

⎤
⎥⎥⎦

⎡
⎢⎢⎣

isα

isβ
φrα

φrβ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

m1vsα

m1vsβ
0
0

⎤
⎥⎥⎦ (1.122)

⎡
⎢⎣

dΩ

dt
dTl

dt

⎤
⎥⎦ =

[
−c

−1

J
0 0

] [
Ω

Tl

]
+

[
m(φrαisβ − φrβisα)

0

]
(1.123)

y =
⎡
⎣

isα

isβ
Ω

⎤
⎦ . (1.124)

1.5.3.3 IM Model in the Rotating (d, q) Frame Associated
to the Rotor Flux

Model (1.108) in the (d, q) frame depends on the stator pulsation ωs . This pulsation
can be calculated by using a specific orientation of the (d, q) frame, i.e., the d-axe
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coincides with the rotor flux vector. Therefore, the component of the flux in quadra-
ture (q-axe) as well as its derivative vanish, i.e.,

φrq ≡ dφrq

dt
≡ 0. (1.125)

Defining dρ/dt = ωs , where ρ is the field angle, and using the fact that (1.125)
holds; so from Eq. (1.108), it follows that

dρ

dt
= ωs = pΩ + aMsr

φrd
isq . (1.126)

The electromagnetic torque (1.104) becomes

Te = pMsr

Lr
φrd isq . (1.127)

The nonlinear model of the induction motor, expressed in the rotating (d, q) frame
associated to the rotor field, is obtained directly from the general model (1.108).
By replacing the stator pulsation ωs and the differential equation of φrq by the time
differential equation of ρ in (1.108) yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dρ

dt
dΩ

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + abφrd + pΩisq + a
Msr

φrd
i2sq

−γisq − bpΩφrd − pΩisd − a
Msr

φrd
isd isq

−aφrd + aMsr isd

pΩ + a Msr
φrd

isq

mφrd isq − cΩ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0

0 m1 0

0 0 0

0 0 0

0 0 − 1

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

vsd

vsq

Tl

⎤
⎦.

The measurable output is

y =
[

isd

isq

]
. (1.128)

From Eq. (1.126), the slip pulsation ωr is defined as

ωr = ωs − pΩ (1.129)

where ωr = aMsr

φrd
isq .
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1.6 Operating Conditions and Benchmark

All the observer and control algorithms presented in this book are evaluated in the
framework of specific trajectories and significant robustness tests noted “Bench-
marks”. These benchmarks have been defined, on the one hand, in cooperation with
the Electrical Engineering and Automatic Control Laboratories under the support of
the french National CNRS Work Group “Control of Electrical Systems,” and on the
other hand in cooperation with Electrical Industrial Companies.

1.6.1 Benchmarks for AC Machines

Permanent Magnet Synchronous Motor Benchmark

The motor is tested according to industrial test trajectories (see [34] for details).
Following the nominal values of the torque, the speed and the flux of a PMSM
motor, the reference trajectories are defined (see Fig. 1.4) such that, at initial time,
the rotor speed and the load torque values are zero.

Then the reference speed is carried to 100 rad/s; and from 1.5 to 2.5 s, the load
torque is applied. This first step is to test the performance and the robustness of the
controller-observer without mechanical sensors at low speed.

From 4 to 5s, the speed is carried out to its nominal value (300 rad/s) and remains
constant until t = 10 s.

From t = 10 to 12s, the rotor speed is reduced to zero and ismaintained thereafter.
The load torque is applied from 7 to 15s.
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Fig. 1.4 PMSM industrial benchmark trajectories; top reference speed ωm ; bottom load torque
disturbance Tl
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Robustness with respect to parameter variations and unknown load torque

The stator resistance as well as the stator inductance can vary from their nominal
values. So their deviation effects are studied. Significant robustness tests are defined
by stator, rotor resistance variations, stator, rotor inductance variations, and load
torque variations:

• ±50% of resistance variation,
• ±20% of inductance variation,
• ±100% of nominal load torque.

Induction Motor Benchmark

The experimental test takes place on a significant benchmark. The trajectories of this
benchmark have been considered taking into account industrial operation conditions.

Following the nominal values of the torque, the rotor speed and the flux of an
induction motor, the reference trajectories are defined (see Fig. 1.5) such that, at the
initial time, the speed and the load torque references are chosen as zero until the flux
reaches its nominal value. Then the reference speed is carried to 20 rad/s and from
1.5 to 2.5 s the load torque is applied. This first step tests the performance and the
robustness of the controller+observer without mechanical sensors at low speed.

From t = 3 to 4 s, the speed is carried out to its nominal value (100 rad/s) and
remains constant until t = 6s. The load torque is applied from the time 5s.

Unobservability test

This second step is defined to test the controller+observer behavior without mechan-
ical sensors, during a great transient speed and the robustness performance at high
speed. Then the motor is driven to reach a negative constant low speed value from 7 s
until 9 s. This speed is chosen to obtain a stator pulsation equal to zero. This last step
tests the robustness of the controller-observer scheme in case of an unobservability
phenomena (introduced latter in Chap.2) in the time interval from t = 7 to 9 s, as
shown in [31].

Finally, the induction motor is driven in order to leave the unobservability
conditions.

Robustness with respect to parameter variations and unknown load torque

Moreover, significant robustness tests are defined by stator, rotor resistance varia-
tions, stator, rotor inductance variations, and load torque variations:

• ±50% of resistance variation,
• ±20% of inductance variation,
• ±100% of nominal load torque.

1.6.2 Experimental Setup

Most of the observer-controller schemes presented in this book have been
experimentally tested on a setup allowing to drive synchronous motors (PMSM and

http://dx.doi.org/10.1007/978-3-319-14586-0_2
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(a)

(b)

(c)

Fig. 1.5 IMbenchmark trajectories. aReference speedωm ,b load torque disturbance Tl , c reference
flux φ∗

rd

IPMSM) and induction motors. A load torque is applied thanks to a connected syn-
chronous motor that is load controlled by means of a torque sensor and an industrial
drive (see Figs. 1.6 and 1.7).More precisely, the experimental setup is equipped with:

Hardware characteristics

1. Three-phase inverter operated by a symmetrical PulseWidth Modulation (PWM)
with a 5kHz switching frequency,

2. A permanent magnet synchronous motor controlled by an industrial drive to
provide the desired load torque.

3. A custom floating-point digital signal processor dSPACE (DS1103) board, and its
interface. The dSPACE board performs data acquisition: two stator currents, DC-
link voltage, load torque, and rotor speed, with a 512 ppr incremental encoder that
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Fig. 1.6 Observer-controller scheme

Fig. 1.7 IRCCyN experimental setup

supplies the speed (of course, only formonitoring purpose in case of the sensorless
tests). The DS1103 board also allows to compute the control algorithm and to
generate the PWM signals sent to the power inverter system.
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Software characteristics

The software associated with the data acquisition and the control system are:

(1) Matlab/Simulink,
(2) A user-developed interface between the Simulink Controller-Observer program

and the dSPACE system board.

The algorithms are implemented in the dSPACE board and have a maximal time
computational cost of 100µs. The experimental sampling time T is taken to 200µs.

Permanent Magnet Synchronous Motor characteristics

The parameters of the SPMSM used to test the controller and observer algorithms
are reported in Table1.1.

The parameters of the IPMSMused to evaluate the control and observer algorithms
are reported in Table1.2.

Induction Motor characteristics

All the control and observer algorithms designed in this book will be tested using a
1.5 kW Induction Motor, whose data are reported in Tables1.3 and 1.4.

Table 1.1 Nominal SPMSM
parameters

Current 9.67A Torque 9Nm

Speed 3,000 rpm Ψr 0.18Wb

Rs 0.45ohm p 3

Ld 3.42mH Lq 3.42mH

J 0.00679 kg · m2 fv 0.004 kg · m2

Table 1.2 Nominal IPMSM parameters

Current 6A Torque 5.3Nm

Speed 3,000 rpm Ψr 0.341Wb

Rs 3.25ohm p 3

Ld 18mH Lq 34mH

J 0.00417 kg · m2 fv 0.0034 kg · m2

Table 1.3 Nominal induction
motor parameters values of
the setup

Nominal rate power 1.5kW

Nominal angular speed 1,430 rpm

Number of pole pairs 2

Nominal voltage 220V

Nominal current 7.5A

Table 1.4 Induction motor
identified parameters

Rs 1.633Ω Msr 0.099H

Rr 0.93Ω J 0.0111Nm · s2/rad
Ls 0.142H fv 0.0018Nm · s/rad
Lr 0.076H
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1.7 Conclusions

In this chapter, an overview of typical applications for AC machines has been first
given. In particular, it has been reminded that one of the most attractive applications
ofACmachines is the traction systemof electric vehicles and hybrid electric vehicles.
A general view on the state of the art for such vehicles and traction systems has been
presented.

Then the models allowing to describe the dynamical behavior of the ACmachines
(PMSM and IM) have been introduced. These models have been expressed either in
a fixed (α,β) frame or in a rotating (d, q) frame in order to describe the dynamical
behavior of these machines.

Taking into account industrial considerations, specific benchmarks (test proce-
dures) have been defined to apply significant tests and to evaluate the performance of
the sensorless IM and PMSM controllers. These benchmarks will be used to test all
the proposed controller and observer strategies developed in this book. Finally, the
experimental setup as well as the associated characteristics of the PMSM, IPMSM,
and induction motor have been described.

1.8 Bibliographical Notes

Many papers are devoted to the introduction of the dynamical models of AC
machines. Only the references directly consulted for the writing of this chapter are
now listed. The main point of AC machines modeling is to simplify the complexity
of the model by using appropriate transformations, from three-phase model to
two-phase model associated to fixed or rotating frames. More precisely, to apply
these transformations to AC machine models, some assumptions are necessary: see
[54]. For detailed introductions to these modeling approaches, the reader can refer
to the books: [17, 33].

The modeling of the synchronous motor can be classified according to the elec-
tromotive force as introduced in [9, 91]. The permanent magnet synchronous motor
model is identical to the classical synchronous machine model, except that the rotor
flux is represented by the constant flux of the magnets. Then the model is obtained
from the classical synchronous machine model: [17, 33]. The induction motor model
is also introduced. Details on its model can be also found in [17, 33].

After introducing the different models of AC machines (synchronous and induc-
tion machines), in this chapter, significant reference trajectories are introduced in
order to check the performance of the observer-controller algorithms described in
the following chapters (see [22, 31, 34] for details).



Chapter 2
Observability Property of AC Machines

Abstract In many cases the implementation of control algorithms requires the
knowledge of all the components of the state vector. However, because of the high
cost of sensors, the reduction of the physical space inside or around the motor, the
weight, or the increase of the system complexity, it is often necessary to limit the
number of sensors. A similar situation arises when a sensor breaks down. A solution
to avoid these difficulties is to eliminate the sensors by replacing them with soft sen-
sors, which are well known as observers in control theory. The soft sensor can also
be used to increase the reliability by redundancy with respect to hardware sensors.
However, before designing an observer, it is necessary to verify if the system satis-
fies the observability property. Several techniques and tools have been developed to
study whether a nonlinear system is observable or not. Generally, the observability
property of a nonlinear system can depend on the inputs. An analysis of the inputs
applied to the system is then required to verify if there exist some input that renders
the system unobservable. It is clear that in this case the observer may not work cor-
rectly. Usually, these inputs are used to control the system, so they are necessary.
It is possible to deal with this problem by introducing a class of inputs for which
it is conceivable to construct an observer. These inputs are called persistent inputs:
inputs with a sufficient quantity of information, so that the observability property is
retained. Regarding AC machines, an intrinsic characteristic is that the observability
property of the machines is, in most cases, lost at low speed. This phenomenon lim-
its the implementation or degrades the performance of the control algorithms. Then,
from the mathematical model of AC machines, a study of the observability property
has to be made. If this property is satisfied from the only available measurements,
i.e., currents and voltages, the next step is to check if a nonlinear observer can be
designed to estimate the nonmeasurable variables, in order to be able to implement
the control algorithms.

2.1 Observability Property of AC Machines

The purpose of this chapter is first to introduce definitions and concepts about the
observability theory and observer normal forms for nonlinear systems, and then to
apply these concepts to ACmachines.More precisely, for the PMSM it will be shown

© Springer International Publishing Switzerland 2015
A. Glumineau and J. de León Morales, Sensorless AC Electric Motor Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-14586-0_2
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that if the angle position and/or rotor speed are notmeasurable, it is necessary to check
under which conditions themachine is observable. Similarly, it will be shown that for
IM, since the rotor flux is not easily measurable and if the rotor speed measurement
is not available, then the observability of the machine is affected. This information
can be used to know if it is possible to reconstruct the nonmeasurable components
of the state.

A way to reconstruct the state of the system is the use of an observer. An observer
is a mathematical algorithm (often called soft sensor) which is able to reconstruct the
state of the system from the limited information obtained from the measured output
and the input.

In this chapter, the observation problem of nonlinear systems is presented. Con-
trary to the linear systems, the observability of the nonlinear systems can depend
on the applied input. Taking into account this difficulty, definitions and concepts to
determine if a nonlinear system is observable will be introduced.

It is well known that if a linear system is observable, it is possible to design an
observer to reconstruct the nonmeasurable state. However, for nonlinear system, even
if the system is observable, it is not obvious how to design an observer. To overcome
this difficulty some solutions have been proposed. For example, there is a class of
nonlinear systems that, by means of a diffeomorphism, can be transformed into a
linear system plus an input–output injection, for which it is possible to design an
observer, called the nonlinear Luenberger observer.

On the other hand, there is another class of nonlinear systems, such that after a
transformation of coordinates, can be represented into a nonlinear system for which
the observability property is preserved for any input. For this class of systems several
results have been proposed how to design an observer.

By contrast, there is a class of nonlinear systems where the observability depends
on the input, i.e., there are inputs rendering the system unobservable. However,
for such a class of systems the observability property can be preserved provided
the input is persistent [3]. In this case, the observer design is possible for such a
class of nonlinear systems, working in the presence of inputs that render the system
unobservable.

Taking into account the above, note that there is no normal (canonical) observ-
ability form for general nonlinear systems, for which it is possible to construct an
observer.

The purpose of this chapter is to analyze the observability property of the PMSM
and the IM, and to establish the conditions to reconstruct the nonmeasurable state of
these machines.

More precisely, first, an analysis of the observability property for nonlinear sys-
tems is presented. After that, since the observability of the system depends on the
input, definitions on the different classes of inputs will be introduced. Finally, several
structures have been introduced for which it is possible to design an observer.
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2.2 Observability

First of all, what is observability? The answer to this question is: Observability is
the possibility to reconstruct the full trajectory of the system from the data obtained
from the input and output measurements.

2.2.1 Observability of Linear Systems

The observability theory of linear systems is well known. The main result is the
observability of the linear systems only requires the output measurements and thus
does not depend on the input applied to the system. The methodology to verify this
property is based on the Kalman criteria of observability. This criteria is verified
from the structural representation of the linear system.

The observability of a linear system can be established as follows:
A time invariant linear system is represented by

{
ẋ = Ax + Bu
y = Cx

(2.1)

where x(t) ∈ �n represents the state, u(t) ∈ �m is the input and y(t) ∈ �p is the
output; and A, B, and C are matrices of compatible dimensions. System (2.1) is
observable, if and only if the observability matrix OA,C

OA,C =

⎡
⎢⎢⎢⎣

C
C A
...

C A(n−1)

⎤
⎥⎥⎥⎦

has full rank, i.e., rankOA,C = n, where n is the dimension of the system.
Notice that this condition is independent of the input applied to the system. Fur-

thermore, this result can be extended to the Linear Time-Variant systems.

2.2.2 Observability of Nonlinear Systems

In this section, the observability property of a nonlinear system will be investigated.
Furthermore, since the observability of a nonlinear system can be lost, tools to

verify under what conditions a nonlinear system are observable will be introduced.
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The observability analysis of a nonlinear system can be divided into two main
cases when:

(1) the observability property of the system is independent of the input,
(2) the observability property depends on the input.

For the class of systems where the observability property does not depend on the
input, we can find some normal (canonical) forms for which it is possible to design
an observer. This class of nonlinear systems, which can be transformed into such a
canonical form is called the u uniformly observable systems class.

However, if the observability property can be lost when an input is applied to the
system, the observer design becomes more difficult and it is necessary to take into
account this class of inputs.

On the other hand, several methodologies have been proposed to estimate the state
of nonlinear systems. A classical approximate methodology to design an observer is
to apply linear techniques to estimate the system state. The first step is the approxi-
mate linearization of the nonlinear system around an equilibrium point. The resulting
linearized system can be used to design an observer. Of course, this observer can
only be efficient around the equilibrium point. Another way to construct an observer
is based on the algorithm called the Extended Kalman Filter.

The Extended Kalman Filter is widely used, because its design is relatively simple
and this observer gives good results for the nonlinear system observation. However,
there is no theoretical justification concerning its effectiveness and no analytic proof
of convergence. The observer works in a neighborhood of a particular point, which
limits its dynamic performance. Another possibility to design an observer for a
nonlinear system is to transform it into another system for which a class of observers
is known. For this purpose, several methodologies have been proposed to transform
a nonlinear system into particular classes of general nonlinear systems. For example,
in [46] for the SISO case and in [75] for the MIMO case, a nonlinear system is
transformed into a linear system (or a linear systemplus an output injection) forwhich
it is possible to design a linear observer called aGeneral Luenberger Observer.When
this transformation does not exist, it is possible to search to transform the nonlinear
system to a linear time-variant system plus an input–output injection for which an
exact Kalman Like Observer can be designed [83].

An Extension of the Kalman Filter (EKF) for the deterministic nonlinear systems
is the high gain observer provided that the system can be transformed into a canonical
representation, for which the observability property is satisfied for any input.

Before introducing the main results of the observability theory for the nonlinear
systems, we introduce some definitions and concepts from the nonlinear control
theory [65].

Let q be a point in En , a n-dimensional Euclidean space, and U a neighborhood
of q.

Let ϕ(q) = (x1(q), . . . , xn(q)) : U → V ⊂ �n be a homeomorphism, that is
bijective, with ϕ and ϕ−1 continuous. (U,ϕ) is called a coordinate neighborhood
or coordinate chart and the real numbers x1(q), . . . , xn(q); which vary continuously
are local coordinates of q ∈ En, xi (q) is called the ith coordinate function.
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If both ϕ and ϕ−1 are smooth maps, ϕ is called a diffeomorphism. If both ϕ and
ϕ−1 are defined in �n and are smooth maps, ϕ is called a global diffeomorphism.

Given two coordinates neighborhoods (U,ϕ) and (W,ψ), withU ∩W �= 0 where
ϕ(q) = (x1(q), . . . , xn(q)), and ψ(q) = (z1(q), . . . , zn(q)). The homeomorphism

ψ ◦ ϕ−1 : �n → �n

is a coordinate transformation in U ∩ W , i.e.,

z(x) = ψ ◦ ϕ−1(x).

If x and z are represented by vectors with n components, namely

x =
⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ , z =

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ (2.2)

the coordinate transformations are expressed by n real valued continuous functions
defined in �n , i.e.,

x =
⎡
⎢⎣

x1(z1, . . . , zn)
...

xn(z1, . . . , zn)

⎤
⎥⎦ , z =

⎡
⎢⎣

z1(x1, . . . , xn)
...

zn(x1, . . . , xn)

⎤
⎥⎦ . (2.3)

A well-known result from calculus which provides a sufficient condition for a map
to be a diffeomorphism is given next.

Theorem 2.1 (Inverse Function) Let U an open subset of �n and let ϕ = (ϕ1, . . .

ϕn) : U → �n be a smooth map. If the Jacobian matrix

∂ϕ

∂x
=

⎡
⎢⎢⎢⎣

∂ϕ1

∂x1
· · · ∂ϕ1

∂xn· · · · · · · · ·
∂ϕn

∂x1
· · · ∂ϕn

∂xn

⎤
⎥⎥⎥⎦ (2.4)

is nonsingular at some point p ∈ U, then there exists a neighborhood V ⊂ U of q
such that ϕ : V → ϕ(V ) is a diffeomorphism.

Let h : U ⊂ En → � be a real-valued function defined on U . Depending on
the coordinate neighborhoods (U,ϕ) chosen, the function h is expressed in local
coordinates as

hϕ = h ◦ ϕ−1 : �n → �.

The expression hϕ depends on the chosen local coordinates.
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The differential of a smooth function h : U ⊂ En → � is defined in local
coordinates as

dh = ∂h

∂x1
dx1 + · · · + ∂h

∂xn
dxn (2.5)

and may be seen as the product of a row vector with the differential column vector
of the state

dh =
[

∂h

∂x1
, . . . ,

∂h

∂xn

]
dx . (2.6)

Consider the following class of nonlinear systems of the form

{
ẋ(t) = F(x(t), u(t))
y(t) = h(x(t))

(2.7)

where x(t) ∈ �n represents the state, u(t) ∈ �m is the input and y(t) ∈ �p is the
output; F is a smooth vector field and h is C∞ function.

Definition 2.1 ([46]) The Lie derivative of the function hi along the vector field F

is defined as

LFhi (x) = ∂hi

∂x
F.

Furthermore, d L j
F

hi , i = 1, . . . , p; j = 1, . . . , m; are the differentials of the Lie
derivative of function hi along the vector field F, denoted as

d L j
F

hi = ∂L j−1
F

hi

∂x
F.

2.2.2.1 Observability and Classes of Inputs

For a complete study of the observability property,we now introduce somedefinitions
on the observability of nonlinear systems [42].

Definition 2.2 (Indistinguishability) For system (2.7), two points x and x ∈ �n are
indistinguishable if for every applied input

u(t), ∀T > 0

the outputs h(x(t)) and h(x(t)) are identical on [0, T ], where x and x are the
trajectories, issues of x and x at time t = 0.

Note I(xo) the set of all points that are indistinguishable from x0.
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Definition 2.3 (Observability)

System (2.7) is observable at xo, if I(xo) = xo.
System (2.7) is observable, if I(x) = x for all x ∈ �n .

Furthermore, for any pair of distinct points (x, x), there exists an input which
distinguishes them on the interval [0, T ], for T > 0.

Notice that observability is a global concept. A local concept, which is stronger
than the observability, will be defined.

Definition 2.4 Let be x0 ∈ �n and V ⊂ �n a neighborhood of x0. x1 ∈ V is said
V -indistinguishable of x0, if x1 is indistinguishable of x0.

A weaker result is that which consists to distinguish a point from its neighborhood.

Definition 2.5 (Weak Observability) System (2.7) is saidweakly observable if∀x0 ∈
W, there exists a neighborhood V of x0 such that W ⊂ V, IW (x0) = x0.

Definition 2.6 The observation space of a system is defined as the smallest real
vector space, denoted byO(h), of C∞ functions containing the components of h and
closed under Lie derivation along the field F(x, u) for any constant input u.

For linear systems, Definitions 2.3 and 2.5 are equivalent and result in the algebraic
criterion known as the Kalman‘s observability criterion recalled before.

Definition 2.7 (Observability rank condition [45]) System (2.7) is said to satisfy
the observability rank condition in x if

dim{dO(h)} = n.

Furthermore, if the observability rank condition holds ∀x ∈ �n , then system (2.7) is
observable in the rank sense.

Theorem 2.2 If system (2.7) is observable in the rank sense, then it is weakly ob-
servable.

Additional conditions may be used to design an observer for nonlinear systems. For
that, we introduce an important class of inputs for which the observability property
is satisfied to design an observer independently of the input.

Definition 2.8 An input is universal on the interval [0, T ], for T > 0, if it distin-
guishes all pairs of distinct points on the interval [0, T ].
Definition 2.9 A system is uniformly observable if every input is universal.

Now, consider the class of multioutput nonlinear systems

{
ẋ = f (x) x ∈ �n

y = h(x) y ∈ �p (2.8)

where h1, . . . , h p are smooth functions, dh1, . . . , dh p are linearly independent in
�n , f is a smooth vector field.
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Definition 2.10 A system is locally observable if every state xo can be distinguished
from its neighborhoods by using system trajectories remaining close to xo.

Theorem 2.3 System (2.8) is locally observable at xo if

rank{dhi , . . . , d L j
f hi , i = 1, . . . , p; j ≥ 0} = n (2.9)

∀x ∈ U0 ⊂ �n.

Observability indices may be defined for locally observable systems satisfying (2.9).

Definition 2.11 (Observability Indices [65]) A set of observability indices {k1, . . . ,
kp} is uniquely associated at x to system (2.8), satisfying (2.9) as follows

ki = card{S j ≥ i, j ≥ 0}, i = 1, . . . , p. (2.10)

where

S0 = rank{dhi , i = 1, . . . , p.} (2.11)

· · ·

Sk = rank{dhi , . . . , d Lk
f hi , i = 1, . . . , p.}

− rank{dhi , . . . , d Lk−1
f hi , i = 1, . . . , p.} (2.12)

· · ·

Sn−1 = rank{dhi , . . . , d Ln−1
f hi , i = 1, . . . , p.}

− rank{dhi , . . . , d Ln−2
f hi , i = 1, . . . , p.} (2.13)

Then, the observability property can be verified as follows:

Definition 2.12 (Locally Weakly Observability) The system (2.8) is locally weakly
observable at x0 if there exists U (x0), and p integers {k1, . . . , kp} that form the
smallest p-tuple with respect to the lexicographic ordering, such that

(i) k1 ≥ k2 ≥ · · · ≥ kp ≥ 0; (2.14)

(ii)
p∑

i=1

ki = n; (2.15)
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(iii) rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1
d L f h1

...

d Lk1−1
f h1
...

dh p

d L f h p
...

d L
kp−1
f h p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= n (2.16)

for all x ∈ U (x0).

Nonlinear Transformations

Generally, the design of an observer for nonlinear systems is not an easy task. How-
ever, it turns out that by means of a change in coordinates (a diffeomorphism), the
original nonlinear system can be transformed into another system for which it is
easier to design an observer.

Now, some concepts concerning the transformation of a nonlinear system into a
special class of system are introduced.

Given r smooth real-valued functions {ϕ1, . . . ,ϕr } in U , then

rank{dϕ1, . . . , dϕr } = r

in q ∈ U , is equivalent to

rank

⎡
⎢⎢⎢⎣

∂ϕ1

∂x1
· · · ∂ϕ1

∂xr· · · · · · · · ·
∂ϕr

∂x1
· · · ∂ϕr

∂xr

⎤
⎥⎥⎥⎦ = r (2.17)

for x = q.

Theorem 2.4 (InverseFunctionTheorem) If rank{dϕ1, . . . , dϕn} = n at some point
q ∈ U an open subset of �n, then there exists a neighborhood V ⊂ U of q such that
ϕ : V → ϕ(V ) is a diffeomorphism.

Definition 2.13 Two systems Σ1 and Σ2 are locally diffeomorphic in x0 ∈ �n ,
if and only if there exists a diffeomorphism Ψ , defined on a neighborhood of x0,
transforming Σ1 into Σ2.

Theorem 2.5 There exists a set of functions φ1(x), . . . ,φn(x) of observation space
O(φ) such that Ψ = (φ1(x), . . . ,φn(x))T is a diffeomorphism on �n, then system
(2.7) is observable.
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Consider the following nonlinear system

{
ẋ = f (x) + g(x)u, x ∈ �n, u ∈ �
y = h(x), y ∈ �.

(2.18)

Necessary and sufficient conditions are obtained such that an observable nonlinear
system of the form (2.18) can be transformed into a system of the form

{
ẋ = Ax + φ(y, u)

y = Cx
(2.19)

where the term φ(y, u) is an output–input injection, (see [46] for the SISO case, and
[75] for the MIMO case). For this class of system, an extended Luenberger observer
can be designed.

Furthermore, the system can be transformed into another nonlinear system for
which it is possible to design an observer, for instance, transformed into the state
affine system

{
ẋ = A(u)x + φ(y, u)

y = Cx
(2.20)

or in the general form

{
ẋ = A(u, y)x + φ(y, u)

y = Cx
(2.21)

where the matrices A(u) and A(u, y) have particular forms (see [3] for more details).

2.3 Permanent Magnet Synchronous Motor Observability
Analysis (PMSM)

One of the most important difficulty to control the synchronous motor is when
the speed and the position are not available from measurement. This can affect
the observability properties of the machine. Significant improvements have been
made in the area of the sensorless control of the permanent magnet synchro-
nous motors. However, to implement such a controller, it is necessary to recon-
struct the state of the motor. Then, before designing an observer it is necessary
to investigate the observability property of the permanent magnet synchronous
motor.

It will be shown by the following observability study that an interesting field
of research is related to the high-performance sensorless position control of syn-
chronous machines. It involves zero speed control at a determined rotor posi-
tion. An additional problem is the observer structure is strongly dependent on
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machine parameters. The position estimation is generally difficult due to scalar
speed estimation. Theoretically, the position can be calculated by integrating the
speed, but in practice the result will suffer drift problems and moreover the ini-
tial position is not always known. There are three main methods to estimate the
position: tracking observer based, tracking state filter, and arctangent calculation
based. The position estimation of the arctangent direct calculation has no time
delay. However, it suffers from large position estimation error due to the noise.
The effect of noise can be mitigated by using a state filter but the estimate has
lagging fault.

The first methods used to solve the sensorless position estimation are the ap-
proaches using the back Electromotive Force (EMF) with fundamental excitation,
and spatial salience image, the tracking methods using excitation in addition. The
salience tracking methods are suitable for zero-speed operation, whereas the back
EMF-based methods fail at low speed.

To know the variety of differentmethods for sensorless control, it is very important
to understand the dynamics properties of the electric machines.

2.3.1 IPMSM Observability Analysis

To verify if the Internal Permanent Magnet Synchronous Motor (IPMSM) is ob-
servable, it is assumed that the magnetic flux is not saturated, the magnetic field
is sinusoidal, and the influence of the magnetic hysteresis is negligible on the
IPMSM.

Observation Objective: by using only the measurement of the currents and voltages,
to simultaneously reconstruct (online) the rotor speed, position, load torque, and
stator resistance value of the IPMSM.

Now, we show under which conditions the IPMSM is observable. The observability
analysis is made in two steps:

• From the stator currents and its first time derivatives, the observability of the speed
and the position will be studied in the (α,β) frame.

• Secondly, to analyze the observability of the system including the stator resistance
and the load torque, higher time derivatives of the stator current measurements
will be taken into account.
For simplicity, this second step of the observability analysis is made by using the
IPMSM equations in the (d, q) frame.

2.3.1.1 Observability Analysis of the Speed ω and the Position θe in the
(α,β) Frame

In this section, the IPMSM observability properties will be analyzed in open loop,
assuming that all the parameters are known.
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Consider the IPMSM electric equations, in the stationary (α,β) frame, given as

⎡
⎢⎣

disα

dt
disβ

dt

⎤
⎥⎦ = (Λss)

−1
{
−

(
Rs − 2ωLαβ 2ωL1 cos(2θe)

2ωL1 cos(2θe) Rs + 2ωLαβ

)(
isα

isβ

)

− pΩΨr

(− sin θe

cos θe

)
+

(
vsα

vsβ

)}
(2.22)

where

(Λss)
−1 = 1

Ld Lq

(
Lβ −Lαβ

−Lαβ Lα

)
. (2.23)

The determinant Det (Λss) is given as

Det (Λss) = LαLβ − (
Lαβ

)2 = L2
0 − L2

1 = Ld Lq , (2.24)

where

Lα = L0 + L1 cos(2θe), Lβ = L0 − L1 cos(2θe), Lαβ = L1 sin(2θe). (2.25)

and

L0 = Ld + Lq

2
, L1 = Ld − Lq

2
. (2.26)

Moreover, the mechanical equations of the IPMSM are

⎧⎪⎨
⎪⎩

J
dΩ

dt
= − f Ω + 2pL1isαisβ + p(Ψrαisβ − Ψrβ isα) − Tl

dθm

dt
= Ω.

(2.27)

Then, the complete model is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

disα

dt
disβ

dt

⎤
⎥⎦ = (Λss)

−1
{
−

[
Rs − 2ωLαβ 2ωL1 cos(2θe)

2ωL1 cos(2θe) Rs + 2ωLαβ

] [
isα

isβ

]

− pΩΨr

[− sin θe

cos θe

]}
+ (Λss)

−1
[

vsα

vsβ

]

dΩ

dt
= − f

J
Ω + 2pL1

J
isαisβ + p

J
(Ψrαisβ − Ψrβ isα) − 1

J
Tl

dθm

dt
= Ω
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which is of the general form

{ d Xαβ

dt
= F(Xαβ, vαβ)

y = h(Xαβ)
(2.28)

where

Xαβ =

⎡
⎢⎢⎣

isα

isβ
Ω

θm

⎤
⎥⎥⎦ , vαβ =

[
vsα

vsβ

]
, h(Xαβ) =

[
h1
h2

]
=

[
isα

isβ

]
,

and Xαβ is the state, vαβ is the input, and h(Xαβ) is the measurable output whose
components are the stator currents isα and isβ .

Theobservation spaceOαβ(Xαβ) containing the components ofh1, h2; and closed
under Lie derivation along the field F, is given by (see [46])

Oαβ(Xαβ) = {h1, h2, LFh1, LFh2}.

Then, the observability analysis of the IPMSM is made by verifying if the matrix

dOαβ(Xαβ) =

⎡
⎢⎢⎣

dh1
dh2
d LFh1
d LFh2

⎤
⎥⎥⎦ (2.29)

satisfies the condition of Theorem 2.3, i.e., the rank of dOαβ(Xαβ) is equal to n = 4.
It is equivalent to determine if matrix dOαβ is nonsingular, which implies to

evaluate the determinant of the matrix dOαβ given by:

Det (dOαβ) = 2L1Ψr (L0 + L1)

Det (Λss)2
(vsα sin θe − vsβ cos θe)

− 2Rs L1Ψr (L0 + L1)

Det (Λss)2
(isα sin θe − isβ cos θe)

+ Ψ 2
r ω(L0 + L1)

2

Det (Λss)2
+ 4L2

1L0

Det (Λss)2
(isβvsα − isαvsβ)

+ 8L1L0Ψrω(L0 + L1)(isα cos θe + isβ sin θe)

Det (Λss)2

+ 4L3
1isβ

Det (Λss)2
(vsα cos 2θe + vsβ sin 2θe)

+ 4L3
1isα

Det (Λss)2
(vsα sin 2θe − vsβ cos 2θe)
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+
[
8L2

1L2
0ω − 4Rs L3

1 sin 2θe + 8L3
1L0ω cos 2θe

Det (Λss)2

]
(i2sα + i2sβ)

+ 2L2
1Ψrω(L0 + L1)

Det (Λss)2
(isα cos θe − isβ sin θe).

Analyzing the expression of Det (dOαβ), it can be remarked that, for ω �= 0,
Det (dOαβ) cannot be null. Thus, we can first conclude that the IPMSM is observable
if ω �= 0.

For ω = 0, a complementary study is now developed. Using the following trans-
formation

vsq = −vsαsinθe + vsβcosθe

isq = −isαsinθe + isβcosθe, (2.30)

it is possible to study the observability condition. Det (dOαβ) can be written at zero
speed as

Det (Pαβ) = 2L1Ψr (L0 + L1)Lq

Det (Λss)2

disq

dt
+

[
4L2

1

Det (Λss)2
(L1 + L0)

]
(vsd isq)

−
[

8L2
1

Ψr Det (Λss)2
(L1 + L0)

]
(vsq i2sq).

Proposition 2.1 The state of the IPMSM is observable at zero speed (Ω = pω = 0)
if

L1[−4L2
1

Ψr
vsq i2sq + (2L1vsd − Ψr Rs)isq + Ψrvsq ] �= 0, (2.31)

or equivalently, if one of the following conditions are not satisfied:

(i) if vsq = 0 and vsd �= Ψr Rs

2L1
, then, isq = 0 and Te = 0.

(ii) if vsq = 0 and vsd = Ψr Rs

2L1
.

(iii) if vsq �= 0 and vsd = Ψr Rs

2L1
, then isq = Φr

2L1
and Te = pΨ 2

r

L1

(iv) if vsq �= 0 and vsd �= Ψr Rs

2L1
, then

isq = −(2L1vsd − Ψr Rs) ± [(2L1vsd − Ψr Rs)
2 + (16L2

1v
2
sq)]1/2

−8L2
1vsq/Ψr

,

and Te �= 0.
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Remark 2.1 The four cases can be checked by using the parameters values for a
given machine. The condition (i) can only be verified at standstill (the currents and
the voltages are zero). This particular case is easily detected by the electrical mea-
surements. The physical meaning of the case (iv) is that a nonzero load torque exists
at zero speed.

On the other hand, taking into account that the parameters of the motor given in
Sect. 1.6.2, the cases (ii), (iii), and (iv) are unrealistic, i.e., these cases cannot occur
in the IPMSM physical operation domain.

2.3.1.2 IPMSM Observability Analysis for the Stator Resistance
Rs and the Load Torque Tl in the (d, q) Frame

Next, a sufficient condition for the observability of the IPMSM, including the stator
resistance and the load torque, is given. For computational simplicity, we analyze this
observability in the (d, q) frame by using higher time derivatives of the measured
output.

Consider the extended model of (1.70), where the rotor resistance Rs and the load
torque Tl are the components of the extended state vector, and described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disd

dt
= − Rs

Ld
isd − pΩ

Lq

Ld
isq + vq

Ld

disq

dt
= − Rs

Lq
isq + pΩ

Ld

Lq
isd + vd

Lq
− pΩ

Ψr

Lq

dΩ

dt
= − f

J
Ω + 1

J
p(Ld − Lq)isd isq + pΨr isq − 1

J
Tl

dTl

dt
= 0

d Rs

dt
= 0

(2.32)

which is of the general form

{ d Xdq

dt
= F(Xdq , vdq)

y = h(Xdq)
(2.33)

where Xdq is an extended state vector and y = h(Xdq) is the measurable output,
that are given by

Xdq =

⎡
⎢⎢⎢⎢⎣

isd

isq

Ω

Rs

Tl

⎤
⎥⎥⎥⎥⎦

, h(Xdq) =
[

h1
h2

]
=

[
isd

isq

]
.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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The observation spaceOdq defined by the vector space of the functions constituted
by themeasurements of the stator currents isd and isq and closed under Lie derivatives

along the field F, is given by {h1, h2, LFh1, LFh2, L(2)
F

h2}.
Following the same procedure as before, the observability analysis is made by

verifying the condition of Theorems 2.3 and 2.5, i.e., by analyzing the rank of the
matrix

dOdq(Xdq) =

⎡
⎢⎢⎢⎢⎣

dh1
dh2

d LFh1
d LFh2

d L(2)
F

h2

⎤
⎥⎥⎥⎥⎦

.

This is equivalent to determine if the determinant

Det (dOdq) = ai6sq + bi4sq + ci2sq ,

is different to zero where

a = − p2(Ld − Lq )3

J L2
qφ2f

, b = − p2(Ld − Lq )

J Lqφ f
and c = − p2(Ld − Lq )

J Lqφ f
+ p2φ f (Ld − Lq )

J L2
q L2

d

.

From Det (dOdq), it is clear that the rank condition is not satisfied when isq = 0.
Then, we can establish the following result.

Proposition 2.2 Consider the IPMSM model (2.32) and assume that the stator cur-
rents are measurable. Then, the rotor speed Ω , the stator resistance Rs and the load
torque Tl are observable if and only if

isq �= 0.

Remark 2.2 In this case, the motor does not produce any torque, i.e., it does not play
a role with respect to the load.

2.3.2 SPMSM Observability Analysis

Now, the observability property of the SPMSM will be studied.
Consider model (2.28) and remark that the inductances are such that:

Ls := Ld = Lq = L0, and L1 = 0.
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It follows that the model of the SPMSM, in the (α,β) frame, is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disα

dt
= − Rs

Ls
isα + pΩΨr sin(pθm) + 1

Ls
vsα

disβ

dt
= − Rs

Ls
isβ − pΩΨr cos(pθm) + 1

Ls
vsβ

dΩ
dt = − f

J
Ω + p

J

√
2

3
Ψr (isβ cos(pθ − m) − isα sin(pθm)) − 1

J
Tl

dθm

dt
= Ω

(2.34)

which is of the general form

d Xαβ

dt
= F(Xαβ, vαβ) (2.35)

y = h(Xαβ) (2.36)

where

Xαβ =

⎛
⎜⎜⎝

isα

isβ
Ω

θm

⎞
⎟⎟⎠ , vαβ =

(
vsα

vsβ

)
, h(Xαβ) =

(
h1
h2

)
=

(
isα

isβ

)
,

with Xαβ is the state, vαβ is the stator voltages vector and is the system input; h(Xαβ)

components are the measurable outputs: the stator currents isα and isβ .

2.3.2.1 Observation Objective

Consider that in the (α,β) frame, the stator currents isα and isβ are the measurable
outputs, the stator voltages vsα and vsβ are the control inputs of the motor.

The objective is to reconstruct the rotor speed Ω and the position θm assuming
that they are not available by measurement and moreover under the fact that the
stator-winding resistance Rs and the stator-winding inductance Ls are inaccurately
known.

The property of observability of the SPMSM is determined by using first Defi-
nition 2.6, where the observation space O1 is constituted of measured outputs and
their Lie derivatives along the vector field F, i.e., O1 = {h1, h2, LFh1, LFh2} and
the measured output is

h(x) =
[

h1
h2

]
=

[
x1
x2

]
.

From Theorem 2.3, it follows that

dO1(x) =

⎡
⎢⎢⎣

dh1
dh2
d LFh1
d LFh2

⎤
⎥⎥⎦ . (2.37)
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Then, by evaluating the determinant of matrix dO1(x), we obtain

Det (dO1) = Ψ 2
r ω

L2
s

.

Proposition 2.3 Consider that the magnet flux Ψr and the inductance L0 are
different from zero. The SPMSM is observable if and only if its electrical speed
is not null, i.e., if ω �= 0.

Remark 2.3 Notice that even by using higher order derivatives of the measured
outputs to study the observability property, no additional information for the observ-
ability analysis is obtained.

2.4 Induction Motor Observability Analysis

The purpose of this section is to analyze the observability of the induction motor in
order to reconstruct the nonmeasurable components of the state vector, i.e., the rotor
flux, the rotor speed, and also unknown parameters: the load torque and the rotor
resistance.

2.4.1 Mathematical Model in the (d, q) Rotor Flux Frame

Consider the mathematical model of the induction motor, in a state-space representa-
tion (1.108) and (1.128) written in the (d, q) frame depending on the stator pulsation
ωs , where

φrq = φ̇rq = 0. (2.38)

From (1.108) and (2.38), the flux angle ρ is given by

ρ̇ = ωs = pΩ + aMsr

φrd
isq . (2.39)

Furthermore, the Electromagnetic Torque equation is given by

Te = pMsr

Lr
φrd isq . (2.40)

Replacing the stator pulsation ωs and the differential equation of φrq , by those of
the flux angle ρ obtained from (2.39) in the nonlinear model of the induction motor
(1.108), it follows that

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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⎡
⎢⎢⎢⎢⎣

i̇sd

i̇sq˙φrd

ρ̇
Ω̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + abφrd + pΩisq + a
Msr

φrd
i2sq

−γisq − bpΩφrd − pΩisd − a
Msr

φrd
isd isq

−aφrd + aMsr isd

pΩ + a
Msr

φrd
isq

mφrd isq − cΩ − 1
J Tl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

m1 0
0 m1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
vsd

vsq

]
.

(2.41)

Remark 2.4 From (2.39), the slip pulsation is given by ωr = ωs − pΩ , where

ωr = aMsr

φrd
isq. (2.42)

2.4.2 Introduction to the Sensorless IM Observability

Several works have studied the observability of the inductionmotor (see [11, 32, 44]).
In [32], sufficient conditions under which the induction motor loses the observability
property have been presented. This study has been realized using model (1.121). In
this subsection, we present a similar study using the model (1.115). To analyze the
observability of the induction motor, the criteria of the observability rank will be
applied (see [30]).

2.4.3 Induction Motor Observability with Speed Measurement

Consider the induction motor model (1.114). For the analysis of the observability of
the induction motor, firstly assume that the rotor speed is measured.

The induction motor model is:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

disd

dt
disq

dt
dφrd

dt
dφrq

dt
dΩ

dt
dTl

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γisd + ωs isq + baφrd + bpΩφrq + m1vsd

−ωs isd − γisq − bpΩφrd + baφrq + m1vsq

aMsr isd − aφrd + (ωs − pΩ)φrq

aMsr isq − (ωs − pΩ)φrd − aφrq

m(φrd isq − φrq isd) − cΩ − 1

J
Tl

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.43)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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where the state, the input and the measurable output are given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
∈ �2,

h(x) =
⎡
⎣

h1
h2
h5

⎤
⎦ =

⎡
⎣

x1
x2
x5

⎤
⎦ =

⎡
⎣

isd

isq

Ω

⎤
⎦ ∈ �3,

and the vector field is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γx1 + ωs x2 + bax3 + bpx5x4 + m1vsd

−γx2 − ωs x1 + bax4 − bpx5x3 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that the rotor speed is considered as an output as well as the stator currents.
Consider the observation spaceOI M,0(x) of functions containing the components

of h and closed under Lie derivation along the vector field F, i.e., OI M0(x) =
{h1, h2, h5, LFh1, LFh2, LFh5}.

To verify the observability rank condition, it is sufficient to check that the rank of
matrix

dOI M,0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2
dh5

d LFh1
d LFh2
d LFh5

⎤
⎥⎥⎥⎥⎥⎥⎦

is equal to n = 6.
The matrix dOI M,0(x) characterizing the observability of the system (2.43) in

the rank sense, is given by

dOI M0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

−γ ωs ba bpx5 bpx4 0
−ωs −γ −bpx5 ba −bpx3 0

−mx4 mx3 mx2 mx1 −c − 1

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Next, computing the determinant dOI M,0(x), it follows that

Det (dOI M,0(x)) = −b2

J
(a2 + (px5)

2).

Notice that the determinant Det (dOI M,0(x)) is different from zero for any value of
the rotor speed. Then, the matrix dOI M,0(x) is full rank. As a consequence, using
the rotor speed and the stator currents measurements, we can conclude that the IM
is observable.

Remark 2.5 The determinant Det (dOI M0(x)) is independent of the stator pulsation
ωs . An identical result is obtained in [32] from the model (1.121).

2.4.4 Observability of the Induction Motor: Sensorless Case

In the sequel, the observability study will be determined assuming that the rotor
speed Ω is not available from measurement.

In the (mechanical) sensorless case, only the stator currents are measured. From
(1.115), the model of the IM, for the sensorless case, is

{
ẋ = F(x, u)

y = h(x)
(2.44)

where

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
∈ �2,

h(x) =
[

h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]
∈ �2

and the vector field F is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γx1 + ωs x2 + bax3 + bpx5x4 + m1vsd

−γx2 − ωs x1 + bax4 − bpx5x3 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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From Definition 2.6, the observation spaceOI M,1(x) constituted by the components
of the output and closed under Lie derivation is given by:

{h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

Then, from Theorems 2.3 and 2.5, and to verify the observability rank condition,
it can be checked that the matrix dOI M,1(x)

dOI M,1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1

dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

satisfies the observability rank condition if the determinant of

dOI M,1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ ωs ba bpx5 bpx4 0
−ωs −γ −bpx5 ba −bpx3 0
a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

⎤
⎥⎥⎥⎥⎥⎥⎦

is different from zero, where

a1 = γ2 − bMsr a2 − bpmx24 − ω2
s

a2 = bpmx3x4 + bpaMsr x5 + ω̇s − 2γωs

a3 = −ba2 + bpmx2x4 + bp2x25 − γba − 2bpx5ωs

a4 = −2bapx5 + bp(mx2x3 − mx4x1 − cx5 − x6
J

) − γbpx5 − bpmx4x1 − 2baωs

a5 = −bapx4 − bpcx4 + bp(−ax4 + px5x3 + aMsr x2)

− γbpx4 + bp2x5x3 − 2bpx3ωs,

a6 = −bp

J
x4

and

b1 = bpmx3x4 − bpaMsr x5 − ω̇s + 2γωs

b2 = γ2 + bMsr a2 − bpmx23 − ω2
s

b3 = 2bapx5 − bp(mx2x3 − mx4x1 − cx5 − x6
J

) + γbpx5 − bpmx2x3 − 2baωs

b4 = −ba2 + bpmx1x3 + bp2x25 − γba − 2bpx5ωs
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b5 = bapx3 + bpcx3 − bp(−ax3 − px5x3 + aMsr x1)

− γbpx3 + bp2x5x3 − 2bpx4ωs,

b6 = bp

J
x3.

More precisely, the determinant of matrix dOI M,1(x) is given by

Det (dOI M,1(x)) = −b3 p2

J
[−(px5x3 + ax4)(x3a3 + x4b3)

+ (ax3 − px4x5)(x3a4 + x4b4) + (
a

p2
− px25 )(x3a5 + x4b5)].

From the complexity of a3, a4, a5, b3, b4 and b5, the determinant of the matrix
dOI M,1(x) is difficult to directly analyze.

Consequently, to study the observability of the induction motor without mechan-
ical speed sensor, the following subcases will be analyzed.

(i) Case 1: Ω̇ = 0, i.e., constant rotor speed.
(ii) Case 2: ωs = 0.
(iii) Case 3: φ̇rd = φ̇rq = ωs = 0.
(iv) Case 4: φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0.

2.4.4.1 Case 1: Ω̇ = 0, i.e., Constant Rotor Speed

Consider the case where the IM rotor speed is constant, then the resulting model
(1.114) is simplified:

{
ẋ = F(x, u)

y = h(x)
(2.45)

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

⎤
⎥⎥⎥⎥⎦

∈ �5, u =
[
vsd

vsq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and the vector field is given by

F(x, u) =

⎡
⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + ωs x2 + m1vsd

bax4 − bpx5x3 − γx2 − ωs x1 + m1vsq

−ax3 + (ωs − px5)x4 + aMsr x1
−ax4 − (ωs − px5)x3 + aMsr x2

0

⎤
⎥⎥⎥⎥⎦

.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Consider the following two observation spaces OI M S,1,Ω̇ (x) and OI M S,2,Ω̇ (x) of
functions containing the components of h and closed under Lie derivation given by
OI M S,1,Ω̇ (x) = {h1, LFh1, L2

F
h1, h2, LFh2} and OI M S,2,Ω̇ (x) = {h1, L f h1, h2,

LFh2, L2
F

h2}, respectively.
From Theorems 2.3 and 2.5, and to verify the observability rank condition, the

matrices dOI M S,1,Ω̇=0(x) and dOI M S,2,Ω̇=0(x) are computed

dOI M S,1,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

dh1
d LFh1

d L2
F

h1
dh2

d LFh2

⎤
⎥⎥⎥⎥⎦

, dOI M S,2,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

dh1
d LFh1

dh2
d LFh2

d L2
F

h2

⎤
⎥⎥⎥⎥⎦

.

The matrices dOI M S,1,Ω̇=0(x) and dOI M S,2,Ω̇=0(x) are expressed in terms of the
induction motor dynamics and then,

dOI M S,1,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−γ ωs ba bpx5 bpx4

γ2 + ba2Msr − ωs bMsr apx5 − 2ωsγ b7 b8 b9
0 1 0 0 0

−ωs −γ −bpx5 ba −bpx3

⎤
⎥⎥⎥⎥⎦

dOI M S,2,Ω̇=0(x) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
−γ ωs ba bpx5 bpx4
0 1 0 0 0

−ωs −γ −bpx5 ba −bpx3
−bMsr apx5 + 2ωsγ γ2 + ba2Msr − ω2

s b10 b11 b12

⎤
⎥⎥⎥⎥⎦

where

b7 = −ba2 + bp2x25 − γba − 2bpωs x5
b8 = −2bapx5 − bpγx5 + 2baωs

b9 = −bpax4 + bpẋ4 + bp2x5x3 − γbpx4 − bpωs x3
b10 = 2bapx5 + bpγx5 − 2baωs

b11 = −ba2 + bp2x25 − γba − 2bpωs x5

b12 = bpax3 − bpẋ3 + bp2x5x4 + γbpx3 − bpωs x4

must be of dimension equal to 5, respectively.
It can be directly verified that the determinants are

Det (dOI M S,1,Ω̇=0(x)) = −b3 p3(ẋ4 + ωs x3)(
a2

p2
+ x25 ),
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Det (dOI M S,2,Ω̇=0(x)) = b3 p3(ẋ3 − ωs x4)(
a2

p2
+ x25 ).

From the determinants Det (dOI M S,2,Ω̇=0(x)) and Det (dOI M S,2,Ω̇=0(x)) it can
be remarked that ẋ4 = −ωs x3, ẋ3 = ωs x4 or ẋ4 = ẋ3 = ωs = 0, represent the
observability singularities for the case 1. Then, for these particular dynamics, the
observability rank condition is not satisfied.

2.4.4.2 Case 2: ωs = 0.

Consider that the synchronous speed ωs = 0, the load torque Tl and the rotor speed
Ω are not available by measurement. The resulting model of the Induction Motor
(1.114) used to analyze the observability properties is then defined in terms of the
state, input and measurable output as follows:

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[
vsd

vsq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

−ax3 − px5x4 + aMsr x1
−ax4 + px5x3 + aMsr x2

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The observation spaceOI M S,3,ωs=0(x) of functions containing the components of h
and closed under Lie derivation, is given by

OI M S,3,ωs=0(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

From Definition 2.11, and to verify the observability rank condition, the rank of
matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,3,ωs=0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1

dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

has to be full rank (see Theorems 2.3 and 2.5). This is equivalent verifying if the
determinant

Det (dOI M S,3,ωs=0(x)) = Det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0
0 −γ −bpx5 ba −bpx3 0

a7 b1 a8 a9 a10
−bpx4

J

b2 a11 a12 a13 a14
bpx3

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is different from zero, where

b1 = bp(mx3x4 + Msr ax5)

b2 = bp(mx3x4 − Msr ax5)

a7 = −bpmx24 + γ2 + bMsr a2

a8 = bpmx4x2 − γba − ba2 + bp2x25

a9 = bpẋ5 + bpmx4x1 − γbpx5 − 2bpax5

a10 = −bpcx4 − bpγx4 − 2bpax4 + bp2x5x3 + bpaMsr x2

a11 = −bpmx23 + γ2 + bMsr a2

a12 = −bpẋ5 + bpmx3x2 + γbpx5 + 2bapx5

a13 = bpmx3x1 + γba + bp2x25 − ba2

a14 = bpcx3 + γbpx3 + 2bpax3 − bpMsr ax1 + 2bp2x4x5.

This is equivalent analyzing
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Det (dOI M S,3,ωs=0(x)) = b4 p3a

J

φ2
rd+φ2

rq︷ ︸︸ ︷
(x23 + x24 )(ẋ5 + a

bp
x5 + p

ba
x35)

+ b3 pMsr a2

m

Te︷ ︸︸ ︷
m(x3x2 − x4x1) . (2.46)

Remark 2.6 Notice that the analysis of the determinant dOI M S,3,ωs=0(x) is not an
easy task. However, we can see that the points Te = 0 and φ2

rd + φ2
rq = 0, appears

as an observability singularity of the system. These conditions are not of practical
interest, because these conditions are satisfied only if the machine has a flux equal
to zero and then the electromechanical torque is obviously zero. The motor does not
play any role with respect to the load.

2.4.4.3 Case 3: φ̇rd = φ̇rq = ωs = 0

This case represents the operating condition when the fluxes are constant and the
synchronous speed is equal to zero. Under these conditions, the induction motor
(1.114) is described by the following state, input and measurable output as

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

Tl

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ �6, u =
[

usd

usq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

0
0

m(x3x2 − x4x1) − cx5 − 1

J
x6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The observation space OI M S,4(x) generated by h, and closed under Lie derivation
along of field F, is given by

OI M S,4(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
F

h2}.

From Definition 2.11, and by verifying the observability rank condition, it follows
that the matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,4(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

dh1
dh2

d LFh1
d LFh2

d L2
F

h1

d L2
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎦

must be of full rank (see Theorems 2.3 and 2.5). It follows that matrix

dOI M S,4(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0
0 −γ −bpx5 ba −bpx3 0

a′
7 bpmx3x4 a′

8 a′
9 a′

10
−bpx4

J

bpmx3x4 a′
11 a′

12 a′
13 a′

14
bpx3

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

a′
7 = −bpmx24 + γ2

a′
8 = bpmx4x2 − γba

a′
9 = bpẋ5 + bpmx4x1 − γbpx5

a′
10 = −bpcx4 − bpγx4

a′
11 = −bpmx23 + γ2

a′
12 = −bpẋ5 + bpmx3x2 + γbpx5

a′
13 = bpmx3x1 + γba

a′
14 = bpcx3 + γbpx3

has its determinant Det (dOI M S,4(x)) given by

Det (dOI M S,4(x)) = b4 p3a

J

φ2
rd+φ2

rq︷ ︸︸ ︷
(x23 + x24 ) ẋ5.

must be different to zero. Notice that the determinant Det (dOI M S,4(x)) is equal to
zero for

φ2
rd + φ2

rq = 0

or
Ω̇ = ẋ5 = 0.
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Remark 2.7

• Case φ2
rd + φ2

rq = 0 has no practical interest because the IM cannot operate
without flux. The case ẋ5 = 0 implies that the rotor speed is constant. Then
we can conclude that the determinant is zero if the speed is constant. Thus the
observability of the IM cannot be establish under constant speed, with zero stator
pulsation ωs , the components of the rotor flux φrd and φrq are constants.

• Case 3 is important as the field-oriented control (a classical control strategy) im-
poses the flux φrd to be constant (i.e., φ̇rd = 0) and the flux φrq to be equal zero.
Then the observability of the IM is no longer satisfied when the speed is constant
(steady state) and the stator pulsation ωs is zero.

• From Case 1 and Case 3, we can conclude that it is not possible to verify the
observability of the induction motor by using only the stator current measurement
and their derivatives up to order 2.

To analyze the observability property of the induction motor from the measurements
(the stator currents) and their derivatives up to order 2 in the case where the machine
speed is constant (Ω̇ = 0), the component of the flux are constant (φ̇rd = φ̇rq = 0)
and the stator pulsation is zero (ωs = 0), is described in the following subsection.

2.4.4.4 Case 4: φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0

For φ̇rd = φ̇rq = ωs = 0 and Ω̇ = 0, the model of induction motor (1.115) is
described by

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

isd

isq

φrd

φrq

Ω

⎤
⎥⎥⎥⎥⎦

∈ �5, u =
[

usd

usq

]
, h(x) =

[
h1
h2

]
=

[
x1
x2

]
=

[
isd

isq

]

and

F(x, u) =

⎡
⎢⎢⎢⎢⎣

bax3 + bpx5x4 − γx1 + m1vsd

bax4 − bpx5x3 − γx2 + m1vsq

0
0
0

⎤
⎥⎥⎥⎥⎦

.

The observation space OI M S,5(x) generated by the components of h and closed
under Lie derivation along the field F is given by

OI M S,5(x) = {h1, h2, LFh1, LFh2, L2
F

h1, L2
f h2, L3

F
h1, L3

F
h2, L4

F
h1, L4

F
h2}.

The observability rank condition can be verified if matrix

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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dOI M S,5(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1
dh2

d LFh1

d LFh2

d L2
F

h1

d L2
F

h2

d L3
F

h1

d L3
F

h2

d L4
F

h1

d L4
F

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−γ 0 ba bpx5 bpx4 0

0 −γ −bpx5 ba −bpx3 0

γ2 0 −γba −γbpx5 −γbpx4 0

0 γ2 γbpx5 −γba γbpx3 0

−γ3 0 γ2ba γ2bpx5 γ2bpx4 0

0 −γ3 −γ2bpx5 γ2ba −γ2bpx3 0

γ4 0 −γ3ba −γ3bpx5 −γ3bpx4 0

0 γ4 γ3bpx5 −γ3ba γ3bpx3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is of full rank (see Theorems 2.3 and 2.5).
Thus the observability of the IM can be established under the following operation

conditions of the machine: the (d, q)-components of rotor flux φrd and φrq are
constant, zero stator pulsation, and constant speed even using the derivatives of high
order of the measurements.

2.4.5 Unobservability Line

From (2.40), the stator pulsation (2.39) can be expressed as follows:

Fig. 2.1 Unobservability line in the plane (Tl ,Ω)
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ωs = pΩ + Rr Te

pφ2
rd

. (2.47)

For ωs = 0 and φrd constant, we obtain that the electromagnetic torque is given by

Te = −KΩ (2.48)

where K = P2φ2
rd

Rr
. If the machine speed is constant (Ω̇ = 0), the dynamical

equation (1.105) becomes
Te = fvΩ + Tl . (2.49)

From (2.48) and (2.49) a line can be drawn in the load torque-mechanical speed plane
(Tl ,Ω) (see Fig. 2.1):

Tl = −MΩ (2.50)

with M = P2φ2
rd

Rr
+ fv .

This unobservability line is located in the second and fourth quadrants of the
plane (Tl ,Ω), when the machine operates in generator mode (the load torque and the
mechanical speed are of the opposite sign) as shown in Fig. 2.1. This line is used to
check industrial drives in order to characterize their sensorless behavior at slow speed.

2.5 Normal Forms for Observer Design

As seen in the above sections, there are different structures used to represent a
nonlinear system, in particular to represent the AC machines. Normal forms are ob-
tained based on the information available from measurement and from the observa-
tion objectives. Furthermore, there are a large number of observers which have been
developed for linear and nonlinear systems. Several efforts have been made to con-
struct an observer for a general class of nonlinear system.Extensions of the linear case
have been proposed which are adaptations of linear observers to nonlinear systems.

They have been derived using different techniques or methodologies:

Extended observers: general Luenberger observer, Kalman filter, state affine sys-
tems observer, linear plus an output injection, high gain observer, adaptive observers
mainly. These observers have an estimation error that converges exponentially or
asymptotically to zero.
Sliding mode observers: classical sliding mode, super-twisting, high-order sliding
mode, adaptive sliding mode for instance. One the most important characteristics of
these observers is their finite-time convergence to zero and their robustness under
uncertainties.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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However, when considering nonlinear systems, the construction of an observer is not
easy (see [4, 30, 42]). We can distinguish two classes of systems: those of which are
observable for any input and those that have singular inputs.

For those which are observable for any input, i.e., uniformly observable, the first
results have been obtained in the case when the nonlinear system can be transformed,
by means of a diffeomorphism, into a linear system plus an output–input injection.

Consider the class of nonlinear system described by a state-space representation
of the form (2.18). System (2.18) can be transformed into one of the following state-
space representations:

(1) Linear system plus an output–input injection

{
ξ̇ = Aξ + φ(u, y)

y = Cξ
(2.51)

which is observable for any input, if and only if the pair (C, A) is observable.
(2) Triangular form

The generalization of the above class of nonlinear systems is of the form
{

ξ̇ = Aξ + φ(u, ξ)
y = Cξ

(2.52)

where the term φ(u, ξ) is in the triangular form, i.e.,

φ(u, ξ) = (φ(u, ξ1),φ(u, ξ1, ξ2), . . . ,φ(u, ξ1, . . . , ξn))T ,

which has been introduced in [28].
Notice that these classes of nonlinear systems are observable for any input,

so the observer design is possible.
An interesting class of systems which will be studied in the book is:

(3) State affine system plus an input–output injection
This class of systems is represented as

{
ξ̇ = A(u)ξ + φ(u, y)

y = Cξ
(2.53)

where the components of the matrix A depends on the input u.
Notice that this system has inputs rendering the system unobservable. These

inputs are called bad inputs [87]. Despite this fact, stronger notions like persis-
tency is used to design observers, i.e., there exists an observer working for the
class of persistent inputs.

(4) State affine system plus a nonlinear term
A general class of state affine systems is given by the class of systems of the
form {

ξ̇ = A(u, y, s)ξ + φ(u, ξ)
y = Cξ

(2.54)
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for which it is possible to design an observer. Notice that the matrix A(u, y, s)
depends on the input u, the output y, and a known signal s [83].

Regarding these above classes of systems, several authors are interested to
characterize them, where necessary and sufficient conditions are given to trans-
form a general nonlinear system into state affine systems plus an output–input
injection or plus a nonlinear term.

(5) Interconnected state affine system plus nonlinear terms
Finally, we can find systems that can be partitioned in a set of interconnected
subsystem, represented in subsystems of the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = A1(u)ξ1 + φ1(u, ξ2, . . . , ξr )

ξ̇2 = A2(u)ξ2 + φ1(u, ξ1, . . . , ξr )

. . .

ξ̇r = Ar (u)ξr + φr (u, ξ2, . . . , ξr−1)

y1 = Cξ1
y2 = Cξ2
. . .

yr = Cξr .

(2.55)

In Chap.3, two main classes of observers for nonlinear systems will be considered
to reconstruct the components of the state vector which are not measurable.

(1) Extended observers: high gain observer, observer for state affine system, and
nonlinear interconnected observers.

(2) Sliding mode observers: for nonlinear systems: Super-twisting and high order
sliding mode observers.

2.6 Conclusions

One of the most important structural properties of dynamical systems has been
studied in this chapter: the observability of nonlinear systems. As it has been seen in
this chapter, the nonlinear observability property can depend on the input (explicitly
or implicitly), and some definitions have been introduced to classify the inputs (uni-
versal and persistent inputs). Then, the observability of the AC machines has been
analyzed, and the conditions under which the PMSM and the IM are observable have
been determined along with their physical interpretation. This will be useful in the
subsequent chapters to guarantee the convergence of the designed observers.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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2.7 Bibliographical Notes

The observability study of nonlinear systems and next, the design of an observer
is generally not a trivial task. Concerning the observability of nonlinear systems,
the main definitions, used in this book, can be found in [42, 46, 65]. A classical
observability criterion can be defined by using an observation space closed under
Lie derivation as introduced in [46]. The key role of the input for the observability
of the nonlinear systems is described in [3].

From these definitions, some authors have studied the observability of the AC
machines.Nevertheless, the studies on the synchronousmotor observability are rather
uncommon, even if some results can be found in [20, 40, 92, 93]. Similarly, for the
induction motor observability analysis, some results are available in [11, 32, 44]. In
[32], sufficient conditions under which the induction motor loses the observability
property have been presented.



Chapter 3
Observer Design for AC Motors

Abstract Assuming that for AC electrical machines, the only measurable
variables are the currents and the voltages, the mathematical models of the syn-
chronous and induction motors are used to study their respective observability prop-
erty. If this property is satisfied and under some necessary conditions introduced
later, observers are designed to estimate the non-measurable variables of the electric
machines. First, some definitions and an introduction to the Nonlinear Observers
design are developed. Next, a classification in terms of the convergence rate of two
classes of observers is studied: (1) Observers with an asymptotic convergence. (2)
Observers with a finite-time convergence. Furthermore, as for nonlinear systems
there are no canonical forms, several observer structures are introduced to be next
applied to AC machines. From the mathematical model of the PMSM, rewritten
in the form of two interconnected subsystems, an adaptive interconnected observer
can be designed to estimate the rotor speed, rotor position, and load torque. Some
assumptions are considered in order to ensure its asymptotic convergence of the
observer. Because the stator resistance depends on the temperature which introduces
a variation with respect to its nominal value, then in order to determine its real value,
an adaptive interconnected observer is designed to estimate the stator resistance and
simultaneously the rotor speed, rotor position, and non-measured load torque. Suf-
ficient conditions are obtained to ensure the asymptotic convergence. Then, a super-
twisting observer for a class of nonlinear systems is considered. The advantages of
this observer are robustness with respect to parametric uncertainties and finite-time
convergence which allows to guarantee that the separation principle can be satisfied
when a controller is next applied. Similarly, from the IMPSM mathematical model,
an adaptive interconnected observer is designed to estimate the rotor position, rotor
speed, load torque, and stator resistance. Finally, for the induction motor, an adaptive
interconnected observer is designed to simultaneously estimate the rotor speed, the
fluxes, and the load torque. To guarantee the robustness property, an extension of the
above observer under parametric uncertainties is developed and, by using practical
stability concepts, the practical stability of the estimation error is ensured.

© Springer International Publishing Switzerland 2015
A. Glumineau and J. de León Morales, Sensorless AC Electric Motor Control,
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3.1 Observers for Nonlinear Systems

The observation problem for nonlinear systems can be formulated as follows:
Given a dynamical system described by (1.67), find the estimated state x̂(t) of

x(t) from the knowledge of the input u(t) and the output y(t) for t ∈ [0, T ], for
T > 0.

Notice that the estimated state is the solution of an auxiliary system:

˙̂x(t) = F(x̂(t), u(t)) + K (h(x̂(t)), u(t)), y(t)), (3.1)

where K (h(x̂(t), u(t)), y(t)) is a correction term depending on: the estimated state,
the measurable output and possibly on the input.

A general definition of an observer is given as

Definition 3.1 Consider an auxiliary system:

{
ξ̇(t) = F(ξ(t), u(t), y(t))
x̂(t) = H(ξ(t), u(t), y(t)),

(3.2)

then, system (3.2) is called an observer of system (1.67) with the estimation error
e(t)(=x̂(t) − x(t)) → 0 as t → ∞.

For instance, the estimated state of an observer can be used

(i) by a control algorithm,
(ii) to monitor the evolution of the system,
(iii) to detect failures on the system.

In all these cases, the study of the following properties is necessary:

(1) Observability of the system.
Determine whether to reconstruct the state of the system is possible by analyzing
the observability property of its mathematical model.

(2) Convergence of the observer.
To analyze under what conditions the estimation error converges to zero, either
in finite-time or asymptotically or exponentially.

Remark 3.1 Moreover, contrary to the linear case, if the observability property is
satisfied for the nonlinear systems, it does not automatically imply the design of an
observer.

(3) Stability of the system in closed-loop.
There is no a priori separation principle for nonlinear systems. Thus, to study the
stability condition of the closed-loop system is necessary when the controller
uses the estimated state provided by the observer.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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3.1.1 Definitions and Preliminary Results

In 1963, Luenberger outlined the observer theory to reconstruct the state of time
invariant linear systems. The observers, their applications, and their links with the
main concepts of the systems control theory make this topic an interesting domain of
research. Later, Kalman introduced the state variable methods. The observer theory
for linear time variant systems has been developed. The so-calledKalman filter is also
an approximate solution to the observation problem of nonlinear systems. Although
its properties are not theoretically proved, this filter works well in practice but under
restrictive hypotheses. Thus, for nonlinear systems, the observer design is not an
easy task.

There is no systematic and unique procedure to establish an observable normal
form for the general nonlinear systems. An interesting normal form is the one for
which an observer can be designed by an extension of the Luenberger form called
the high-gain observer.

Now, in this chapter, some classes of nonlinear systems are introduced for which
to construct an observer is possible. The systems are assumed to be observable (see
definitions given in Chap.2).

Consider the following nonlinear system:

{
ẋ = f (x) + g(x)u
y = h(x)

(3.3)

where x ∈ �n is the state vector, u ∈ �m is the input, and y ∈ �p the output vector.
Furthermore, f (x) and g(x) are smooth vector fields and the functions {h1, . . . , h p}
are assumed to be sufficiently smooth on U , a neighborhood of x (see [46]).

3.1.2 A High Gain Observer

Consider that system (3.3) can be transformed, by means of a diffeomorphism, into
the following system:

{
ξ̇ = Aξ + φ(u, y)

y = Cξ
(3.4)

where φ(u, y) is the input–output injection which is bounded. This system is observ-
able for any input, if and only if the pair (C , A) is observable in the Kalman sense
(see [47]).

Then the following system:

{ ˙̂ξ = Aξ̂ + φ(u, y) − K (C ξ̂ − y)

ŷ = C ξ̂
(3.5)

http://dx.doi.org/10.1007/978-3-319-14586-0_2
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is an observer for system (3.4), where the gain K of the observer is chosen such that
the matrix (A − K C) has eigenvalues with negative real parts. The convergence of
the estimation error dynamics, which is linear in the estimation error, can be directly
proved. By means of a diffeomorphism, this transformation of a nonlinear system
(2.7), into another given by (3.4) has been characterized in [55, 75].

The convergence of this observer is established in the following theorem.

Theorem 3.1 Consider system (3.4) and the following assumptions hold:

(1) The system has no finite escape time;
(2) The nonlinear term φ(u, y) is bounded,

Then the estimation error converges to zero exponentially as t tends to infinity.

The generalization for the class of nonlinear systems observable for any input is
given in the following definition.

Definition 3.2 Consider the following system:

{
ξ̇ = Aξ + φ(u, ξ)
y = Cξ

(3.6)

where the matrix A is defined as

A =

⎡
⎢⎢⎢⎣

0 1 · · · 0 0
. . .

0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎦

and C = (1, . . . , 0), for any u(t) ∈ Uadm , the set of the admissible inputs, y(t) is
the measured output. The vector field φ(u, ξ) is assumed compactly supported (see
[28]) and has a triangular structure (see [46] for more details). The Jacobian matrix
of φ(u, ξ) is considered to be upper bounded and the vector φ(u, ξ) has the Lipschitz
property, i.e.,

φ(u, ξ) = (φ1(u, ξ1),φ2(u, ξ1, ξ2), . . . ,φn(u, ξ1, . . . , ξn))T .

with the functions φ j (u, ξ1, . . . , ξ j ), for j = 1, . . . , n; that are locally Lipschitz
functions with respect to x and uniformly with respect to u, i.e.,

|φ j (u, ξ̂1, . . . , ξ̂ j ) − φ j (u, ξ1, . . . , ξ j ) < L||ξ̂ − ξ||, (3.7)

where L is the Lipschitz constant.

Then the High Gain Luenberger Observer [28] for system (3.6) is given as

http://dx.doi.org/10.1007/978-3-319-14586-0_2
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{ ˙̂ξ = Aξ̂ + φ(u, ξ̂) − Δ−1
ρ K C(ξ̂ − ξ)

ŷ = C ξ̂
(3.8)

where the observer gain is ΔρK , with Δρ = diag(1/ρ, . . . , 1/ρn) and K whose
components are chosen in such a way that the roots of the characteristic polynomial

sn + k1sn−1 + k2sn−2 + · · · + kn = 0 (3.9)

have negative real parts. The parameter ρ is a positive constant for which a high value
increases the convergence rate and then allows fast reconstruction of the state.

Note that the observer gain does not depend on u and is computed offline. The
convergence of the High Gain Luenberger Observer is expressed in the following
theorem.

Theorem 3.2 Consider system (3.6). There is a large enough ρ > 1 such that for all
initial conditions (ξo, ξ̂o) belong to (χ, χ̂) ⊂ (�n,�n), it follows that the estimation
error converges exponentially to zero, i.e.,

‖ξ̂(t) − ξ(t)‖2 < M(ρ)e−ρt‖ξ̂o − ξo‖2 (3.10)

where M(ρ) is a positive constant depending on ρ.

Proof Denoting the estimation error by e = ξ̂ − ξ, whose dynamics is given as

ė = {A − Δ−1
ρ K C}e + φ(u, ξ̂) − φ(u, ξ). (3.11)

Define the following change of coordinates: ε = Δρe, where ΔρS1Δρ = Sρ, and
Sρ is the solution of

ρSρ + AT Sρ + Sρ A − CT C = 0 (3.12)

and S1 = Sρ|ρ=1, i.e., the evaluation of the solution of Sρ for ρ = 1. Assume there
exist symmetric positive definite matrices P and Q such that

PA + ATP = −Q,

and define the following candidate Lyapunov function:

V = 1

ρ
eT Sρe = εT S1ε.

The time derivative of V along the trajectories of (3.11) is

V̇ = 2εT S1Δρ[{A − Δ−1
ρ KC}e + φ(u, ξ̂) − φ(u, ξ)]. (3.13)
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Taking into account the triangular form of φ satisfying the Lipschitz condition, it
follows that

‖Δρ[φ(u, ξ̂) − φ(u, ξ)]‖ ≤ η‖ε‖.

On the other hand, a simple calculation gives

Δρ{A − Δ−1
ρ K C}Δ−1

ρ = ρ{A − K C}, (3.14)

V̇ = 2εT S1ρ{A − K C}ε + εT S1Δρ[φ(u, ξ̂) − φ(u, ξ)]. (3.15)

Replacing the above inequalities, it follows that

V̇ = −ρλmin(S1)λmin(Q)‖ε‖2 + ηλmax (S1)‖ε‖2, (3.16)

and finally, we have

V̇ = −(ρλmin(S1)λmin(Q) − ηλmax (S1))‖ε‖2 < −δ‖ε‖2. (3.17)

If ρ >
ηλmax (S1)

λmin(S1)λmin(Q)
, then the estimation error converges exponentially to zero.

3.1.3 Kalman-Like Observers

Consider the following system:

{
ż(t) = Az + Bu − K (Cz(t) − y(t))
ŷ = Cz.

(3.18)

The above system is an observer for linear system (2.1) (noted Luenberger
Observer), where z(t) is the estimated state and the matrix K is the gain of the
observer.

Obviously, the estimation error e(t) = x(t) − z(t) tends to zero as t tends to
infinity if the matrix K is chosen such that the eigenvalues of the matrix (A − BK)

have strictly negative real parts.
The stability analysis of the closed-loop linear systems can be easily solved thanks

to the separation principle, i.e., the controller and the observer can be designed
independently and the resulting closed-loop system is stable.

Another solution is a time-varying gain K defined as K (t) = P(t)−1CT R−1

where P(t) is solution of the equation

d P(t)

dt
= −AT P(t) − P(t)A − P(t)Q P(t) + CT R−1C. (3.19)

http://dx.doi.org/10.1007/978-3-319-14586-0_2
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Equation (3.19) is referred as the Riccati equation, where the matrices R and Q
are symmetric definite positive matrices that are weighting matrices to tune.

Remark 3.2 The class of the nonlinear systems (3.6) that is observable for any input,
is not representative of the main difficulty for the nonlinear system observer design.
This is why a more general class is introduced in the following.

The Extended Kalman Filter

Now, we introduce an interesting class of nonlinear systems for which it is possible
to construct an observer.

Consider the class of systems described as

{
ξ̇ = A(u)ξ + φ(u, y)

y = Cξ = ξ1
(3.20)

where the components of matrix A(u) and vector φ(u, y) are continuous functions,
depending on u and y and are uniformly bounded. The nonlinear term φ(u, y) has a
triangular form and does not affect the observability of the system.

Then system (3.20) is observable in the rank sense if the matrix

dO =

⎡
⎢⎢⎢⎣

C
C A(u)

...

C An−1(u)

⎤
⎥⎥⎥⎦ (3.21)

is nonsingular.
Denote Ψu,x0(τ , t) the transition matrix of the system

ξ̇ = A(u)ξ (3.22)

y = Cξ

where the matrices A(u) and C are of the general form

A(u) =
⎡
⎢⎣

a11(u) · · · a1n(u)
...

. . .
...

an1(u) · · · ann(u)

⎤
⎥⎦

and C = (1, . . . , 0).
It is clear that the structure of the matrices A(u) and C is not unique.
Now, we can introduce the class of persistent inputs which will be important to

design an observer for system (3.22).
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Definition 3.3 [3] An input is persistent for system (3.22) if for any initial condition
x0, there exist β1, β2, T ′ positive constants and t0 > 0 such that

β1 Id ≤
∫ t+T ′

t
Ψ T

u,x0(τ , t)CT CΨ T
u,x0(τ , t)dτ ≤ β2 Id , ∀t > t0, (3.23)

where Id is the identity matrix.

Notice that the input persistence is related to the observability properties of the
system.

The following system noted an Extended Kalman Observer [41]:

{ ˙̂ξ = A(u)ξ̂ + φ(u, y) − S−1CT (ξ̂ − ξ)

ŷ = C ξ̂
(3.24)

is an observer for system (3.20), where S−1CT is the gain of the observer and S is a
symmetric definite positive matrix, solution of the differential Riccati equation

Ṡ = −ρS(t) − AT (u)S − S A(u) + CT C, (3.25)

and ρ is a positive constant, which is used to tune the convergence rate of the observer.
The convergence proof of this observer requires the following lemma:

Lemma 3.1 Assume that v is a persistent input for the state affine system (3.20),
and consider the following Lyapunov differential equation:

Ṡ(t) = −ρS(t) − AT (v(t))S(t) − S(t)A(v(t)) + CT C

with S(0) > 0, then

∃ρ0 > 0, ∀ρ ≥ ρ0, ∃ᾱ > 0, β̄ > 0, t0 > 0

such that

ᾱId ≤ S(t) ≤ β̄ Id , ∀t ≥ t0,

where Id is the identity matrix.

The proof of this lemma is given in [4]. Then the convergence of observer (3.24)
can be proved as follows.

Proof Define the estimation error as e = ξ̂ − ξ whose dynamics is given by

{
ė = {A(u) − S−1CT C}e
Ṡ = −ρS(t) − AT (u)S − S A(u) + CT C.

(3.26)
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If the input u is a persistent input, fromLemma 3.1, thematrix S is definite positive
∀t ≥ t0. Then

V (e) = eT Se

is a well-defined Lyapunov function V (e). Taking the time derivative of V (e) along
the trajectories of (3.26), it follows that

V̇ (e) = eT S{A(u) − S−1CT C}e + eT {A(u) − S−1CT C}T Se
+ eT {−ρS(t) − AT (u)S − S A(u) + CT C}e. (3.27)

After computations, it is easy to see that

V̇ (e) < −ρeT S(t)e = −ρV (e). (3.28)

Finally, it follows that

‖e(t)‖ < M‖e(0)‖exp(−ρt). (3.29)

Then the estimation error exponentially converges to zero with arbitrary rate of
convergence ρ and for any initial condition e(0). This ends the proof.

For general systems of the form

{
ξ̇ = A(u, y, s)ξ + φ(u, y)

y = Cξ
(3.30)

with s is an external signal andwhere the signals (u, y, s) are assumed to be persistent
inputs. An observer for system (3.30) can be designed as

⎧⎨
⎩

˙̂ξ = A(u, y, s)ξ̂ + φ(u, y) − S−1CT C(ξ̂ − ξ)
Ṡ = −ρS(t) − AT (u, y, s)S − S A(u, y, s) + CT C
ŷ = C ξ̂.

(3.31)

The estimation error converges exponentially to zero, with a convergence rate
given by ρ provided v = (u, y, s) is persistent [3].

Persistency in AC Machines

The speed sensorless control of electrical machines has been the object of intensive
research during the last years. It is clear that the motivation is to reduce the cost of
hardware and to increase the reliability. However, when the speed is close to zero and
for low frequency voltages, some observability drawbacks appear. To overcome this
difficulty, various methods have been presented where a signal is superimposed on
the stator voltages or currents of themachine in order to extract sufficient information
about the rotor position. Most high frequency signal injection methods have been
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proposed making use of the phase inductance variation property. This approach
provides rotor position information at low frequency and during standstill operation.
However, a certain amount of saliency in the machine is necessary. Also, injection of
high frequency signals is not desired in high speed operation. Fundamental excitation
methods involve the detection of the position from the stator voltages and currents
without requiring additional test signals.

The EMFwas also used to estimate the rotor position by means of a state observer
or a Kalman filter. This approach works well in medium and high speed applications,
while this is not accurate at low speed when back EMF is weak.

General Extended Kalman Observer

Now, an observer design is introduced for the class of nonlinear systems for which
it is possible to devise an Extended Kalman Observer.

Consider the following class of systems described as

{
ξ̇ = A(u)ξ + φ(ξ, u)

y = Cξ
(3.32)

where ξ belongs to the compact χ ⊂ �n , y belongs to �n , u belongs to the set of the
admissible input Uadm in �m . The matrices A(u) and C are given as

A(u) =

⎡
⎢⎢⎢⎢⎢⎣

0 a1(u) · · · 0 0
. . .

0 0 · · · an−2(u) 0
0 0 · · · 0 an−1(u)

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

and C = (1, . . . , 0), with φ(ξ, u) satisfying the Lipschitz property and the elements
of A are such that 0 < ai (u) < αM , for i = 1, . . . , n − 1. So, an observer for such
a class of systems is given in the following definition.

Definition 3.4 High Gain Extended Kalman Filter [3]. The following system

⎧⎪⎪⎨
⎪⎪⎩

˙̂ξ = A(u)ξ̂ + φ(ξ̂, u) − S−1CT R−1(C ξ̂ − y)

Ṡ = −ρS − A(u)T S − S A(u) + CT R−1C

ŷ = C ξ̂

(3.33)

is an observer for system (3.32), where S is a symmetric definite positive matrix
solution of the Riccati equation, R is a symmetric definite positive matrix. The gain
of the extended Kalman filter is computed online and depends on S, the solution of
the Riccati equation.
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The following result can be established:

Theorem 3.3 For a large enough ρ and for all t > 0, system (3.33) is an extended
Kalman observer for system (3.32), where the estimation error decays exponentially
to zero with a rate of convergence given by ρ

‖ξ̂(t) − ξ(t)‖ < L(ρ)e− ρ
2 t‖ξ̂o − ξo‖.

where L(ρ) is a positive constant.

Adaptive Kalman Observer [6]

In the aforementioned observers, the system parameters are assumed exactly known.
If not, under suitable assumptions, it is possible to estimate the non-measurable state
and to identify the unknown parameters, simultaneously.

Consider now the case where the system is affine in the state, depends on unknown
parameters in an affine form, and is represented as

{
ξ̇ = A(u)ξ + Ψ (u, y)ϑ + φ(u, y)

y = Cξ
(3.34)

where ϑ is the vector of unknown parameters to be estimated and Ψ (u, y) satisfies
the same properties as matrix A(u) and vector φ(u, y) with respect to u and y given
in (3.20).

In order to design an observer for system (3.34) and to estimate simultaneously
the state and parameters, the following assumptions are introduced:

Definition 3.5 Let Λ be a matrix, solution of the equation

Λ̇ = (A(u) − Γ S−1
ξ CT

2 C2)Λ + Ψ (u, y). (3.35)

There exist β3, β4, T ′ positive constants and t0 > 0 such that

β3 Id ≤
∫ t+T ′

t
ΛT (τ , t)CT CΛ(τ , t)dτ ≤ β4 Id , ∀t > t0, (3.36)

where Id is the identity matrix.

Definition 3.5 allows to ensure the persistency of the signals which is required to
identify the parameters.

Assuming that u is a persistent input and Definition 3.5 is satisfied, the following
system is an Adaptive Kalman Observer for system (3.34) (see [6]):
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Oadap :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂ξ= A(u)̂ξ + Ψ (u, y)̂ϑ + φ(u, y) − {ΛS−1
ϑ ΛT CT + S−1

ξ CT }C (̂ξ − ξ)

˙̂ϑ = −S−1
ϑ ΛT CT C (̂ξ − ξ)

Ṡξ = −ρξ Sξ(t) − AT (u)Sξ − Sξ A(u) + CT C

Ṡϑ = −ρϑSϑ + ΛT CT
2 C2Λ

Λ̇ = (A(u) − Γ S−1
ξ CT

2 C2)Λ + Ψ (u, y)

ŷ = C ξ̂

(3.37)

where S−1
ξ CT is the gain associated to the state estimation, and ΛS−1

ϑ ΛT CT is the
parameter identification gain. Sξ and Sϑ are symmetric definite positive matrices
solution of the Riccati equations

Ṡξ = −ρξ Sξ(t) − AT (u)Sξ − Sξ A(u) + CT C (3.38)

Ṡϑ = −ρϑSϑ + ΛT CT
2 C2Λ (3.39)

respectively, and ρξ and ρϑ are some positive constants sufficiently large.

Remark 3.3 Notice that the gain ΛS−1
ϑ ΛT CT of the observer associated with the

identification of the parameters depends on the solution of the Sϑ and Λ dynamics
equations, and that Assumption 3.2 is satisfied.

The convergence of the observer can be proved as follows.
Defining the state and parameter estimation errors, respectively: eξ = ξ̂ − ξ and

εϑ = ϑ̂ − ϑ, whose dynamics are given as

ėξ = {A(u) − ΛS−1
ϑ ΛT CT C − S−1

ξ CT C}eξ + Ψ (u, y)εϑ

ε̇ϑ = −S−1
ϑ ΛT CT Ceξ .

(3.40)

Now, introduce the following change of coordinates:

εξ = eξ − Λεϑ. (3.41)

Then taking the time derivative of (3.41) and replacing the suitable expressions,
it follows that

ε̇ξ = {A(u) − S−1
ξ CT C}εξ

ε̇ϑ = −S−1
ϑ ΛT CT C{eξ − Λεϑ}.

(3.42)
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Now, to prove the convergence of this observer, consider the following Lyapunov
function:

V = εT
ξ Sξεξ + εT

ϑ Sϑεϑ. (3.43)

So, from the time derivative of V and substituting the suitable expression, yields:

V̇ = −ρξε
T
ξ Sξεξ − ρϑεT

ϑ Sϑεϑ

− εT
ξ CT Cεξ − εT

ξ CT CΛεϑ − εT
ϑ ΛT CT Cεξ − εT

ϑ ΛT CT CΛεϑ.
(3.44)

Since

−εT
ξ CT Cεξ − εT

ξ CT CΛεϑ − εT
ϑ ΛT CT Cεξ − εT

ϑ ΛT CT CΛεϑ

= −{εξ + Λεϑ}T CT C{εξ + Λεϑ} < 0,
(3.45)

it follows that

V̇ = −ρξε
T
ξ Sξεξ − ρϑεT

ϑ Sϑεϑ. (3.46)

Choosing ρ = min(ρξ, ρϑ) such that

V̇ ≤ −ρV (3.47)

then, εξ and εT
ϑ converge exponentially to zero with a rate of convergence given by ρ.

Interconnected Observers [5]

There is no systematicmethod to design an observer for a nonlinear system.However,
if the system satisfies partially the observability property, a solution is to search if
the whole system can be represented as a set of interconnected subsystems for which
each one satisfies the observability property. So, the idea is to design an observer for
each observable subsystem.

For instance, consider two interconnected subsystems:

Σ1 :
{

Ẋ1 = A1X1 + Φ1(u, X1, X2)

y1 = C1X1
(3.48)

Σ2 :
{

Ẋ2 = A2X2 + Φ2(u, X1, X2)

y2 = C2X2.
(3.49)

In order to design an observer for system (3.48) and (3.49), the following assump-
tion is needed:
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Assumption 3.1

1. Φ1 (respectivelyΦ2) is a global Lipschitz functionwith respect to X1 (respectively
X2), uniformly with respect to u, and globally uniformly w.r.t. X2 (respectively
X1).

2. X2 (respectively X1) is considered as input of subsystems Σ1 (respectively Σ2).

Then, an Interconnected Observer [5] for subsystems (3.48) and (3.49) is given
by

Ointer1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż1 = A1Z1 + Φ1(u, Z1, Z2) + S−1
1 CT

1 (y1 − ŷ1)

Ż2 = A2Z2 + Φ2(u, Z1, Z2) + S−1
2 CT

2 (y2 − ŷ2)

ρx1S1 + S1A1 + AT
1 S1 − CT

1 C1 = 0

ρx2S2 + S2A2 + AT
2 S2 − CT

2 C2 = 0

ŷ1 = C1Z1

ŷ2 = C2Z2

(3.50)

where Z1 and Z2 are the estimated state variables, respectively, of X1 and X2. ρx1
and ρx2 are positive constants, S1 and S2 are symmetric positive definite matrices,
with S1(0) > 0 and S2(0) > 0 [4].

An extension of the above case is the class of systems described as

Σ̃1 :
{

Ẋ1 = A1(u, y)X1 + Φ1(u, X1, X2)

y1 = C1X1
(3.51)

Σ̃2 :
{

Ẋ2 = A2(u, y)X2 + Φ2(u, X1, X2)

y2 = C2X2.
(3.52)

Furthermore, the following assumption is required to design an observer for sys-
tem (3.51) and (3.52):

Assumption 3.2

1. X2 (respectively X1) is considered as input for subsystem Σ̃1 (respectively Σ̃2).
2. The pair (u, y) is regularly persistent for A1(u, y) and A2(u, y).
3. Φ1 (respectively Φ2) is globally Lipschitz w.r.t. X2 (X1) and uniformly w.r.t. X1

(respectively X2) and (u, y).

So there exist ρx1 and ρx2 such that the following system:
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Ointer2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż1 = A1(u, y)Z1 + Φ1(u, Z1, Z2) + S−1
1 CT

1 (y1 − ŷ1)

Ż2 = A2(u, y)Z2 + Φ2(u, Z1, Z2) + S−1
2 CT

2 (y2 − ŷ2)

Ṡ1 = −ρx1S1 − AT
1 (u, y)S1 − S1A1(u, y) + CT

1 C1

Ṡ2 = −ρx2S2 − AT
2 (u, y)S2 − S2A2(u, y) + CT

2 C2

ŷ1 = C1Z1
ŷ2 = C2Z2

(3.53)

is an interconnected observer for system (3.51) and (3.52).
If the pair (u, y) is a persistent input for subsystem Σ̃1 (respectively Σ̃2), the

convergence of the observer can be obtained such that for any initial condition X1,0
(respectively X2,0) in a compact set, the solution of the system remains bounded.

Under Assumption 3.2, the existence of the observer Ointer2 (3.53) is ensured.
Then, the following result can be established:

Theorem 3.4 Consider the interconnected system (3.51) and (3.52). If Assump-
tion 3.2 holds, the observer Ointer2 (3.53) is an asymptotic observer for the
interconnected system.

To apply this theorem to real systems (ACmachines in this book) the assumptions
must be verified, taking into account the parameters of the systems and their operation
domain.

Proof The proof can be achieved by choosing the appropriate candidate Lyapunov
functions V1 and V2. Set ei = Zi − Xi , for i = 1, 2; the estimation errors of each
subsystem. Then the estimation error dynamics are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 = {A1(u, y) − S−1
1 CT

1 C1}e1 + Φ1(u, Z1, Z2) − Φ1(u, X1, X2)

ė2 = {A2(u, y) − S−1
2 CT

2 C2}e2 + Φ2(u, Z1, Z2) − Φ2(u, X1, X2)

Ṡ1 = −ρx1S1 − AT
1 (u, y)S1 − S1A1(u, y) + CT

1 C1

Ṡ2 = −ρx2S2 − AT
2 (u, y)S2 − S2A2(u, y) + CT

2 C2.

(3.54)

Defining the Lyapunov functions

V1 = eT
1 S1e1 and V2 = eT

2 S2e2 (3.55)

with

λmin(Si )‖ei‖2 ≤ Vi = eT
i Si ei ≤ λmax (Si )‖ei‖2 (3.56)

where, for i = 1, 2; λmin(Si ) andλmax (Si ) are theminimal andmaximal eigenvalues
of the matrix Si .
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Then the Lyapunov function for all estimation error dynamics is given by

Vsystem = V1 + V2

whose time derivative along the trajectories of system (3.51) and (3.52) is given by

V̇system =
eT
1 S1{A1(u, y) − S−1

1 CT
1 C1}e1 + eT

1 S1{Φ1(u, Z1, Z2) − Φ1(u, X1, X2)}
+ eT

1 {A1(u, y) − S−1
1 CT

1 C1}T S1e1 + {Φ1(u, Z1, Z2) − Φ1(u, X1, X2)}T S1e1

+ eT
1 {−ρx1S1 − AT

1 (u, y)S1 − S1A1(u, y) + CT
1 C1}e1

+ eT
2 S2{A2(u, y) − S−1

2 CT
2 C2}e2 + eT

2 S2{Φ2(u, Z1, Z2) − Φ2(u, X1, X2)}
+ eT

2 {A1(u, y) − S−1
2 CT

1 C2}T S2e2 + {Φ2(u, Z1, Z2) − Φ2(u, X1, X2)}T S2e2

+ eT
2 {−ρx2S2 − AT

2 (u, y)S2 − S1A2(u, y) + CT
2 C2}e2

(3.57)

or equivalently

V̇system ≤ −ρx1eT
1 S1e1 + 2eT

1 S1{Φ1(u, Z1, Z2) − Φ1(u, X1, X2)}
− ρx2eT

2 S2e2 + 2eT
2 S2{Φ2(u, Z1, Z2) − Φ2(u, X1, X2)}.

(3.58)

From Assumption 3.2, the following inequalities hold:

‖Φ1(u, Z1, Z2) − Φ1(u, X1, X2)‖ ≤ K1‖e2‖

‖Φ2(u, Z1, Z2) − Φ2(u, X1, X2)‖ ≤ K2‖e1‖

for K1 and K2 positive constants. By using these inequalities, it follows that

V̇system ≤ −ρx1eT
1 S1e1 + 2λmax (S1)K1‖e1‖‖e2‖

− ρx2eT
2 S2e2 + 2λmax (S2)K2‖e2‖‖e1‖.

(3.59)

After some computation, the above equation can be expressed as follows:

V̇system ≤ −ρx1V1 − ρx2V2 + μ1
√

V1
√

V2, (3.60)

where μ1 > 0, so by using the following inequality:

√
V1

√
V2 ≤ �1

2
V1 + 1

2�1
V2,

for �1 ∈ (0, 1). Finally,
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V̇system ≤ −
(
ρx1 − �1μ1

2

)
V1 −

(
ρx2 − μ1

2�1

)
V2.

Choosing the gains ρx1 and ρx2 of the observer such that

δ = min

{(
ρx1 − �1μ1

2

)
,

(
ρx2 − μ1

2�1

)}
,

it follows that

V̇system ≤ −δVsystem . (3.61)

Then the exponential convergence of the observer to zero is obtained with a
convergence rate given by δ.

Remark 3.4 It is clear that the Lyapunov functions V1 and V2 are definite positive if
S1 and S2 satisfy the persistence condition, which means that the input sufficiently
excites the system such that its observability is guaranteed.

Remark 3.5 Notice that this observer can be extended for n interconnected subsys-
tems; the proof follows the same procedure presented above.

3.2 PMSM Adaptive Interconnected Observers

3.2.1 Adaptive Interconnected Observers for SPMSM

In the sequel, an adaptive interconnected observer will be designed (see [5, 6]) for
the sensorless SPMSM. This observer is the combination of the adaptive observer
with the interconnected observer presented in this chapter.

To design an observer for the sensorless SPMSM, it is assumed that

dTl

dt
= 0 and

d Rs

dt
= 0. (3.62)

Remark 3.6 Equation (3.62) means that the load torque and the stator resistance val-
ues are assumed to be modeled by piecewise constant functions. Only the bound of
the load torque is assumed to be known. Furthermore, it is clear that the stator resis-
tance slowly changes with the temperature with respect to the other time constants of
the AC machine. Other approaches can be used, for instance, singular perturbation
methodology, however, as the dynamics of the SPMSM are fast with respect to the
variation of the stator resistance, its dynamics could be considered constant.
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Thus, the extended SPMSM model
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disq

dt
= − Rs

Ls
isq + pΩisd + vsq

Ls
− pΩ

Ψr

Ls

disd

dt
= − Rs

Ls
isd − pΩisq + vsd

Ls

dΩ

dt
= − f

J
Ω + pΨr

J
isq − 1

J
Tl

d Rs

dt
= 0

y1 = isd

y2 = isq

which can be seen as the interconnection between two subsystems
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

disq

dt
d Rs

dt

⎤
⎥⎥⎦ =

⎡
⎣0 − isq

Ls
0 0

⎤
⎦
[

isq

Rs

]
+
⎡
⎣−pΩisq − pΩ

Ψr

Ls
0

⎤
⎦+

⎡
⎣

1

Ls
0

⎤
⎦ vsq

y1 = isq ,

(3.63)

and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

disd

dt
dΩ

dt

⎤
⎥⎥⎦=

[
0 −pisq

0 − f

J

][
isd

Ω

]
+
⎡
⎢⎣

− Rs

Ls
isq

pΨr

J
isq

⎤
⎥⎦+
⎡
⎣

1

Ls
0

⎤
⎦ vsd −

[
0
1

J

]
Tl

y2 = isd .

(3.64)

The above subsystems can be represented in a general form as the interconnection
between two subsystems

Σ1 :
{

Ẋ1 = A1(y)X1 + F1(X2) + Φ1(u)

y1 = C1X1
(3.65)

and

Σ2 :
{

Ẋ2 = A2(y)X2 + F2(X1, X2) + Φ2(u) + ΦTl

y2 = C2X2
(3.66)

where X1 = [isq Rs
]T and X2 = [isd Ω ]T are the state vectors of (3.65) and (3.66),

respectively; u = [vsd vsq
]T is the input, and y = [isd isq

]T is the output, with
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A1(y) =
⎡
⎣0 − isq

Ls
0 0

⎤
⎦ , F1(X2) =

⎡
⎣−p

ψ f

Ls
Ω − pΩisd

0

⎤
⎦ ,

A2(y) =
[
0 pisq

0 − fv
J

]
, F2(X1, X2) =

⎡
⎢⎣

− Rs

Ls
isd

p

J
ψ f isq

⎤
⎥⎦ ,

Φ1 =
⎡
⎣

1

Ls
0

⎤
⎦ , Φ2 =

⎡
⎣

1

Ls
0

⎤
⎦ , Φ =

[
0

− 1

J

]
,

C1 = C2 = [1 0] .

Furthermore, an operation domain for the SPMSM (and for the IPMSM) is
defined as:

Definition 3.6 The PMSM physical operation domain DS is defined by the set of
values

DS = {X ∈ �5 | |isd | ≤ Id
max , |isq | ≤ Iq

max , |Ω| ≤ Ωmax ,

|Tl | ≤ Tl
max , |Rs | ≤ Rs

max }

with X = [isd isq Ω Tl Rs]T and Id
max , Iq

max ,Ωmax , Tl
max , Rs

max the actual
maximum values for the stator currents, the rotor speed, the load torque and the
stator resistance, respectively.

The adaptive interconnected observer, developed in the sequel for the sensorless
SPMSM, is based on the interconnection between several observers satisfying some
required properties, in particular the property of input persistence [4].

For designing an observer for system (3.65) and (3.66), a separate synthesis of
the observer for each subsystem is required.

Remark 3.7

1. X2 and X1 are respectively considered as inputs for subsystems (3.65) and (3.66).
From [4], solutions of Ṡ1 and Ṡ2 (used below for the observer design) are sym-
metric positive definite matrices.

2. When the SPMSM remains in the observable area, X2 and X1 satisfy the persis-
tence condition: the asymptotic stability of the observer is guaranteed.

3. When the SPMSM remains in the unobservable area, X2 and X1 do not satisfy the
persistence condition. The asymptotic stability of the observer is not guaranteed.
This problem is solved, by using the practical stability introduced in theAppendix
“Appendix: Practical Stability Definitions”.

Remark 3.8 From (3.65) and (3.66), A1(y) is globally Lipschitz w.r.t. X2; A2(y) is
globally Lipschitz w.r.t. X1; F1(X2) is globally Lipschitz w.r.t. X2 and uniformly
w.r.t. (u, y) and that F2(X2, X1) is globally Lipschitz w.r.t. X2, X1 and uniformly
w.r.t. (u, y).
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Then an adaptive interconnected observer for subsystems (3.65) and (3.66) is
given by

O1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ż1 = A1(y)Z1 + F1(Z2) + Φ1(u) + S−1
1 CT

1 (y1 − ŷ1)

Ṡ1 = −ρ1S1 − AT
1 (y)S1 − S1A1(y) + CT

1 C1

ŷ1 = C1Z1,

(3.67)

O2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż2 = A2(y)Z2 + F2(Z1, Z2) + Φ2(u) + Φ T̂l

+ (�ΛS−1
ϑ ΛT CT

2 + Γ S−1
x CT

2 )(y2 − ŷ2) + K CT
1 (y1 − ŷ1)

˙̂Tl = �S−1
ϑ ΛT CT

2 (y2 − ŷ2) + B(y1 − ŷ1)

Ṡx = −ρx Sx − AT
2 (y)Sx − Sx A2(y) + CT

2 C2

Ṡϑ = −ρϑSϑ + ΛT CT
2 C2Λ

Λ̇ = (A2(y) − Γ S−1
x CT

2 C2)Λ + Φ

ŷ2 = C2Z2

(3.68)

with Z1 =
[
îsq R̂s

]T
and Z2 =

[
îsd Ω̂

]T
are the estimated state variables of X1

and X2 respectively. Moreover, ρ1, ρx and ρϑ are positive constants, S1 and Sx are
symmetric positive definite matrices [4], with

Sϑ(0) > 0, B(Z1) = k
p

J
ψ f îsq

and

K =
[−kc1

−kc2

]
, Γ =

[
1 0
0 α

]

with k, kc1, kc2, α and � are positive constants.
The second observer (3.68) is composed of two parts: the first part to estimate the

state (isd, Ω) and the second part to estimate (isd, Tl). This second part depends on
a differential equation representing a dynamical system described in terms ofΛ ( the
state of this system) and Φ (the input matrix). S−1

1 CT
1 is the gain of observer (3.67);

(�ΛS−1
ϑ ΛT CT

2 + Γ S−1
x CT

2 ) and K CT
1 are the gains of observer (3.68).

It can be seen that the observer gain in (3.68) is split into two terms. The first
one (Γ S−1

x CT
2 ) is associated to the state estimation and depends on the solution of a
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Ricatti equation. The second one (�ΛS−1
ϑ ΛT CT

2 ) is related to the parameter identi-
fication. The solutions of these equations are dependent on the persistence property
(sufficient richness of the signal) with respect to the state and/or the parameter.

Remark 3.9 In Eq. (3.68), the term B(Z1)(y1 − ŷ1) can be expressed as follows:

B(Z1)(y1 − ŷ1) ≡ k
[ p

J
ψ f (isq − îsq)

]

≡ k(Te − T̃e),

where Te and T̃e are, respectively, the real electromagnetic torque and the estimated
torque.

For subsystem (3.65), the input is v = (y), the state X2 and S(t) = S1, and for
subsystem (3.66) one has v = (y), X1 and S(t) = S2.

The conditions of observability loss have been stated in Sect. 2.3: the SPMSM is
unobservable for some input value such that the rotor speed is zero. In the SPMSM
observability area, the inputs for subsystem (3.65) and for subsystem (3.66) respec-
tively, are persistent and the convergence of the observer can be ensured. However,
in the unobservable region of the SPMSM (zero speed), such inputs are noted “bad
input” and the observer convergence is not guaranteed and has to be analyzed.

Stability Analysis of Observer Under Uncertain Parameters

Under indistinguishable trajectories (unobservable area), the asymptotic convergence
of any observer cannot always be guaranteed because the observability properties
are lost on these trajectories. In such cases, the analysis of the closed-loop system
stability is necessary.

If satisfied, the practical stability property [59], allows to establish that the dynam-
ics of the estimation error converge in a ball Br of radius r (x ∈ Br ⇒ ‖x‖ ≤ r ). If
r → 0 at t → ∞, the classical asymptotic stability is obtained.

Consider that the SPMSM parameters are uncertain bounded with well-known
nominal values. Equations (3.65) and (3.66) can be rewritten as

Σ1 :
⎧⎨
⎩

Ẋ1 = A1(y)X1 + F1(X2) + Φ1(u) + ΔA1(y) + ΔF1(X2)

y1 = C1X1

(3.69)

Σ2 :

⎧⎪⎪⎨
⎪⎪⎩

Ẋ2 = A2(y)X2 + F2(X1, X2) + Φ2(u) + ΦTl + ΔA2(y)

+ΔF2(X1, X2)

y2 = C2X2

(3.70)

withΔA1(y),ΔA2(y),ΔF1(X2) andΔF2(X1, X2) are the uncertain terms of A1(y),
A2(y), F1(X2) and F2(X1, X2), respectively:

http://dx.doi.org/10.1007/978-3-319-14586-0_2
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ΔA1(y) =
⎡
⎣0 − isq

ΔLs
0 0

⎤
⎦ , ΔF1(X2) =

⎡
⎣−p

Δψ f

ΔLs
Ω − pΩisd

0

⎤
⎦

and

ΔA2(y) =
[
0 pisq

0 − fv
J

]
, ΔF2(X1, X2) =

⎡
⎢⎣

−ΔRs

ΔLs
]isd

p

ΔJ
Δψ f isq

⎤
⎥⎦ .

Considering the SMPSMphysical operation domainDS (see Definition 3.6), then
there exist positive constants ρ̃i > 0, for i = 1, . . . , 4; such that

‖ΔA1(y)‖ ≤ ρ̃1, ‖ΔA2(y)‖ ≤ ρ̃2, (3.71)

‖ΔF1(X2)‖ ≤ ρ̃3, ‖ΔF2(X1, X2)‖ ≤ ρ̃4. (3.72)

The parameters ρ̃i , i = 1, . . . , 4; are positive constants determined from the
maximal values of ΔA1(y), ΔA2(y), ΔF1(X2) and ΔF2(X1, X2) in the physical
domain DS .

Let us define the estimation errors as

ε1 = X1 − Z1, ε′
2 = X2 − Z2, ε3 = Tl − T̂l . (3.73)

From Eqs. (3.67) and (3.68) and (3.69) and (3.70), one obtains

ε̇1 = {A1(y) − S−1
1 CT

1 C1}ε1 + ΔA1(y)X2 + F1(X2)

+ΔF1(X2) − F1(Z2)

ε̇′
2 = {A2(y) − �ΛS−1

ϑ ΛT CT
2 C2 − Γ S−1

x CT
2 C2}ε′

2 + Φε3
− K CT

1 C1ε1 + ΔA2(y)X2 + F2(X2, X1) − F2(Z2, Z1)

ε̇3 = −�S−1
ϑ ΛT CT

2 C2ε
′
2 − B(Z1)C1ε1.

(3.74)

Following the same idea as in [94], and applying the transformation ε2 = ε′
2−Λε3,

yields

ε̇2 = ε̇′
2 − Λε̇3 − Λ̇ε3. (3.75)

By substituting (3.75) into (3.74), the estimation error dynamics are given by

ε̇1 = {A1(y) − S−1
1 CT

1 C1}ε1 + ΔA1(y)X2 + F1(X2)

+ΔF1(X2) − F1(Z2)

ε̇2 = {A2(y) − Γ S−1
x CT

2 C2}ε2 + (B ′ − K ′)ε1
+ΔA2(y)X2 + F2(X2, X1) + ΔF2(X2, X1) − F2(Z2, Z1)

ε̇3 = −�S−1
ϑ ΛT CT

2 C2Λε2�S−1
ϑ ΛT CT

2 C2ε3 − B ′ε1

(3.76)
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with B ′ = B(Z1)C1, K ′ = K CT
1 C1. Since y1 and y2 are persistent inputs for

subsystems (3.69) and (3.70), respectively; and from Lemma 3.1 there exist t0 ≥ 0
and real numbers ηmax

Si
> 0, ηmin

Si
> 0 which are independent of θi such that

Vi (t, εi ) = εT
i Si εi , for i = 1, 2, 3; (see [4])

∀t ≥ t0 ηmin
Si

‖εi‖2 ≤ Vi (t, εi ) ≤ ηmax
Si

‖εi‖2 , for i = 1, 2, 3. (3.77)

Theorem 3.5 Consider the extended SPMSM dynamic model represented by (3.69)
and (3.70). System (3.67) and (3.68) is an adaptive observer for system (3.69) and
(3.70). Furthermore, the strongly uniformly practically stability of estimation error
dynamics (3.76) is established.

The proof of Theorem 5 is given in [21].

3.2.2 Adaptive Interconnected Observers for IPMSM

In this section, from the model of the IPMSM (1.62), which was established in
Chap.1, an adaptive interconnected observer (see [4, 5]) for the IPMSM sensorless
control is designed to estimate the position, rotor speed, load torque, and stator
resistance.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

disd

dt
= − Rs

Ld
isd + p

Lq

Ld
Ωisq + 1

Ld
vsd

disq

dt
= − Rs

Lsq
isq − p

Ld

Lsq
Ωisd − p

1

Lq
Φ f Ω + 1

Lq
vsq

dΩ

dt
= p

J
(Ld − Lq)isd isq − fv

J
Ω + p

J
Φ f isq − 1

J
Tl

dθm

dt
= Ω.

(3.78)

Similar to the SPMSM, assume that the load torque and the stator resistance are
assumed piecewise constants, i.e.,

dTl

dt
= 0,

d Rs

dt
= 0. (3.79)

Thus, the extended IPMSM model (3.78) and (3.79) can be seen as the intercon-
nection between two subsystems:

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

disq

dt
d Rs

dt

⎤
⎥⎥⎦ =

⎡
⎣0 − isq

Lq
0 0

⎤
⎦
[

isq

Rs

]
+
⎡
⎣− pLd

Lq
Ωisq − pΩ

Ψr

Lq
0

⎤
⎦+

⎡
⎣

1

Lq
0

⎤
⎦ vsq

y1 = isq

(3.80)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

disd

dt
dΩ

dt

⎤
⎥⎥⎦ =

⎡
⎢⎣
0

pLq

Ld
isq

0 − fv
J

⎤
⎥⎦
[

isd

Ω

]
+
⎡
⎢⎣

− Rs

Ld
isq

pΨr

J
isq

⎤
⎥⎦+

⎡
⎣

1

Ld
0

⎤
⎦ vsd −

[
0
1

J

]
Tl

y2 = isd

(3.81)

To begin with, suppose that each subsystem satisfies some required properties to
build an observer and assume that, for each separate observer, the state of the other
is available. The system (3.80) and (3.81) can be read as:

Σ1 :
{

Ẋ1 = A1(y)X1 + g1(X2) + Φ1u
y1 = C1X1

(3.82)

Σ2 :
{

Ẋ2 = A2(y)X2 + g2(X1, X2) + Φ2u + ΦTl

y2 = C2X2
(3.83)

where X1 = [
isq Rs

]T , X2 = [isd Ω]T are the states of each subsystem, u =[
vsd vsq

]T is the input, and y = [isd isq
]T is the output of the IPMSM model. Fur-

thermore, Tl is considered as an unknown parameter to be identified by the adaptive
part of the observer, and

A1(y) =
⎡
⎣0 − isq

Lq
0 0

⎤
⎦ , g1(X2) =

⎡
⎣−p

Ld

Lq
Ωisd − p

φ f

Lq
Ω

0

⎤
⎦ , Φ1 =

⎡
⎣

1

Lq

0

⎤
⎦ ,

A2(y) =
⎡
⎢⎣
0 p

Lq

Ld
isq

0 − fv
J

⎤
⎥⎦ , g2(X1, X2) =

⎡
⎢⎣

− Rs

Ld
isd

p

J
Φ f isq + p

J
(Ld − Lq)isq

⎤
⎥⎦ ,

Φ =
[

0

− 1

J

]
, Φ2 =

⎡
⎣

1

Ld

0

⎤
⎦ , C1 = C2 = [1 0] ,

where g1 and g2 are the interconnection terms.
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The operation domain of the IPMSM is stated in Definition 3.6. In the sequel, an
adaptive interconnected observer for the sensorless IPMSM represented by (3.80)
and (3.81) is designed using similar results given in Theorem 3.5.

Remark 3.10

• X2 and X1 are considered as inputs for subsystems (3.82) and (3.83), respectively.
From [6], the solutions of Ṡ1 and Ṡ2 (defined latter) are symmetric positive definite
matrices.

• When the IPMSMremains in the observable area, X1 and X2 satisfy the persistence
condition: the asymptotic stability of the observer is proved.

• If IPMSM is in the unobservable zone, X1 and X2 do not satisfy the persistence
condition, the practical stability, introduced in the Appendix “Appendix: Practical
Stability Definitions”, has to be proved.

Remark 3.11 For the IPMSM,

• A1(y) is globally Lipschitz w.r.t. X1
• A2(y) is globally Lipschitz w.r.t. X1
• g1(X2) is globally Lipschitz w.r.t. X2 and uniformly w.r.t. (u, y)

• g2(X1, X2) is globally Lipschitz w.r.t. X1, X2 and uniformly w.r.t. (u, y).

Consequently, adaptive interconnected observers for (3.82) and (3.83) are given by

O1 :
⎧⎨
⎩

Ż1 = A1(y)Z1 + g1(Z2) + Φ1(u) + S−1
1 CT

1 (y1 − ŷ1)
Ṡ1 = −ρ1S1 − AT

1 (y)S1 − S1A1(y) + CT
1 C1

ŷ1 = C1Z1

(3.84)

O2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż2 = A2(y)Z2 + g2(Z1, Z2) + Φ2(u) + Φ T̂l + K CT
1 (y1 − ŷ1)

+ (�ΛS−1
3 ΛT CT

2 + Γ S−1
2 CT

2 )(y2 − ŷ2)

˙̂Tl = �S−1
3 ΛT CT

2 (y2 − ŷ2) + B(Z1)(y1 − ŷ1) + B1(Z1)(y2 − ŷ2)

Ṡ2 = −ρ2S2 − AT
2 (y)S2 − S2A2(y) + CT

2 C2

Ṡ3 = −ρ3S3 + ΛT CT
2 C2Λ

Λ̇ = {A2(y) − Γ S−1
2 CT

2 C2}Λ + Φ

ŷ2 = C2Z2

(3.85)

with Z1 =
[
îq R̂s

]T
and Z2 =

[
îd Ω̂

]T
are the estimated state variables, respec-

tively, of X1 and X2, and ρi for i = 1, 2, 3; are positive constants, S1 and S2 are
symmetric positive definite matrices [4], with S3(0) > 0,

B(Z1) = k
p

J
Φ f îsq , B1(Z1) = k

p

J
(Ld − Lq)îsq (3.86)



104 3 Observer Design for AC Motors

K =
[−kc1

−kc2

]
, Γ =

[
1 0
0 α

]

with k, kc1, kc2, α and � are positive constants. Note that S−1
1 CT

1 is the gain of
observer (3.84) and �ΛS−1

3 ΛT CT
2 + Γ S−1

2 CT
2 and K CT

1 are the gains of observer
(3.85).

Remark 3.12 The term B(Z1)(y1 − ŷ1) + B1(Z1)(y2 − ŷ2) in Eq. (3.85) can be
expressed, as follows

B(Z1)(y1 − ŷ1) + B1(Z1)(y2 − ŷ2) = k(Te − T̃e)

where Te and T̃e are, respectively, the “real” and “estimated” electromagnetic torques.

Remark 3.13 Obviously, for subsystem (3.82): v = (y, X2) and S(t) = S1, and that
for subsystem (3.83) one has v = (y, X1) and S(t) = S2.

Stability Analysis of the Observer Under Uncertain Parameters

Remark 3.14 All the parameters of the IPMSM are assumed uncertain but with
well-known bound values.

The robustness of the observer under parametric uncertainties is analyzed and the
system is rewritten in the following form:

Σ1 :
{

Ẋ1 = A1(y)X1 + g1(X2) + Φ1(u) + ΔA1(y) + Δg1(X2)

y1 = C1X1
(3.87)

Σ2 :

⎧⎪⎨
⎪⎩

Ẋ2 = A2(y)X2 + g2(X1, X2) + Φ2(u) + ΦTl

+ΔA2(y) + Δg2(X1, X2)

y2 = C2X2

(3.88)

whereΔA1(y),ΔA2(X1),Δg1(X2) andΔg2(X1, X2) are, respectively, the uncertain
terms of A1(y), A2(X1), g1(X2), g2(X1, X2):

ΔA1(y) =
⎡
⎣0 − isq

ΔLq
0 0

⎤
⎦ , ΔA2(y) =

⎡
⎢⎣
0 p

ΔLq

ΔLd
isq

0
fv

ΔJ

⎤
⎥⎦ ,

Δg1(X2) =
⎡
⎣−p

ΔLd

ΔLq
Ωisd − p

ΔΦ f

ΔLq
Ω

0

⎤
⎦ ,

Δg2(X1, X2) =
⎡
⎢⎣

− Rs

ΔLd
isd

− p

ΔJ
ΩisdΦ f isq − p

ΔJ
(ΔLd − ΔLq)isq isd

⎤
⎥⎦ .
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Remark 3.15 Considering the IPMSM physical operation domainDS , the uncertain
terms are bounded such that there exist positive constants �i > 0, for i = 1, . . . , 4;
such that

‖ΔA1‖ ≤ �1, ‖ΔA2‖ ≤ �2, ‖Δg1‖ ≤ �3, ‖Δg2‖ ≤ �4.

The parameters �i , i = 1, . . . , 4; are positive constants determined from the
maximal values of ΔA1(·), ΔA2(·), Δg1(·) and Δg2(·) in the physical domain DS .

Let us define the estimation errors as

ε1 = X1 − Z1, ε′
2 = X2 − Z2, ε3 = Tl − T̂l . (3.89)

From Eqs. (3.84) and (3.85) and (3.87) and (3.88), the estimation error dynamics
are given by

ε̇1 = {A1(y) − S−1
1 CT

1 C1}ε1 + g1(X2) + ΔA1(y)X1

+Δg1(X2) − g1(Z2) (3.90)

ε̇′
2 = [A2(y) − �S−1

3 ΛT CT
2 C2 + Γ S−1

2 CT
2 C2]ε′

2 + Φε3 (3.91)

− kCT
1 C1ε1 + ΔA2(y)X2 + g2(X2) + Δg2(X2) − g2(Z2)

ε̇3 = −�S−1
3 ΛT CT

1 C1ε1 − B1(Z2)C2ε
′
2 − B2(Z2)C1ε1. (3.92)

Following the same idea as in [94], and applying the transformation ε2 = ε′
2− Λε3,

the dynamics of the estimation errors are given by

ε̇1 = {A1(y) − S−1
1 CT

1 C1}ε1 + ΔA1(y)X1 + g1(X2)

+Δg1(X2) − g1(Z2), (3.93)

ε̇2 = {A2(y) − Γ S−1
2 CT

2 C2 − B11}ε2 − [B12 + C11]ε1 + B22ε3 (3.94)

+ g2(X1, X2) − g2(Z1, Z2) + ΔA2(y)X2 + Δg2(X1, X2),

ε̇3 = −B ′
1ε1 − [�S−1

3 ΛT CT
2 C2+B ′

2]ε2 − [�S−1
3 ΛT CT

2 C2Λ + B ′′
2 ]ε3. (3.95)

Since (u, y, X2) and (u, y, X1) are, respectively, the inputs for subsystems (3.87)
and (3.88), and from Lemma 3.1, there exist t0 ≥ 0 and real positive numbers ηmax

Si

and ηmin
Si

, which are independent of ρi , such that

Vi (t, εi ) = εT
i Si εi , for i = 1, 2, 3;

satisfying

ηmin
Si

‖εi‖2 ≤ Vi (t, εi ) ≤ ηmax
Si

‖εi‖2 , ∀t ≥ t0. (3.96)
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Consequently, the convergence of the observer can be established under paramet-
ric uncertainties.

Theorem 3.6 Consider the IPMSM dynamic model (3.87) and (3.88). System (3.84)
and (3.85) is an adaptive interconnected observer for system (3.87) and (3.88) with
a strongly uniformly practical stability of the estimation error dynamics.

The proof is detailed in [38].

3.3 High Order Sliding Mode Observers for PMSM

3.3.1 Sliding Mode Observers

The sliding mode observers are widely used due to their finite time convergence and
to their robustness with respect to the uncertainties. Recently, various observers have
been developed by using second order sliding mode, super-twisting, or high order
sliding mode algorithms.

The second order sliding mode, and more recently, the High Order Sliding Mode
Observers (HOSM) have been introduced in order to reduce significantly the chat-
tering phenomenon. Contrary to the asymptotic observers which require to prove the
observer-controller stability in closed-loop, for the sliding mode observers, the sep-
aration principle is automatically satisfied if the controller is started after the finite
time convergence of the observer.

The first order sliding modes are restricted to systems in which the output has a
relative degree 1. Besides the resulting high frequency switching, the sliding mode
may cause chattering effect. On the other hand, high order sliding modes have been
introduced such that the finite time convergence is preserved and the chattering effect
is eliminated.

For the first order sliding mode, the stability is analyzed by means of a Lyapunov
approach. However, for High Order Sliding Modes Observer, Lyapunov approaches
are not often developed, and usually, upper-bound curves or homogeneity-based
methods are used for convergence analysis.

The Super-Twisting Algorithm

Consider the following nonlinear system:
⎧⎨
⎩

ẋ1 = x2
ẋ2 = f (t, x1, x2, u) + ζ(t, x1, x2, u)

y = x1.
(3.97)

The solutions of system (3.97) are understood in the Filippov’s sense (see [23] for
details). The function f (t, x1, x2, u) and the uncertainty ζ(t, x1, x2, u) are assumed
Lebesgue-measurable and uniformly bounded in any compact region of the state-
space (x1, x2).
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The general form of the super-twisting observer is given as

⎧⎨
⎩

˙̂x1 = x̂2 + α1
∣∣x1 − x̂1

∣∣1/2 sign(x1 − x̂1)˙̂x2 = f (t, x1, x̂2, u) + ζ(t, x1, x̂2, u) + α2 sign(x1 − x̂1)
y = x1

(3.98)

where x̂1 and x̂2 are the state estimations andα1 andα2 are the gains of the observers.

3.3.2 High Order Sliding Mode Observer for SPMSM

To design a high order sliding mode observer, a modified model of the SPMSM in
the stationary reference frame (1.84) is introduced.

Defining the following change of variable:

eα = −pψ f Ω sin(θe) and eβ = pψ f Ω cos(θe),

it follows that system (1.84) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diα
dt

= − Rs

Ls
iα − 1

Ls
eα + 1

Ls
vα

diβ
dt

= − Rs

Ls
iβ − 1

Ls
eβ + 1

Ls
vβ

deα

dt
= −Ωeβ − p2ψ2

f

J
Sθe (iβCθe − iαSθe ) − fv

J
eα

deβ

dt
= Ωeα + p2ψ2

f

J
Cθe (iβCθe − iαSθe ) − fv

J
eβ

(3.99)

with Cθe = cos(θe), Sθe = sin(θe), θe = − arctan(
eα

eβ
) and

Ω = 1

pψ f

√
(eα

2 + eβ
2).

Then the above system can be written in a canonical form

Ẋ1 = X2 + Φ(U, Y )

Ẋ2 = F(X1, X2)
(3.100)

where the state is defined as

X1 =
[

x1,1
x1,2

]
=
[

iα
iβ

]
, X2 =

[
x2,1
x2,2

]
=

⎡
⎢⎢⎣

− 1

Ls
eα

− 1

Ls
eβ

⎤
⎥⎥⎦,

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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and,

U =
[
vα

vβ

]
, Y =

[
iα
iβ

]
, Φ(U, Y ) = − Rs

Ls
X1 + 1

Ls
U ,

F(X1, X2) =

⎡
⎢⎢⎣

− p2ψ2
f

J
Sθe (iβCθe − iαSθe ) + fv

J
eβ − Ωeβ

p2ψ2
f

J
Cθe (iβCθe − iαSθe ) + fv

J
eα − Ωeα

⎤
⎥⎥⎦

with

Sθe = eβ√
eβ

2 + eβ
2

= −x2,2√
x2,12 + x2,22

, Cθe = −eα√
eβ

2 + eβ
2

= x2,1√
x2,12 + x2,22

.

3.3.2.1 High Order Sliding Modes Observer Design

A recursive scheme based on a differentiator is used to reconstruct the non-
measurable variables (see [24]). The sliding mode differentiator provides an exact
differentiation using a recursive method with finite-time convergence.

Now, we design a second order sliding-mode super-twisting base observer for the
above interconnected system. For this, consider the following representation of the
system:

{
Ẋ1 = X2 + Φ(U, Y ) + Δξ1
Ẋ2 = F(X1, X2) + Δξ2.

(3.101)

The second-order super-twisting based observer is given as

{ ˙̂X1 = X̂2 + Φ(U, Y ) + α2λ(X̃1)sign(X̃1)˙̂X2 = F(X̂1, X̂2) + α1sign(X̃1)
(3.102)

where
α1 = diag[α1,1,α1,2] andα2 = diag[α2,1,α2,2]

are the correction factors designed to imply the convergence of the estimation error

X̃1 = X1 − X̂1

with
λ(X̃1) = diag(|X1,1 − X̂1,1| 12 , |X2,1 − X̂2,1| 12 )

and

sign(X̃1) = diag(sign(X1,1 − X̂1,1), sign(X1,2 − X̂1,2)).
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The error dynamics X̃ = X − X̂ is given by

˙̃X1 = X̃2 − α2λ(X̃1) sign(X̃1) + Δξ1˙̃X2 = F̃(X1, X2, X̂2) − α1 sign(X̃1)
(3.103)

where F̃(X1, X2, X̂2) = F(X1, X2) − F(X1, X̂2) + Δξ2.

Let us denote fi the ith component of F̃(X1, X2, X̂2) and assume that to find an
upper-bound | fi | < f +

i is possible.

Assumption 3.3 Consider that the uncertainty Δξ1 and its derivative are bounded

such that: ‖Δξ1‖ < d1,
∥∥∥ dΔξ1

dt

∥∥∥ < d2, and the uncertainty Δξ2 is bounded, i.e.

‖Δξ2‖ < d3, with d1, d2 and d3 are positive values.

Theorem 3.7 Suppose that the condition | fi | < f +
i holds for system (3.101) and by

verifying that Assumption 3.3 is satisfied, the parameters of the observer are selected
according to

α1,i > f +
i

α2,i >

√
2

α1,i − f +
i − d+

2i

(α1,i + f +
i + d+

2i )(1 − pi )

1 − pi

where pi are constants such that 0 < pi < 1, i = 1, 2; and α1 = diag[α1,1,α1,2]
and α2 = diag[α2,1,α2,2]. So, observer (3.102) guarantees the convergence of

the estimated states (X̂ , ˙̂X) to the real value of the states (X, Ẋ) after a finite time
transient, and there exists a time t0 such that for all t ≥ t0, (X̂1, X̂2) = (X1, X2).

Proof The proof of Theorem 3.7 follows the proof given in [19, 20].

3.3.2.2 Simulation Results

By using the Simulink/MatLab software, the proposed observer scheme has been
simulated, as shown in Fig. 3.1. The parameters of the tested SPMSM are given in
Table1.1. The motor is tested according to an industrial benchmark (see Chap. 1
for more details). Of course the measured rotor speed is used only for comparison
purpose. The stator resistance as well as the stator inductance may be varied from
their nominal values. So their deviation effects are studied.

To achieve the efficiency of the proposed scheme, the tuning parameters of the
observer were chosen to obtain suitable convergence and robust performance as
follows:

Observer gains: α1,1,= 10,α1,2 = 10 and α2,1 = α2,2 = 500.
Figure3.2a shows the measured speed Ω and the estimated speed as well as

the speed error for the nominal case (Figs. 3.2b and 3.3). It can be seen that the
estimation error is very small showing the good estimation of the speed. The actual

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 3.1 SPMSM HOSM observer validation scheme

(a) (b)

Fig. 3.2 a Measured and estimated speeds. b Observed speed error

and estimated currents (iα, îα) and the estimation error are shown in Fig. 3.4a, b,
respectively. Similarly, in Fig. 3.5a, b, are plotted the actual and estimated current iβ
and its estimation error.
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(a) (b)

Fig. 3.3 a Measured and reference speeds. b Tracking speed error

(a) (b)

Fig. 3.4 a Measured and estimated alpha currents. b Current error
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(a) (b)

Fig. 3.5 a Measured and estimated beta currents. b Current error

3.3.2.3 Conclusion

An observer based on sliding mode techniques of a permanent magnet synchronous
motor has been presented. The observer scheme is achieved via a super-twisting
sliding mode observer estimating the rotor speed. Furthermore, the observer is tested
by using a specific industrial benchmark.

3.3.3 HOSM Interconnected Observers for IPMSM: Rotor
Speed and Stator Resistance Estimation

Here, an interconnected high order sliding mode observer (HOSMO) for the
sensorless IPMSM observation is designed to estimate the position, rotor speed, and
stator resistance. The stator resistance very slowly varies with respect to time and
thus its dynamics is modeled by a piecewise function. We follow the same approach
as for the high order sliding mode observer design given in the previous Sect. 3.3.2.1.

The extended IPMSMmodel (3.78) and (3.79) can be seen as the interconnection
between two subsystems and by using the following change of coordinates:
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[
χ11
χ12

]
=
⎡
⎣

isd

−Rs
isd

Ld

⎤
⎦ and

[
χ21
χ22

]
=
⎡
⎣

isq

−pΩ

(
φ f

Lq
+ Ld

Lq
isd

)
⎤
⎦ (3.104)

systems (3.78) and (3.79) can be represented in the following form:

Σχ,i :=
[

χ̇i1
χ̇i2

]
=
[
0 1
0 0

] [
χi1
χi2

]
+
[

Γi

Hi

]
+
[

Δζi1
Δζi2

]
(3.105)

where χi1 is the measured output and χi2 is the unmeasured state, for i = 1, 2. Tl

will be considered as a bounded non-measurable disturbance. The nonlinear terms
are given as

[
Γ1
H1

]
=
[

1

Ld
vsd

(
χ12

χ11

)2
− χ12

Ldχ11
vsd

]�
,

[
Γ2
H2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Lq
vsq⎧⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝− p2

J
(Ld − Lq)χ11χ21 − Fv

J

χ22

φ f

Lq
+ Ld

Lq
χ11

− p2

J
φ f χ21

⎞
⎟⎟⎠

+
(

φ f

Ld
+ Ld

Lq
χ11

)
+ χ22

φ f

Lq
+ Ld

Lq
χ11

⎛
⎜⎜⎝− χ22χ21

φ f

Lq
+ Ld

Lq
χ11

+ 1

Lq
vsd

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Furthermore, in (3.105) the terms Δζi j for i, j = 1, 2; represent the interconnected
terms, which will be considered as disturbances for each subsystem.

[
Δζ11
Δζ12

]
=

⎡
⎢⎢⎣

− Ldχ22χ12

Φ f + Ldχ11

− χ12χ22χ21

Ldχ11(Φ f + Ldχ11)

⎤
⎥⎥⎦,

[
Δζ21
Δζ22

]
=

⎡
⎢⎢⎢⎣

− Ldχ12χ21

Lqχ11

Ldχ12χ22

Φ f + Ldχ11
+ Tl

J

⎤
⎥⎥⎥⎦

(3.106)

The high order sliding mode interconnected observer for the IPMSM (3.78) and
(3.79) is given as

Oχ,i :=
{[ ˙̂χi1˙̂χi2

]
=
[
0 1
0 0

] [
χ̂i1
χ̂i2

]
+
[

Γi

Ĥi

]
+
[

αi1 |χ̃i1|1/2 sign(χ̃i1)

αi2 sign(χ̃i1)

]
(3.107)
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where the estimation errors χ̃i1 = χi1 − χ̂i1, for i = 1, 2; with [χ̂i1 χ̂i2
]T is the

estimated state of system Σχ,i . From (3.104), the estimates of stator resistance and
speed can be obtained by

R̂s = − Ld χ̂12

χ̂11
, Ω̂ = − Lq χ̂22

p(Φ f + Ld χ̂11)
. (3.108)

Remark 3.16 To estimate the stator resistance, the current isd (i.e., χ11) has to be
always nonzero. This condition is guaranteed from theMaximumTorque PerAmpere
(MTPA) strategy developed in Chap.4 (Sect. 4.2.2).

Remark 3.17 The convergence proof of observer (3.107), is given in [39].

3.4 Adaptive Interconnected Observer for the Induction
Motor

An adaptive interconnected observer (see [5]) will be designed for the sensorless IM
to estimate the rotor speed, flux, and load torque. The details are given in [85]. First,
we define the operation domain of the IM.

Definition 3.7 The IM physical operation domain DIM is defined by the set of
values

DIM = {X ∈ �6 | |φrd | ≤ Φd
max , |φrq | ≤ Φq

max , |isd | ≤ Id
max ,

|isq | ≤ Iq
max , |Ω| ≤ Ωmax , |Rs | ≤ Rs

max }

where X = (φrd ,φrq , isd , isq ,Ω, Tl , Rs), andΦd
max , Φq

max , Id
max , Iq

max ,Ωmax ,
Tl

max , Rs
max are the actual maximum values for the fluxes, stator currents, rotor

speed, torque load, and stator resistance, respectively.

The IM Model can be represented in the following interconnected form:

Σ :

⎧⎪⎪⎨
⎪⎪⎩

Ẋ1 = A1(X2)X1 + g1(u, y, X2, X1)

y1 = C1X1

Ẋ2 = A2(X1)X2 + g2(u, y, X1, X2)

y2 = C2X2

(3.109)

where

A1(X2) =
⎛
⎝
0 bpφrq 0
0 0 − 1

J
0 0 0

⎞
⎠ , A2(X1) =

⎛
⎝

−γ −bpΩ ab
0 −a −pΩ

0 pΩ −a

⎞
⎠

http://dx.doi.org/10.1007/978-3-319-14586-0_4
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g1(u, y, X2, X1) =
⎛
⎝

−γisd + abφrd + m1usd + ωs isq

m(φrd isq − φrq isd) − cΩ
0

⎞
⎠

g2(u, y, X1, X2) =
⎛
⎝

−ωs isd + m1usq

ωsφrq + aMsr isd

−ωsφrd + aMsr isq

⎞
⎠

and X1 = (isd,Ω, Tl
)T , X2 = (isq,φrd ,φrq

)T are the states, u = (usd , usq
)T are

the inputs, and y = (isd , isq
)T are the output of the IM model. C1 = C2 = (1 0 0

)
.

Remark 3.18 From themodel (1.119), we can easily verify that thematrix A1(X2, y)

is globally Lipschitz w.r.t. X2, and the matrix A2(X1) is globally Lipschitz w.r.t. X1.
The terms g1(u, y, X2, X1) and g2(u, y, X2, X1) are globally Lipschitz w.r.t. X2, X1
and uniformly w.r.t. (u, y), as long as the IM state remains in DIM.

By verifying first the conditions on the IM observability and from Remark 3.18,
a nominal observer for the interconnected systems (3.109) is given as:

O :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż1 = A1(Z2)Z1 + g1(u, y, Z2, Z1)

+ (Γ S−1
1 CT

1 + B2(Z2))(y1 − ŷ1) + (B1(Z2) + K CT
2 )(y2 − ŷ2)

Ṡ1 = −ρ1S1 − AT
1 (Z2)S1 − S1A1(Z2) + CT

1 C1
ŷ1 = C1Z1

Ż2 = A2(Z1)Z2 + g2(u, y, Z1, Z2) + S−1
2 CT

2 (y2 − ŷ2)
Ṡ2 = −ρ2S2 − AT

2 (Z1)S2 − S2A2(Z1) + CT
2 C2

ŷ2 = C2Z2.

(3.110)

Remark 3.19 Owing to the persistency property of the inputs, it is worth noticing
that ‖S1‖ and ‖S2‖ are bounded for ρ1 and ρ2 large enough (see details in [31]).

The stability analysis of the observer under parameters uncertainties is given in
[85] by using a Lyapunov function.

IM Interconnected Observer Design: Conclusions

An observer design for the IM drive without mechanical sensors (speed and load
torque sensor) is given. The major contributions of this section are as follows:

(1) The design of an adaptive interconnected observer that estimates the rotor speed
and position, rotor fluxes, and load torque;

(2) Based on the Lyapunov theory, sufficient conditions allow to prove the practical
stability of the estimation error even under or near unobservability
conditions [85].

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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3.5 Conclusions

In this chapter, several observer designs have been presented to estimate the unmea-
surable state components of dynamical systems. More precisely, from the machines
mathematical models introduced in Chap.1, suitable transformations have been
defined so that observers can be designed. Here, the representations of the PMSMand
IM have been considered as state affine system plus nonlinear interconnected terms,
or more generally, as interconnected subsystems plus nonlinear terms affined in the
parameters. The asymptotic convergence of the adaptive interconnected observers
and of the finite-time observer based on sliding mode techniques have been analyzed
and applied to the PMSM and IM machines with robustness properties.

These observers will be applied in closed-loop with the controller designed in the
following chapters for the control of the PMSM and the IM machines.

3.6 Bibliographical Notes

When considering the nonlinear systems, even if the observability property is satis-
fied, the construction of an observer is not an easy task [4, 30, 42]. For the nonlinear
systems, the observer design specifically depends on the class of the concerned
models.

For example, in [46] for SISO case and in [75] for MIMO case, it concerns
nonlinear systems that can be transformed into either a linear system, or a linear
system plus an output injection by means of a diffeomorphism. For that class of
systems, a linear observer, called theGeneral Luenberger Observer, can be designed.

Furthermore, when this transformation does not exist, it is possible to search to
transform the nonlinear system into a linear time variant system plus an input–output
injection for which a Kalman-like observer can be designed [83].

A more general class of nonlinear systems observable for any input is given by
system

{
ξ̇ = Aξ + φ(ξ, u)

y = Cξ
(3.111)

with some conditions given in terms of the matrices A and C , and for any u(t) ∈
Uadm , set of the admissible inputs. The vector field φ(ξ, u) is assumed compactly
supported. This term has a triangular structure and does not affect the observability of
the system (see [41]). So, a High Gain Luenberger Observer for this class of systems
has be defined in [28].

An interesting class of nonlinear systems for which it is possible to construct an
Extended Kalman Observer is characterized by the dynamics:

{
ξ̇ = A(u)ξ + φ(u, y)

y = Cξ = ξ1
(3.112)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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where the components of matrix A(u) and vector φ(u, y) are continuous functions,
depending on u and y, uniformly bounded. The nonlinear term φ(u, y) does not
affect the observability of the system.

Another interesting class of system adapted to the design of an observer is
described by

{
ξ̇ = A(u)ξ + φ(ξ, u)

y = C(u)ξ
(3.113)

where ξ belongs to the compact χ ⊂ �n , y belongs to �, u belongs to the set of
the admissible input Uadm in �m . For this class of systems, a High Gain Extended
Kalman Filter can be designed [3].

In the aforementioned observers, the parameters of the system are assumed exactly
known. If not, under suitable assumptions, the estimation of the non-measurable
state is possible and, moreover, simultaneously the identification of the unknown
parameters, by using Adaptive Kalman Filter [6].

Another way to observe a nonlinear system when the parameters are not well
known is by using robust sliding mode observers as introduced in [19, 24]. However,
if the system satisfies partially the observability property, a solution is to search if
the whole system can be represented as a set of interconnected subsystems for which
each subsystem satisfies the observability property. The idea is to design an observer
for each observable subsystem. These interconnected observers are introduced in [5].

All the above-mentioned, observers have been applied for the ACmachines obser-
vation problem, due to the intrinsic observability difficulty of these machines under
their operation domain.

For the SPMSM, adaptive interconnected observers have been introduced in [21].1

This class of Adaptive Interconnected Observers has also been used for the IPMSM
in [38]2 and for the induction motor in [85].

For robustness purpose, High Order sliding Mode Observer can be designed as in
[20]3 via a Super-Twisting Algorithm. For the IPMSM case, an interconnected High
Order Sliding Mode Observer (HOSMO) is designed to estimate the position, rotor
speed, and stator resistance in [39].4

1 This chapter includes excerpts of [21], originally published in the proceedings of IFAC world
Congress, Milano, Italy, IFAC-PapersOnLine IFAC 2011.
2 This chapter includes excerpts reprinted from Journal of the Franklin Institute, 349(5):1734–1757,
Hamida M, Glumineau A, De Leon J (2012) Robust integral backstepping control for sensorless
IPM synchronous motor controller. Copyright (2012), with permission from Elsevier.
3 This chapter includes excerpts of [20], (2010) IEEE. Reprinted, with permission, from Ezzat M,
De Leon J, Gonzalez N, Glumineau A, Observer-controller scheme using high order sliding mode
techniques for sensorless speed control of permanent magnet synchronous motor. In: Decision and
Control (CDC), 49th IEEE Conference on Decision Control.
4 This chapter includes an excerpt of [39]: “Hamida M, De Leon J, Glumineau A (2013) High order
sliding-mode observers and integral backstepping sensorless control of IPMS motor. International
Journal of Control DOI: 10.1080/00207179.2014.904523” reprinted by permission of the publisher
Taylor & Francis Ltd, http://www.tandf.co.uk/journals.

http://www.tandf.co.uk/journals
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Appendix: Practical Stability Definitions

This part is devoted to introduce some concepts and results of practical stability
properties using in terms of Lyapunov functions [59].

Theory of stability is the basis of the control systems study.Moreover, the concept
of practical stability allows to study the properties of a nonlinear system when the
state of this system is bringing close to a set instead of the equilibrium point. From
a practical point of view, a system will be considered stable if the deviations remain
bounded around the equilibrium point. This is clear that, in practice, asymptotic
stability towards a domain whose the size has to be determined, for performance
checking, is sufficient. If the behavior of the systemcanbeboundedby certain bounds,
the notion of practical stability becomes useful. For example, for AC machines the
stability towards a domain with specified bounds during a fixed time interval is a
concept equivalent to a finite time stability.

Now, we introduce definitions which are useful for to guarantee the practical
stability, in terms of Lyapunov functions.

Define the following class of function:

W = {d1 ∈ C[�+,�+] :
d1(l) is strictly increasing in l and

d1(l) → ∞ as l → ∞}.

Let Br = {e ∈ �n : ‖e‖ ≤ r}. Consider the dynamical system

ė = f (t, e), e(t0) = e0, t0 ≥ 0, (3.114)

System (3.114) is said to be

Definition 3.8 UPS Uniformly practically stable if, given (�1, �2) with 0 < �1 <

�2, one has

‖e0‖ ≤ �1 ⇒ ‖e(t)‖ ≤ �2, ∀t ≥ t0. (3.115)

Definition 3.9 UPQS Uniformly practically quasi-stable if, given �1 > 0, � > 0,
T > 0 and ∀t0 ∈ �+, one has

‖e0‖ ≤ �1 ⇒ ‖e(t)‖ ≤ �, t ≥ t0 + T . (3.116)

Definition 3.10 SUPS Strongly uniformly practically stable, if (UPS) and (UPQS)
hold together.

A result of the practical stability in terms of Lyapunov-like functions is presented



3.6 Bibliographical Notes 119

Theorem 3.8 [59] Assume that

(i) �1 and �2 are given such that 0 < �1 < �2,
(ii) V ∈ C[�+ × �n, R+] and V (t, e) is locally Lipschitz in e,
(iii) for (t, e) ∈ �+ × B�2 , d1(‖e‖) ≤ V (t, e) ≤ d2(‖e‖) and

V̇ (t, e) ≤ ℘(t, V (t, e)) (3.117)

where d1, d2 ∈ W and ℘ ∈ C[�+,2,�],
(iv) d2(�1) < d1(�2) holds.

Consequently, the practical stability properties of

l̇ = ℘(t, l), l(t0) = l0 ≥ 0, (3.118)

implies the corresponding practical stability properties of system (3.114).

From the above theorem, the following criteria can be established

Corollary 3.1 [59] In Theorem 3.8, if ℘(t, l) = −α1l + α2, with α1 and α2 > 0,
it implies strong uniform practical stability (SUPS) of system (3.114).

We can see that the solution of equation

l̇(t) = −α1l(t) + α2 (3.119)

is of the form

l(t) = l0e−α1t−t0 + α2

α1

[
1 − e−α1(t−t0)

]
, t ≥ t0 (3.120)

The strong uniform practical stability of (3.119) is obtained.



Chapter 4
Robust Synchronous Motor Controls
Designs (PMSM and IPMSM)

Abstract In this chapter, two robust control strategies for the synchronous motor
are designed. In this preliminary phase, it is assumed all the variables are measurable
and that all the parameters are known or bounded (and their bounds are known).
The estimation of the nonmeasured state and of some sensitive parameters has been
studied in Chap. 3. The sensitivity with respect to the variations of these parame-
ters will be studied in Chap.6. First, integral backstepping control strategies for the
PMSM and the IPMSM are designed to track the desired trajectories of the rotor
speed (defined in Chap.1). Sufficient conditions are obtained to ensure the expo-
nential convergence of the tracking error. Next, control strategies based on sliding
mode techniques are designed to track the desired trajectories. Since the chattering
phenomenon is a drawback of the classical slidingmode control and represents a limi-
tation for its implementation, then in order to reduce these effects, a quasi-continuous
sliding mode controller and a high-order sliding mode controller are designed for
the PMSM and the IPMSM.

4.1 Backstepping Control

Recently, several approaches have been proposed for the design of nonlinear
control systems. Among these controllers, the backstepping control constitutes a
major design methodology.

The backstepping technique is a systematic and recursive design for nonlinear
feedback control (see [53]). Backstepping control principle is based on select recur-
sively some appropriate functions of state variables as virtual control input for a
subsystem of order one. The virtual control is designed to obtain the stability of this
subsystem via a Lyapunov function. After each backstepping stage, it results a new
virtual control obtained from the previous step. Backstepping procedure terminates
when the real input appears. A whole Lyapunov function is defined by summing all
the previous Lyapunov functions introduced at each design step.

For a large class of nonlinear systems, the backstepping procedure provides a
powerful framework for the design of tracking and regulation strategies.
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In this chapter, the robustness of the classical backstepping control is improved
by adding integral control at each step of the design. This allows to reject unknown
terms due to parameters uncertainties or disturbances. This approach can also be
extended to handle systems with unknown parameters via adaptive backstepping by
using parameters estimation (see Chap.6).

For a nominal system (without uncertainties), the integral backstepping controllers
achieve an asymptotic tracking. Thus, the main objectives of this section are to
design a controller based on a classical backstepping technique for the SPMSM
and an integral backstepping controller for the IPMSM, ensuring that the speed
asymptotically tracks the desired reference.

4.1.1 Backstepping Control of SPMSM

The purpose of this section is to design a backstepping controller for the SPMSM that
is robust under parametric uncertainties in order to achieve the control objectives,
i.e., the rotor speed tracks the desired reference and the controller regulates the stator
currents.

Consider the mathematical model of the PMSM in the (d, q) frame (1.65), intro-
duced in Chap.1. This model will be used to design the control strategy in order to
achieve the following control objective.

Control Objective

The objective is to design a controller in order to track the desired rotor speed
reference, (i.e., Ω → Ω∗) despite the unknown and bounded load torque and under
a bad knowledge of the system parameters. Furthermore, by applying a vector control
strategy, the stator current isd is forced to zero, (i.e., isd → 0). For sensorless purpose,
the rotor position and speed will be estimated by an observer (see Chap. 6).

The controller design will be performed in three steps.

Step 1: Speed loop

To solve the rotor speed tracking problem, the design process starts by introducing
the tracking error

z1 = Ω − Ω∗ (4.1)

and the new variables,
ξ1 = Ω, α0 = Ω∗ (4.2)

where Ω∗ is the speed reference. Taking the time derivative of z1, we have

ż1 = pψ f

J
isq − fv

J
Ω − Tl

J
− Ω̇∗

http://dx.doi.org/10.1007/978-3-319-14586-0_6
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_6
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with the new variables

ξ2 = pψ f

J
isq , β1 = − fv

J
Ω − Tl

J
− α̇0. (4.3)

The dynamics of z1 is described by

ż1 = ξ2 + β1

To analyze the dynamics of the tracking error z1, consider the following Lyapunov
function candidate, V1 = 1

2 z21, and define the following new variables

α1 = −kΩ z1 − β1, z2 = ξ2 − α1. (4.4)

Then, taking the time derivative of V1, and substituting ż1 = ξ2 + β1 = z2 − kΩ z1,
where kΩ is a positive constant, it follows that

V̇1 = z2z1 − kΩ z21.

Step 2: Current isq loop

The next step is to design the speed control input vsq , following the systematic design
procedure of the backstepping algorithm.

We start the second step by taking the time derivative of z2 = ξ2 − α1, then

ż2 = β2 + Kvsq

where β2 = pψ f

J
{− pψ f

Ls
Ω − pΩisd − Rs

Ls
isq} − α̇1 and K = pψ f

J Ls
.

Defining the following candidate Lyapunov function

V2(z1, z2) = V1 + 1

2
z22, (4.5)

whose time derivative is given by

V̇2 = −kΩ z21 + z2(z1 + β2 + Kvsq), (4.6)

to ensure that the right side of (4.6) becomes a negative definite function of the state
vector, the control input vsq is selected as

vsq = 1

K

[
−kq

{
pψ f

J
isq + (kΩ + 1)(Ω − Ω∗) − fv

J
Ω − Tl

J
− α̇0

}

−
{

pψ f

J

{
− pψ f

Ls
Ω − pΩid − Rs

Ls
isq

}
− α̇1

}] (4.7)

where kq is a positive control parameter to be tuned.

V̇2 = −kΩ z21 − kq z22 < 0. (4.8)
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Thus, under the action of the control input vsq , the rotor speed Ω tracks the desired
rotor speed reference Ω∗.

Step 3: Current isd loop

As mentioned above, to eliminate a residual reluctance torque, the stator current
reference is fixed to zero, i.e., i∗sd = 0. Introduce the following variable z3 = isd ,
whose dynamics is given by

ż3 = − Rs

Ls
isd + pΩisq + 1

Ls
vsd .

Define the Lyapunov function

V3 = V2 + 1

2
z23, (4.9)

whose time derivative is given by

V̇3 = −kΩ z21 − kq z22 + z3

{
− Rs

Ls
id + pΩisq + 1

Ls
vsd

}
. (4.10)

Since i∗sd = 0, the control input vd is choosing as follows

vsd = −Lskdisd + Rsisd − pLsΩisq (4.11)

where kd is a positive control parameter, such that

V̇3 = −kΩ z21 − kq z22 − kd z23 < 0.

This implies that under the action of the control vsd the stator current isd tracks the
desired reference i∗sd . The control design is achieved.

Summary 4.1.1 SPMSM Backstepping Control

vsd = −Lskdisd + Rsisd − pLsΩisq

vsq = 1

K

[
−kq

{
pψ f

J
isq + (kΩ + 1)(Ω − Ω∗) − fv

J
Ω − Tl

J
− Ω̇∗

}

−
{

pψ f

J

{
− pψ f

Ls
Ω − pΩisd − Rs

Ls
isq

}
− α̇1

}]

with α1 = −kΩ(Ω − Ω∗) + fv
J

Ω + Tl

J
+ Ω̇∗

and kΩ, kq , kd are the tuning positive parameters.
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Remark 4.1 For sensorless control, since the mechanical variables are not available
by measurement, the rotor speed and the load torque will be replaced by their esti-
mates provided by an observer.

4.1.2 Integral Backstepping Control of IPMSM

The aim is to design an improved backstepping controller for the IPMSM (Ld �= Lq ).
The advantage of this improved backstepping control design is obtained by an integral
term added to the classical backstepping procedure to increase the robustness of the
controller under uncertainties and disturbances. To design such a controller, the (d, q)
frame model of the IMPSM (1.62) will be used.

Control Objective

The design of a controller such that the rotor speed tracks a desired reference (Ω∗)
and overcomes the effects of the parametric uncertainties or disturbance (mainly due
to the rotor resistance variation and the load torque).

Furthermore, to achieve the above control objective, the direct axis component of
the current reference is chosen equal to zero, (i.e., i∗sd = 0), to apply a vector control
and to avoid the reluctance effect (as Ld �= Lq ).

Regarding the classical backstepping control [53], the control robustness under
uncertain parameters and the performance are highly improved by adding integral
terms at each step of the procedure. In this section, we assume that all variables are
available for measurement, i.e., the rotor angular position and the rotor speed are
measurable. The analysis of the closed-loop stability when the angular position and
rotor speed, the load torque are not available and under a bad knowledge of the rotor
resistance, will be considered in Chap.6.

The control synthesis is carried out in three steps.

Step 1: Speed loop

We start the control design to solve the rotor speed tracking problem, by defining the
tracking error variable as

zΩ = Ω∗ − Ω + k′
Ω

∫ t
0 (Ω∗ − Ω)dt (4.12)

where k′
Ω

∫ t
0 (Ω∗ − Ω)dt is the integral term added to the rotor speed tracking error

and k′
Ω is a positive constant, used to improve the performance of the controller.

Next, to design the speed control, vsq is computed to force the quadrature axis
component of the stator current isq to track the reference i∗sq . Then, taking the time
derivative of (4.12) and replacing isq by i∗sq , it follows that

żΩ = Ω̇∗ − p

J
(Ld − Lq)isd i∗sq + fv

J
Ω − p

J
Φ f i∗sq + 1

J
Tl + k′

Ω(Ω̇∗ − Ω). (4.13)

Note that the reference i∗sq will be considered as a new input for the resulting
closed-loop system.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_6
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Choosing the following candidate Lyapunov function

VΩ = 1

2
z2Ω

and by taking the time derivative along the trajectories of (4.13), we obtain

V̇Ω = zΩ

{
Ω̇∗ − p

J
(Ld − Lq)isd i∗sq + fv

J
Ω − p

J
Φ f i∗sq + 1

J
Tl + k′

Ω(Ω̇∗ − Ω)

}
.

(4.14)

Following the backstepping methodology, and in order to the derivative of the
Lyapunov function V̇Ω becomes definite negative, the virtual control input i∗sq is
choosing as

i∗sq = J

pΦ f + p
J (Ld − Lq)isd

[kΩ zΩ + Ω̇∗ + fv
J

Ω + k′
Ω(Ω∗ − Ω) + 1

J
Tl ],
(4.15)

and by substituting in (4.14), we obtain

V̇Ω = −kΩ z2Ω.

It follows that zΩ converges to zero exponentially with an arbitrary rate of conver-
gence kΩ > 0.

Step 2: Current isq loop

It is clear that the virtual input i∗sq is synthesized to stabilize the dynamics (4.13).
Now, to design the control input vsq , we introduce the following tracking error:

zq = i∗sq − isq + z′
q (4.16)

where z′
q = k′

q

∫ t
0 (i∗sq − isq)dt is the integral action, and k′

q is a positive control
parameter.

Consider the total Lyapunov function

Vq = VΩ + 1

2
z2q + 1

2
z′2

q . (4.17)

Taking the time derivative of Vq , and replacing the suitable terms, it follows that

V̇q = −kΩ z2Ω + zq

{
di∗sq

dt
+ Rs

Lq
isq + p

Ld

Lq
Ωisd + p

1

Lq
Φ f Ω − 1

Lq
vsq

+ k′
q(i∗sq − isq)

}
+ z′

qk′
q(i∗sq − isq).

(4.18)

By choosing the control input vsq as

vsq = Lq

[
kq zq + 2

p

J
Φ f zΩ + p

Φm

Lq
Ω + Rs

Lq
isq + di∗sq

dt

]
, (4.19)
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and substituting in (4.18),

V̇q = −kΩ z2Ω − kq z2q + {zq + z′
q}k′

q(i∗sq − isq). (4.20)

Since i∗sq − isq = zq − z′
q , then (4.20) becomes

V̇q = −kΩ z2Ω − {kq − k′
q}z2q − k′

q z′2
q (4.21)

such that
V̇q ≤ −K q Vq

where K q = min{kΩ, {kq − k′
q}, k′

q} is a positive constant. Then, under the control
action vsq , the quadrature axis component of the stator current isq tracks the desired
current reference i∗sq , i.e., isq → i∗sq ; and since i∗sq is designed such that the rotor
speed tracks the desired reference, i.e., (Ω → Ω∗), the first control objective is
achieved.

Step 3: Current isd loop

The last step of the integral backstepping algorithm is focused on eliminating the
reluctance torque. Then, to achieve this objective, the current reference is fixed to
zero, i.e., (i∗sd = 0). To apply the vector control method, let us define the following
tracking: error

zd = i∗sd − isd + z′
d

where z′
d = k′

d

∫ t
0 (i∗sd − isd)dt is the integral action and k′

d a positive constant to be

tuned. Define the following candidate Lyapunov function:

Vd = 1
2 z2d + 1

2 z′2
d , (4.22)

whose time derivative is

V̇d = zd

{
−disd

dt
− k′

d isd

}
+ z′

d

{−k′
d isd

}
.

Since i∗sd = 0, and by replacing isd = zd − z′
d in the above equation, it follows that

V̇d = zd

{
Rs

Ld
isd − p

Lq

Ld
Ωisq − 1

Ld
vsd

}
+ k′

d{zd + z′
d}{zd − z′

d}. (4.23)

In order to force V̇d to be a definite negative function, the control input vsd is defined
as follows:

vsd = Ldkd(i∗sd − id) + Ldk′
d

∫ t
0 (i∗sd − isd)dt + Rsisq − pLqisqΩ, (4.24)

and substituting (5.2) in (4.23), we obtain

V̇d = −{kd − k′
d}z2d − k′

d z′2
d .

http://dx.doi.org/10.1007/978-3-319-14586-0_5
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By choosing a positive constant: K d = min{{kd − k′
d}, k′

d}, it follows that

V̇d ≤ −K d Vd .

This implies that under the action of the control vsd , the d-axis component
of the stator current isd tracks exponentially the desired reference, i.e., isd →
i∗sd(= 0).

The full control design is now completed. Finally, combining the action of the
control inputs vsq , i∗sq and vsd , the control objectives are achieved.

Summary 4.1.2 IPMSM Backstepping Control

vsd = Ld

[
kd

(
i∗sd − isd + k′

d

∫ t

0
(i∗d − isd)dt

)
+ Rs

Ld
isq − p

Lq

Ld
isqΩ

]
.

vsq = Lq

[
kq zq + 2

p

J
Φ f zΩ + p

Φm

Lq
Ω + Rs

Lq
isq + di∗sq

dt

]
,

i∗sq = J

pΦ f + p
J (Ld − Lq)isd

[
kΩ zΩ + Ω̇∗ + fv

J
Ω

+ k′
Ω(Ω∗ − Ω) + 1

J
Tl

]

where kd , k′
d , kq , k′

q , kΩ are the positive tuning parameters.

4.2 High-Order Sliding Mode Control

In this section, another robust control methodology based on the sliding mode
techniques is introduced. The main characteristics of these controllers are to achieve
the control objectives with a finite-time convergence, in spite of parameter uncer-
tainties and some classes of disturbances.

Regarding slidingmode technique, by using the classical slidingmode techniques,
a discontinuous input is obtained, yielding on the system the so-called chattering phe-
nomenon. This problem is one of the most important limitations of such controllers.

Recently, several works have addressed the problem on how to reduce this phe-
nomenon. For instance, the high-order sliding mode controllers have been proposed,
thanks to its attractive properties: the robustness, the finite-time convergence, and
the chattering reduction (see [61]).

The aim of this section is to design sliding mode control strategies for a robust
tracking of the desired trajectories defined by an industrial benchmark (see Sect. 1.6).
In order to reduce the effects of the chattering phenomenon, a quasi-continuous slid-
ingmode controllerwill be proposed and applied to the SPMSM.Furthermore, for the
same purpose, a high-order sliding mode controller will be designed for the IPMSM.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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4.2.1 High-Order Sliding Mode Control of SPMSM

4.2.1.1 Quasi-Continuous High-Order Sliding Mode Controller

In the previous section, it has been introduced a rotor speed controller based on
an improved backstepping algorithm allowing to track a desired reference. Now, a
quasi-continuous high-order sliding mode controller will be designed to achieve the
following control objective.

Control Objective

The objective is to design a control algorithm in order to the SPMSM rotor
speed (Ω) tracks in finite time a desired reference Ω∗ in the presence of uncer-
tainties on the rotor resistance, the inductance, and despite of the unknown load
torque.

For achieving this objective, some assumptions must be formulated. First, it is
assumed that the stator currents, the voltages, the rotor speed, and the angular posi-
tion are available (by sensors). If the rotor speed and the angular position are not
measured, it is necessary to estimate thembymeans of an observer. This case has been
studied in Chap. 3.

Consider the following nonlinear system with a smooth output function σ

ẋ = f (t, x) + g(t, x)u
y = σ(t, x)

(4.25)

where x ∈ �n is the state vector, f and g and σ : �n+1 → � are unknown smooth
functions, u ∈ � is the input, y is the new output of the system which is equal to the
sliding surface σ.

Introducing a new change of coordinates of the form ξ1 = σ, ξ2 = σ̇, . . . , ξr =
σ(r−1), where r is the relative degree of the system with respect to the output y =
σ(t, x). r is assumed to be constant and known, i.e.,

σ(r) = F(t, x) + G(t, x)u (4.26)

where F(t, x) = σ(r)|u=0 and G(t, x) = ∂σ(r)

∂u | �= 0.
It is supposed that for some C, Km, KM positive constants, the following inequal-

ities hold at least locally

|σ(r)|u=0| ≤ C, 0 < Km ≤ ∂σ(r)

∂u
≤ KM . (4.27)

The sliding mode controller is a continuous function of σ, σ̇, . . . ,σ(r−1), except on
a r-sliding mode manifold defined by σ = σ̇ = · · · = σ(r−1) = 0.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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The construction of the controller that stabilizes system (4.25) at the origin in
finite time is established in the following:

Theorem 4.1 ([62]) Assuming that the constants β1,β2, . . . ,βr−1,α > 0 are
chosen sufficiently large in the lexicographic order, the controller

u = Ψr−1,r (σ, σ̇, . . . ,σ(r−1)) (4.28)

is a r-sliding homogeneous controller and provides for the finite-time stability
of (4.25) and (4.28), where

ϕ0,r = σ,

N0,r = |σ|,
Ψ0,r = ϕ0,r

N0,r
= sign(σ),

ϕi,r = σ(i) + βi N (r−i)/(r−i+1)
(i−1,r) Ψi−1,r

Ni,r = |σ(i)| + βi N (r−i)/(r−i+1)
(i−1,r) Ψi−1,r

Ψi,r = ϕi,r

Ni,r
.

(4.29)

Furthermore, for i = 1, . . . , r − 1, Ni,r is positive definite, (Ni,r = 0 if and only
if σ = σ̇ = · · · = σ(r−1) = 0). The inequality |Ψr−1,r (σ, σ̇, . . . ,σ(r−1))| ≤ 1 holds
whenever Ni,r > 0. The function Ψr−1,r (σ, σ̇, . . . ,σ(r−1)) is continuous everywhere
except for the r-sliding mode σ = σ̇ = · · · = σ(r−1) = 0.

The choice of the parameters β1,β2, . . . ,βr−1 and α, which are positive con-
stants, determines a controller family applicable to system (4.25) of relative degree
r . The parameter α is chosen specifically for any fixed C, Km and KM , most
conveniently by computer simulation, avoiding redundantly large estimations of
C, Km , and KM .

The controller (4.28) for systems having a relative degree equal to r = 1 and
r = 2 are given by

r = 1 : u = −αsign(σ)

r = 2 : u = −α

{
σ̇ + |σ| 12 sign(σ)

}

|σ̇| + |σ| 12
.

(4.30)

Notice that these controllers are discontinuous and they are only tuning by means of
the parameter α.

4.2.1.2 PMSM Control Design

Now, the above robust sliding mode control algorithm will be applied to the PMSM
in order to force the tracking errors converge to zero in finite time, i.e., the rotor
speed tracking error σ1 = Ω − Ω∗ → 0 and the d-axis component of the stator
current isd to zero, i.e., σ2 = isd → 0.
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Considering the new outputs to be controlled σ1 = Ω − Ω∗ and σ2 = isd , where
the relative degrees of the system associated to these new outputs are r1 = 2, r2 = 1,
respectively. These relative degrees are assumed to be constant

Taking the first and second time derivatives of the output σ1, yields

σ̇1 = pψ f

J
isq − fv

J
Ω − Ω̇∗

σ̈1 = pψ f

J

{
− pψ f

Ls
Ω − pΩisd − Rs

Ls
isq + 1

Ls
vsq

}
− fv

J

{
pψ f

J isq − fv
J Ω

}
− Ω̈∗,

(4.31)

where the nonlinear terms obtained from the second derivative of σ1 can be written
in the form of (4.26), i.e.,

F(t, x) = pψ f

J

{
− pψ f

Ls
Ω − pΩisd − Rs

Ls
isq

}
− fv

J

{
pψ f

J
isq − fv

J
Ω

}
− Ω̈∗,

G(t, x) = pψ f

J Ls
.

Using these expressions, the inequalities (4.27) can be easily verified.
Similarly, taking the time derivative of σ2, we have

σ̇2 = − Rs

Ls
isd + pΩisq + 1

Ls
vsd , (4.32)

where F(t, x) = − Rs

Ls
isd + pΩisq , and G(t, x) = 1

Ls
.

Finally, following the procedure to design a quasi-continuous high-order sliding
mode controller, as it was introduced in Theorem 4.1, it follows that the controllers
are given by

Summary 4.2.1 SPMSM Quasi-continuous HOSM Control

vsd = Ls

{
Rs

Ls
isd − pΩisq − α2sign(isd)

}

vsq = J Ls

pψ f

⎧⎨
⎩− pψ f

J

{
− pψ f

Ls
Ω − pΩisd − Rs

Ls
isq

}
− fv

J

{
pψ f

J
isq − fv

J
Ω

}

− α1

{
pψ f

J isq − fv
J Ω − Ω̇∗ + |Ω − Ω∗| 12 sign(Ω − Ω∗)

}

| pψ f
J isq − fv

J Ω − Ω̇∗| + |Ω − Ω∗| 12

⎫⎬
⎭

where α1 and α2 are the tuning positive control parameters.
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Remark 4.2 The control parameters α1 and α2 are, respectively, chosen regarding
the mechanical and electrical time constants of the machine.

4.2.2 MTPA Current Reference for IPMSM

Now, a control strategy will be designed to avoid the reluctance effect (when Ld �=
Lq ) and by using the maximum torque per ampere (MTPA) control method (see
[90]). From the MTPA strategy, current references are designed in order to increase
the efficiency of the IPMSM.

The electromagnetic torque of the IPMSM can be expressed as follows:

Te = pΦr isq + p(Ld − Lq)isd isq . (4.33)

The first term of (4.33) is the magnetic torque owing to the rotor permanent magnet
flux Φr and the second term is the reluctance torque due to the complex interaction
of dq-axis currents and inductances of the IPMSM.

However, the approach that forces the d-axis component of the stator current isd to
0 does not efficiently utilize the electromagnetic torque of an IPMSM.Then, to ensure
the full use of the reluctance torque and to operate themotor with optimum efficiency,
the d-axis component of the stator current reference i∗sd is determined based on the
MTPA control strategy. The reference of isd is obtained by differentiating (4.33) with
respect to isd and by setting the resulting expression to zero. The optimal torque is
then obtained for the given d-axis stator current reference.

More precisely, the relation between the stator currents isd , isq , and the stator
phase current Ia is given by

I 2a = i2sq + i2sd . (4.34)

Using (4.34) and replacing isq into the torque equation (4.33), the following expres-
sion is obtained

Te = p[Φr + (Ld − Lq)isd ]
√

I 2a − i2sd . (4.35)

The torque variation with respect to the d-axis stator current is given by

∂Te

∂isd
= p

[−Φr isd + (Ld − Lq)(I 2a − i2sd) − (Ld − Lq)i2sd ]√
I 2a − i2sd

. (4.36)

Then, the maximum of the torque can be obtained from
∂Te

∂isd
= 0, i.e.,

2i2sd + Φr

(Ld − Lq)
isd − I 2a = 0. (4.37)
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Finally, from (4.34) and (4.37), the reference i∗sd can be computed as follows:

i∗sd = − Φr

2(Ld − Lq)
−
√

Φ2
r

4(Ld − Lq)2
+ i2sq . (4.38)

Notice that the reference i∗sd depends on the inductances and the q-axis component
of the stator current reference isq . In this way, the optimal torque of the machine can
be determined and will be used in the control algorithms.

4.2.3 High-Order Sliding Mode Control of IPMSM

Despite the many advantageous features of an interior permanent magnet synchro-
nous motor, the control at high-speed conditions remains an engineering
challenge [90].

The aim of this section is to design a robust nonlinear controller for the interior
permanent magnet synchronous motor (IPMSM) to track a desired reference, using
a maximum torque per ampere strategy (MTPA). The proposed controller is used to
ensure finite-time convergence of sliding variables despite parameter uncertainties
and the unknown load torque.

Defining the following tracking errors as follows:

(
σΩ, σisd

)T = (
Ω − Ω∗, isd − i∗sd

)T (4.39)

that will be considered as the new outputs.
It is easy to see that the relative degrees associated to the outputs σΩ and σisd are

rΩ = 2 and risd = 1, respectively. Furthermore, it is assumed that they are constant
and the associated zero dynamics is stable.

Now, we show the procedure how to design a HOSM controller for the IPMSM
that attenuates the chattering phenomenon.

For this purpose, to avoid the direct switch of the input, the relative degrees are
increased and chosen as rΩ = 3 and risd = 2, respectively; which is equivalent to
derive once more the outputs. It yields that the discontinuous control is acting on the
first time derivative of the control inputs.

Taking the second and first time derivatives ofσΩ andσisd , respectively; we obtain
(

σ(2)
Ω

σ
(1)
isd

)
=
(

Ψα;1
Ψα;2

)
+
(

Ψβ;11 Ψβ;12
Ψβ;21 Ψβ;22

)(
usd

usq

)
:= Ψα + Ψβu (4.40)

where the components of the vector Ψα and the matrix Ψβ are given by

Ψα;1 = LrΩ

f σΩ, Ψα;2 = L
risd
f σisd , (4.41)

Ψβ;11 = Lg1 LrΩ−1
f σΩ, Ψβ;12 = Lg1 L

risd −1
f σisd , (4.42)
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Ψβ;21 = Lg2 LrΩ−1
f σΩ, Ψβ;22 = Lg2 L

risd −1
f σisd , (4.43)

and expressed in terms of the motor dynamics

Ψα;1 = +k1iq(k4isd + k5Ωisq) + k3[(k1isd + k2)isq + k3Ω]
−Ω∗2 + (k1isd + k2)(k7Ω + k8Ωisd + k9isq) (4.44)

Ψα;2 = k4isd + k5Ωisq − 2k11isq

and

Ψβ =
(

Ψβ;11 Ψβ;12
Ψβ;21 Ψβ;22

)
=
(

k1k6isq (k1isd + k2)k10
k6 0

)
. (4.45)

Its inverse is given by

Ψ −1
β =

⎛
⎜⎝

0
1

k6
1

(k1isd + k2)k10
− k1iq

(k1isd + k2)k10

⎞
⎟⎠ (4.46)

with

k1 = p

J
(Ld − Lq), k2 = p

J
φ f , k3 = −φ f

J
, k4 = − Rs

Ld
, k5 = p

Lq

Ld
,

k6 = 1
Ld
, k7 = −p

φ f
Lq
, k8 = −p Ld

Lq
, k9 = − Rs

Lq
, k10 = 1

Lq
, k11 = (Ld−Lq )

φ f
.

Remark 4.3 Using the parameter values and applying the MTPA strategy, it is easy
to verify that the matrix Ψβ is nonsingular.

It is clear that in practice the functions Ψα;i and Ψβ,i j , for i = 1, 2; j = 1, 2; are not
well known. Then, it is necessary to take into account the uncertain terms. Thus we
define Ψα;i and Ψβ as follows:

{
Ψα;i = Ψ nom

α;i + ΔΨα;i , for i = 1, 2;
Ψβ = Ψ nom

β + ΔΨβ
(4.47)

such thatΨ nom
α;1 ,Ψ nom

α;2 andΨ nom
β are the knownnominal termswhereasΔΨα;1,ΔΨα;2

and ΔΨβ represent all the uncertainties due to parameter variations and disturbance.
Furthermore, in practice, the uncertainties ΔΨα;1, ΔΨα;2 and ΔΨβ are bounded.

Then, system (4.40) can be expressed in terms of uncertainties as follows:

(
σ(2)

Ω σ(1)
isd

)T = (
Ψ nom

α + ΔΨα

) +
(
Ψ nom

β + ΔΨβ

)
u . (4.48)

Applying the following decoupling feedback control

u =
(

usd

usq

)
= (Ψ nom

β )−1 {−Ψ nom
α + ν

}
(4.49)
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where ν := (νd νq)T is the new control vector, then the closed-loop system is
given by (

σ(2)
Ω σ(1)

isd

)T = Ψ̃α + Ψ̃βν (4.50)

where the uncertain terms are given by

Ψ̃α = Ψα −
{

I + ΔΨβ(Ψ nom
β )−1

}
Ψ nom

α (4.51)

and
Ψ̃β =

{
I + ΔΨβ(Ψ nom

β )−1
}

. (4.52)

Now, by using the uncertain nonlinear system (4.50), we design a 3rd order (for the
speed loop) and a 2nd order (for the current loop) slidingmode controllers for system
(4.50) in order to attenuate the chattering effect and to improve the robustness under
uncertainties. Notice that we shall design a discontinuous control of σ

(3)
Ω and σ

(2)
isd

,

through the derivative of the inputs ν̇ = (ν̇d ν̇q)T .
Computing the time derivatives of σΩ

(2) and σisd
(1), it yields

(
σΩ

(3)

σisd
(2)

)
= ˙̃Ψ α + ˙̃Ψ β

(
νd

νq

)

︸ ︷︷ ︸
ϕ1

+ Ψ̃β︸︷︷︸
ϕ2

(
ν̇d

ν̇q

)
,

(4.53)

thus
(
σΩ

(3) σisd
(2)

)T := ϕ1 + ϕ2 · ν̇. (4.54)

Notice that system (4.54) can be represented in the form (4.26) where F(t, x) = ϕ1,
G(t, x) = ϕ2 and u = ν̇.

The functions ϕ1 and ϕ2 must satisfy the following assumptions:

Assumption 4.1 Let be U the set of bounded inputs, then ν̇ ∈ U is a bounded
discontinuous vector and system (4.53) with discontinuous right-hand side admits
solutions in the Filippov’s sense.

Assumption 4.2 The components of the vectorϕ1 andmatrixϕ2 are bounded uncer-
tain functions. Furthermore, there exist positive constants C0;i , Km;i, j and KM;i, j ,
for i = 1, 2 and j = 1, 2, such that

|ϕ1,i | ≤ C0;i , ∀x ∈ Rn, (4.55)

0 ≤ Km;i, j ≤ ϕ2,i j ≤ KM;i, j , for i = 1, 2; j = 1, 2.

Notice that, after straightforward computations, it is possible to determine the values
of C0;i , Km;i, j and KM;i, j , for i = 1, 2; and j = 1, 2, in terms of the machine
parameters. It is clear that they represent the bounds which allow to design the
sliding mode controller.
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The main advantage of this controller is that the discontinuous function “sign” is
acting now on the time derivative of the control input, then attenuates the chattering
phenomenon. Regarding the new control ν̇ and the outputs σΩ and σid , system (4.53)
admits a relative degree vector (3, 2).

Remark 4.4 The bounded functions ϕ1;i and ϕ2;i j for i = 1, 2; and j = 1, 2;
represent the time derivative of the smooth functions describing the uncertainties of
the system. Thus, the bounds in ϕ1;i and ϕ2;i j for i = 1, 2; and j = 1, 2, are easily
determined in terms of the operation domain DS of the IPMSM as introduced by
Definition3.6. This implies that the terms ϕ1;i and ϕ2;i j are uncertain bounded C1

functions and thus for a given motor and its operation domain, Assumption 4.2 is
easy to verify.

The discontinuous control in (4.54) is determined as follows:

ν̇ =
(

ν̇d

ν̇q

)
=
( −αsign(SΩ)

−αsign(Sisd )

)
(4.56)

where α is positive control parameter.
This control design can be established by the following lemma:

Lemma 4.1 Consider the IPMSM model (1.62), the tracking errors (4.39) and the
associated dynamics given by

(
σ(2)

Ω σ(1)
id

)T = (
Ψ nom

α + ΔΨα

) +
(
Ψ nom

β + ΔΨβ

)
u, (4.57)

with the control action

u =
(

usd

usq

)
= (Ψ nom

β )−1

{
−
(

Ψ nom
α;1

Ψ nom
α;2

)
+
(

νd

νq

)}
(4.58)

and the discontinuous control law

ν̇ =
(

ν̇d

ν̇q

)
=
( −αsign(SΩ)

−αsign(Sisd )

)
(4.59)

where α is a positive constant. Then, the tracking error converges to zero in finite
time, where t f = max(tΩ, f , tid , f ) is the desired time of convergence.

Then, it allows the establishment of a sliding mode, i.e.,

ṠΩ SΩ ≤ −ηΩ |SΩ | , Ṡid Sid ≤ −ηid

∣∣Sid

∣∣

for positive constants ηid and ηΩ (see [77, 86]). Then, the finite-time convergence of
tracking errors is ensured. The details of the proof can be found in [37].

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Summary 4.2.3 IPMSM HOSM Controller
(

usd

usq

)
= (Ψ nom

β )−1

{
−
(

Ψ nom
α;1

Ψ nom
α;2

)
+
(

νd

νq

)}

where

Ψ nom
α;1 = +k1isq(k4isd + k5Ωisq) + k3[(k1isd + k2)isq + k3Ω]

− Ω∗2 + (k1isd + k2)(k7Ω + k8Ωisd + k9isq)

Ψ nom
α;2 = k4isd + k5Ωisq − 2k11iq ,

(Ψ nom
β )−1 =

⎛
⎜⎝

0
1

k6
1

(k1isd + k2)k10
− k1isq

(k1isd + k2)k10

⎞
⎟⎠

and(
ν̇d

ν̇q

)
=
( −αsign(SΩ)

−αsign(Sisd )

)
.

4.3 Conclusions

In this chapter, two approaches have been presented to design robust controllers for
the SPMSM and the IPMSM. These approaches are based on integral backstepping
and high-order sliding mode techniques. Both control designs are robust with respect
to perturbation and parameters uncertainties. Furthermore, a design procedure is
given and control gains can be easily tuned.

For the sensorless purpose, these controllers in conjunction with the observers
designed in Chap.3, will be implemented, and an analysis of the closed-loop system
stability will be presented in Chap. 6.

4.4 Bibliographical Notes

The principles of modern AC machines control can be found in the classical books
[17, 60], where the field-oriented control algorithm appears as a seminal control strat-
egy [7]. Nevertheless the sensorless control is a very difficult problem that requires
robustness properties because the mechanical variables are not available by mea-
surement. If the observability property is satisfied (see Chap.2) some unmeasured
variables can be reconstructed (observed) as the position, the speed, the rotor resis-
tance, and the load torque. The basic control designs use these observers associated
with linear controllers: field-oriented control with PI regulator [25, 78], or state
feedback control [96].

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_6
http://dx.doi.org/10.1007/978-3-319-14586-0_2
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Owing to the difficulty to precisely reconstruct these variables and the bad
knowledge on some parameters, the robustness of the controllers is a required prop-
erty. Thus, new robust nonlinear controllers can be employed, thanks to their intrinsic
properties. That is why, backstepping control [48] and high-order sliding mode Con-
trol [18] were designed for sensorless control.

In this chapter, robust nonlinear controls are presented and applied to the perma-
nent magnet synchronous motor, without using any mechanical sensors.

The synchronous motors can be controlled with efficiency if the control strategies
are judiciously chosen. The maximum torque per ampere (MTPA) control strategy
provides a maximum torque/current ratio [90], and will be used to characterize the
current references.

First, among techniques of the robust nonlinear control design, the backstepping
technique has been introduced as a systematic and recursive design methodology for
nonlinear feedback control (see [53]). This approach has been improved to reject
some classes of disturbances and applied for the SPMSM control in [21]1 and for the
IPMSM in [38]2. Regarding the controllers designed using sliding mode techniques,
the quasi-continuous high-order sliding mode controller has been presented (see
[61]) as well as the high-order sliding mode controller that allows the establishment
of a sliding mode with a fixed a priori finite-time convergence of the tracking errors
[77, 86]. These HOSM techniques are applied to the control design of the SPMSM
in [20]3 and in [37]4 for the IPMSM.

Appendix: A HOSM algorithm

Now, the synthesis of aHOSMcontrol is recalled. The advantage of thismethodology
[74] is such that the time of convergence t f is stated a priori and the robustness is
ensured during the entire response of the system.

The synthesis of the high-order sliding mode controller is designed in two steps:
(1) A linear continuous finite-time convergent control law is used in order to

induce reference trajectories for system (4.60), which defines the sliding manifold
on which the system evolves as early as t = 0.

1 This chapter includes excerpts of [21], originally published in the proceedings of IFAC World
Congress, Milano, Italy, IFAC-PapersOnLine IFAC 2011.
2 This chapter includes excerpts reprinted from“Journal of theFranklin Institute, 349(5):1734–1757,
Hamida M, Glumineau A, De Leon J (2012) Robust integral backstepping control for sensorless
IPM synchronous motor controller.” Copyright (2012), with permission from Elsevier.
3 This chapter includes excerpts of [20], Copyright (2010) IEEE. Reprinted, with permission, from
“Ezzat M, De Leon J, Gonzalez N, Glumineau A, Observer-controller scheme using high-order
sliding mode techniques for sensorless speed control of permanent magnet synchronous motor. In:
Decision and Control (CDC), 49th IEEE Conference on Decision Control, Atlanta, USA”.
4 This chapter includes excerpts of [37], originally published in the proceedings of IFAC Power
Plant and Power System Control conference (PPPSC), Toulouse, France, IFAC-PapersOnLine
IFAC 2012.
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(2) A discontinuous control law is designed in order to maintain the system
trajectories on the sliding manifold which ensures the establishment a r th order
sliding mode.

Consider an uncertain nonlinear system of the form

ẋ = f (x) + g(x)u (4.60)

with x ∈ X ⊂ �n the state variable and u ∈ � the input control. For a sake of clarity,
only single input–single output case is considered in the sequel.

Let σc(x, t) the sliding variable with a relative degree equal to r .

Assumption 4.3 The relative degree r of (4.60) with respect to σc is assumed to be
constant and known, and the associated zero dynamics are stable.

The control objective is to fulfill the constraint σc(x, t) = 0 in finite time and to
keep it exactly by some feedback.

The r th order sliding mode control approach allows the finite-time stabilization
to zero of the sliding variable σc and its r − 1 first time derivatives by defining a
suitable discontinuous control function. Then, the output σc satisfies equation

σ(r)
c = ϕ1(x, t) + ϕ2(x)u (4.61)

with ϕ2(x) = Lg Lr−1
f σc and ϕ1(x) = Lr

f σc. System (4.60) has to satisfy:

Assumption 4.4 The solutions are understood in the Filippov sense [23], and system
trajectories are supposed to be infinitely extendible in time for any bounded Lebesgue
measurable input.

Assumption 4.5 Functions ϕ1(x, t) and ϕ2(x) are bounded uncertain functions,
and, without loss of generality, let also the sign of ϕ2(x) be strictly positive. Thus,
there exist positive constants Km > 0, KM > 0, and C0 ≥ 0 such that 0 < Km <

ϕ2(x) < KM and |ϕ1(x, t)| ≤ C0 for x ∈ X ⊂ �n , X being a bounded open subset
of �n within which the boundedness of the system dynamics is ensured, and t > 0.

Then, the r th order sliding mode control of (4.60) with respect to the sliding
variable σc is equivalent to the finite-time stabilization of

Żc1 = A11Zc1 + A12Zc2, Żc2 = ϕ1 + ϕ2u (4.62)

with Zc1 := [σc σ̇c · · · σ(r−2)
c ]T and Zc2 = σ(r−1)

c . A11(r−1)×(r−1) and A12(r−1)×1
are such that Zc1 dynamics reads as linear Brunovsky form.

Controller synthesis

The synthesis of a high-order slidingmode controller for (4.60) consists of two steps.
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• Design of the sliding manifold on which the system evolves as early as t = 0.
• Design of the discontinuous control law u in order to maintain the system
trajectories on the sliding manifold.

Step 1: Switching variable design

Let S denote the switching variable defined as

S = σ(r−1)
c − F (r−1)(t) + λr−2

[
σ(r−2)

c − F (r−2)(t)
]

(4.63)

+ · · · + λ0 [σc(x, t) − F(t)] ,

with λr−2, . . . ,λ0 defined such that P(z) = z(r−1) + λr−2z(r−2) + · · · + λ0 is
a Hurwitz polynomial in the complex variable z. The function F(t) is a Cr−one
defined such that S(t = 0) = 0 and σ

(k)
c (x(t f ), t f )−F (k)(t f ) = 0 (0 ≤ k ≤ r −1).

Then, from initial and final conditions the problem consists in finding the function
F(t) such that

σc,t=0 = F(0),σc,t=t f = F(t f ) = 0, σ̇c,t=0 = Ḟ(0),

σ̇c,t=t f = Ḟ(t f ) = 0, . . . ,σ(r−1)
c,t=0 = F (r−1)(0),

σ
(r−1)
c,t=t f

= F (r−1)(t f ) = 0.

A solution for F(t) for (1 ≤ j ≤ r ) [77], is given by

F(t) = KcT eFtσ
(r− j)
c (0) (4.64)

with F being a 2r × 2r -dimensional stable matrix (strictly negative eigenvalues), T
being a 2r × 1-dimensional vector, and Kc is a 1× 2r -dimensional gain matrix such
system (4.64) is fulfilled.

Assumption 4.6 There exists an integer j such that σ(r− j)
c (0) �= 0 and bounded.

Now, we have the following lemma:

Lemma 4.2 From Assumption 4.6 and assuming that t f > 0 is bounded, there exists
a Hurwitz matrix F2r×2r and a matrix T2r×1 such that matrix K defined as

K =
[

Fr−1T σ
(r− j)
c (0) Fr−1eFt f T Fr−2T σ

(r− j)
c (0)

Fr−2eFt f T · · · T σ
(r− j)
c (0) eFt f T

] (4.65)

is invertible.

Then, the gain matrix Kc is given by

Kc =
[
σ(r−1)

c (0) 0 σ(r−2)
c (0) 0 · · · σc(0) 0

]
K−1. (4.66)
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Furthermore, the switching variable S is expressed as

S = σ(r−1)
c − KcT F (r−1)eFtσ

(r− j)
c (0)

+ λr−2

[
σ(r−2)

c − KcT F (r−2)eFtσ
(r− j)
c (0)

]
(4.67)

+ · · · + λ0

[
σc(x, t) − KcT eFtσ

(r− j)
c (0)

]
.

Assumption 4.7 There exists a finite positive constant Θ > 0 such that

|KcT Fr eFtσ
(r− j)
c (0) − λr−2[σ(r−1)

c − KcT Fr−1eFtσ
(r− j)
c (0)]

− · · · − λ0[σ̇c(x, t) − KcT FeFtσ
(r− j)
c (0)]| < Θ (4.68)

Equation S = 0 describes the desired dynamics which satisfy the finite time
stabilization of [σ(r−1)

c σ
(r−2)
c · · · σc]T to zero. The switching manifold on which

system (4.62) is forced to slide, via a discontinuous control v, is defined as

S = {x |S = 0}. (4.69)

Given Eq. (4.66), one gets S(t = 0) = 0, at the initial time, the system still evolves
on the switching manifold which implies that there is no reaching phase.

Step 2: Discontinuous control design

The attention is now focused on the design of the discontinuous control law u which
forces the system trajectories of (4.62) to slide on S in order to reach the origin in
finite time and so to maintain the system at the origin.

Theorem 4.2 ([77]) Consider system (4.60) of relative degree r with respect to
σc(x, t). Assume that system (4.60) is minimum phase with respect to σc(x, t) and
that Assumptions 4.3, 4.4, 4.5 and 4.6 are fulfilled. Let r be the sliding mode order
and t f (0 < t f < ∞) the desired convergence time. Let S ∈ �n define by (4.67)
with Kc being the single solution (4.66) and suppose that Assumption 4.7 is fulfilled.
Then, the control input u defined by

u = −αcsign(S)

with

αc ≥ C0 + Θ + η

Km
, (4.70)

C0, Km defined in Assumption 4.5, Θ defined by (4.68), leads to the establishment
of a rth order sliding mode with respect to σc, and the time of convergence fixed a
priori is t f .
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Proof See [77].

Condition (4.70) allows to satisfy the attractivity condition

ṠS ≤ −η|S|

with η > 0. By using the same procedure established in Theorem 4.2, there exist
gains αc such that for the Lyapunov function

W = 1

2
ST S

whose time derivative satisfy the inequality

Ẇ = ṠS ≤ −η|S| ≤ −η
√

W . (4.71)

Integrating the above inequality, we have

√
W (t) ≤ √

W (t0) − η

2
t. (4.72)

Let
√

W (t0) − η

2
t f = 0, then the time of convergence is given by

t f = 2
√

W (t0)

η
. (4.73)

Then, the convergence in finite time of the tracking dynamics is guarantee.



Chapter 5
Robust Induction Motor Controls
Design (IM)

Abstract In this chapter, three control strategies for the induction motor (IM) are
studied, thanks to their robustness properties, their implementation simplicity, and
their time computation cost. To compare the performance of the control strategies,
specific trajectories have been defined by a so-called control benchmark (see Sect. 1.6
in Chap.1). For the control design, it is assumed that all the variables are measurable
and all parameters are known (or known except bounded uncertainties). Firstly, a
classical field-oriented control [7] is introduced. Next, a robust backstepping con-
troller is designed. However, the robustness of the classical backstepping controller
is improved, thanks to integral terms that are added at each step of the iterative
procedure. Finally, another robust control design for the IM is introduced, based on
sliding mode control techniques. For the classical sliding mode control design, the
chattering effect phenomenon is a drawback that involves a limited implementation
of such a controller. Thus, to reduce the effects of this phenomenon, a high-order
sliding mode controller (HOSM) is designed to track the desired rotor speed and the
modulus flux references.

5.1 Field-Oriented Control

It is well known that there are several algorithms to guarantee the asymptotic tracking
of a reference for the induction motor control. These algorithms must work under
different operating conditions and in uncertain parameter context. Regarding the
parameters of the induction machine, the rotor resistance and the load torque are
usually unknown and time varying. Strategies have been introduced to improve the
performance of the machine under uncertainties. One of these strategies is based
on adaptive techniques to online identify some parameters. Another strategy is the
passivity control design which has been proposed for the induction machine control
and will be used in this chapter.

On the other hand, regarding classical control strategies, the direct field-oriented
controller (FOC) and the indirect field oriented controller are the most implemented
in practice.

© Springer International Publishing Switzerland 2015
A. Glumineau and J. de León Morales, Sensorless AC Electric Motor Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-14586-0_5
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The field-oriented control (FOC) was introduced in [7], where the three-phase AC
induction motor is controlled under all operating conditions similarly to a separately
excitedDCmotor. The three-phase sinusoidal system is first projected using the three-
to-two phase Clarke transformation, i.e., from a fixed (a, b, c) frame to a fixed (α,β)
frame. Thanks to the two-to-two phase (α,β)-to-(d, q) rotating Park transformation,
the original sinusoidal system can be defined in a rotating (d, q) coordinate system
frame (see details in Sect. 1.2 of Chap.1). Consequently, it can be obtained that the
field flux linkage component of current is aligned along the d-axis and the torque
component of current is aligned along the q-axis. The AC motor behaves like a DC
motor in which the field flux linkage and the armature flux linkage created by the
respective field and armature currents are orthogonal such that when the torque is
controlled, the field flux linkage is not affected. By using the IM model in the (d, q)

frame (1.108), the FOC strategy is presented.

5.1.1 Speed and Flux References

Now, we introduce the direct field-oriented control (DFOC), which is a basis of
the IM control. Furthermore, for the control design, it will be assumed that all state
variables aremeasurable. This assumption is introduced only to illustrate the potential
performance of the developed control algorithms. In the subsequent chapters, this
assumption will be no longer necessary due to the implementation of an observer
(soft sensor). The observer–controller schemes will be studied in Chap.7.

First, denotingΩ∗ and φ∗ as the smooth-bounded reference signals for the output

variables the rotor speed Ω and the rotor flux modulus
√

φ2
rd + φ2

rq , respectively.
Following the strategy of the field-oriented control [7], and using the IM model

in the rotating (d, q) frame oriented according to the rotor flux (see (1.115)), the
flux control goal is to force φrq toward zero. Then, the electromagnetic torque is
proportional to the product of two state variables: the d-component of the rotor flux
φrd and the q-component of the stator current isq

Te = pMsr

Lr
φrd isq . (5.1)

From (5.1), it is clear that by holding constant the magnitude of the rotor flux
φrd , it follows that there is a linear relationship between the q-axis component of the
stator current isq and the electromagnetic torque.

Notice that i∗sd and i∗sq are the references for the (d, q)-components of the stator
current. Next, the voltage controls (vsd , vsq ) can be defined by using PI current
controllers

vsd = K Ivd

∫ t

0
(i∗sd − isd)dt + K Pvd(i∗sd − isd) (5.2)

vsq = K Ivq

∫ t

0
(i∗sq − isq)dt + K Pvq(i∗sq − isq) (5.3)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_7
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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where K Ivd , K Pvd , K Ivq , K Pvq are positive constants to be tuned. These control
loops have to be tuned so fast to force isd and isq to quickly track their references
i∗sd and i∗sq , respectively. Then, the PI current loops result in fast responses.

The resulting IM system in closed loop with the control actions (5.2) and (5.3) is
given by

(
Ω̇
˙φrd

)
=

(
mφrd i∗sq − cΩ − Tl

J−aφrd + aMsr i∗sd

)
(5.4)

where the references i∗sd and i∗sq are considered as new inputs for system (5.4).
For system (5.4), a decouplingmultivariable controller canbedesigned as follows:

i∗sq = 1

mφrd

(
K PΩ(Ω∗ − Ω) + Ω̇∗ + cΩ + Tl

J

)
, (5.5)

i∗sd = 1

aMsr
φ̇∗ + 1

Msr
φ∗

where Ω∗ and φ∗ are the reference signals.
As introduced previously, at this step, it is assumed that the load torque Tl and all

the parameters of the machine are known. This hypothesis will be released by using
observers in Chap.7, where the load torque is estimated by an observer.

Furthermore, in order to avoid singularities in controller (5.5), the initial condition
φrd(0) must be greater than zero, such that the d-axis component of the rotor flux
φrd(t) be different to zero (for example, φrd > 0, for all t > 0). This is trivially a
physical constraint as it can be easily seen in (5.1).

It is worth mentioning that, in case of parameter uncertainties, the robustness of
this decoupling multivariable feedback controller (5.5) has an unsatisfactory perfor-
mance. Controller (5.5) achieves the control objective at the exception of a singularity
at φrd = 0, which may imply very large currents, when φrd tends to zero. A clas-
sical strategy to avoid this difficulty is to modify the direct field-oriented control by
replacing φrd by its reference φ∗, so that the resulting control becomes

i∗sq = 1

mφ∗

(
K PΩ(Ω∗ − Ω) + Ω̇∗ + cΩ + Tl

J

)
, (5.6)

i∗sd = 1

aMsr
φ̇∗ + 1

Msr
φ∗.

This controller is well known as the indirect field-oriented controller. Finally, the
indirect field-oriented controller can be summarized as follows:

• Let (Ω∗,φ∗, 0) be the reference signals of (Ω,φrd ,φrq).
• Design a controller so that the tracking errors (Ω̃, φ̃rd , φ̃rq) tend exponentially
to zero from any initial condition, assuming the measurement of the rotor speed,
the load torque Tl , and the rotor resistance Rs and all parameters of the induction
machine are available.

http://dx.doi.org/10.1007/978-3-319-14586-0_7
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The advantages and the limitations of each controller depend on the requirements
to implement them, the operation conditions as well as the speed–torque range of
operation. For instance, the direct FOC requires the rotor speed and the rotor flux
d-axis component knowledge. On the contrary, the indirect FOC only requires the
rotor speed measurement. However, in both controllers it is necessary to know or
to estimate the load torque Tl and if possible all the bad known parameters of the
machine. For example, the stator resistance Rs is time varying with respect to the
temperature variation.

5.1.2 Flux Controller Design

Taking into account the requirements of the FOC strategy, which can be modified to
improve its performance, a PI controller is introduced in the controller design (5.5).
Then, following the FOC strategy for the induction motor, the reference of the stator
current d-component isd is designed using a PI controller

i∗sd = K Iφrd

∫ t

0
(φ∗ − φrd)dτ + K Pφrd (φ

∗ − φrd)

+ 1

aMsr
φ̇∗ + 1

Msr
φ∗ (5.7)

where K Iφrd and K Pφrd are positive constants to tune. Defining the rotor flux d-
component tracking error as eφ = φ∗ − φrd , and replacing reference current i∗sd
given by (5.7) in (5.4), then, the dynamics of the rotor flux d-component tracking
error eφ is given by

ėφ = (−a − aMsr K Pφrd )eφ − aMsr K Iφrd

∫ t

0
eφ(τ )dτ . (5.8)

By choosing the following change of coordinates

χφ = Tφ(eφ) = (∫ t
0 eφ(τ )dτ , eφ

)T
(5.9)

equation (5.8) can be written, in a state-space representation, as follows:

χ̇φ = Āφχφ (5.10)

where Āφ =
(

0 1
α1φ α2φ

)
, α1φ = −aMsr K Iφrd and α2φ = −a − Msr K Pφrd .

Note that the tuning parameters K Iφrd and K Pφrd are positive to force the matrix
Āφ to be stable.



5.1 Field-Oriented Control 147

5.1.3 Speed Control Design

If the flux controller forces the d-component of flux φrd to track its reference φ∗ and
assuming the flux is properly established in the motor, the electromagnetic torque
(5.1) can be expressed as

Te = KT isq (5.11)

where KT = (pMsr/Lr )φ
∗. Thus, as planned by the FOC strategy, there is a linear

relationship between the stator current q-component isq and the IM torque.
Now, the reference current i∗sq is designed for dealing with the speed control

problem, and forcing the rotor speedΩ to track the desired referenceΩ∗. To achieve
this objective, the reference current i∗sq is designed as follows:

i∗sq(t) = 1

KT

(
K IΩ

∫ t

0
(Ω∗(τ ) − Ω(τ ))dτ + K PΩ(Ω∗ − Ω)

)

+ 1

mφrd

(
Ω̇∗ + cΩ + T̂l

J

)
(5.12)

where eΩ(t) := Ω − Ω∗ is the speed tracking error and T̂l is the estimation of the
load torque, (see Chap.3). The term [K IΩ

∫ t
0 (Ω∗(τ )−Ω(τ ))dτ + K PΩ(Ω∗ −Ω)]

is equivalent to a PI controller.
If the load torque is not available, the PI controller has to reject this disturbance.

Replacing (5.12) in (5.4), then the dynamics of the speed tracking error eΩ is given
by

ėΩ = − K PΩ

J
eΩ − K IΩ

J

∫ t

0
eΩ(τ )dτ . (5.13)

Consider the following change of coordinates

χΩ = TΩ(eΩ) = (∫ t
0 eΩ(τ )dτ , eΩ

)T
. (5.14)

It follows that (5.13) can be written, in a state-space representation, as follows:

χ̇Ω = ĀΩχΩ (5.15)

where ĀΩ =
(

0 1
α1Ω α2Ω

)
, with α1Ω = − K IΩ

J
and α2φ = − K PΩ

J
.

Remark 5.1 For simulation and experimental tests, the proportional-integral (PI)
controller, which has been widely used for the speed control, can be replaced by an
integral-proportional (IP) controller to limit transient phenomena. This is an impor-
tant industrial requirement if the reference is a step signal.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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Proposition 5.1 Consider the reduced induction motor model (5.4) under the action
of the flux controller (5.7) and the speed controller (5.12). The rotor speed tracking
error and the flux tracking error converge to zero exponentially as t tends to ∞.

Proof Let us consider the following candidate Lyapunov function

Vc = χT
φ Pφχφ + χT

Ω PΩχΩ. (5.16)

where PT
φ = Pφ > 0 and PT

Ω = PΩ > 0, are definite positive, respectively, solutions
of

Pφ Āφ + ĀT
φ Pφ = −Qφ and PΩ ĀΩ + ĀT

Ω PΩ = −QΩ.

with QΩ and Qφ suitable positive definite matrices. The time derivative of (5.16)
along with (5.10) and (5.15), yields

V̇c = χT
φ (Pφ Āφ + ĀT

φ Pφ)χφ + χT
Ω(PΩ ĀΩ + ĀT

Ω PΩ)χΩ

= −χT
φ Qφχφ − χT

Ω QΩχΩ.

This implies

V̇c ≤ −ηφχT
φ Pφχφ − ηΩχT

Ω PΩχΩ

where ηφ = λmin Qφ

λmax Pφ
, ηΩ = λmin QΩ

λmax PΩ

. Choosing δc = min(ηφ, ηΩ), then

V̇c ≤ −δcVc.

This shows that the tracking error exponentially converges to zero.

Remark 5.2 Our controller is a classical high-gain PI controllerwith additional terms
(see (5.7) and (5.12)) to improve the tracking performance. Its purpose is to guarantee
the boundedness of the state. The assumption that the IM state is bounded is not
required for the closed-loop system.

Summary 5.1 field-oriented control

vsd = K Ivd

∫ t

0
(i∗sd − isd)dt + K Pvd(i∗sd − isd)

vsq = K Ivq

∫ t

0
(i∗sq − isq)dt + K Pvq(i∗sq − isq)
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where

i∗sd = K Iφrd

∫ t

0
(φ∗ − φrd)(τ )dτ + K Pφrd (φ

∗ − φrd)

+ 1

aMsr
φ̇∗ + 1

Msr
φ∗

i∗sq = 1

KT

[
K IΩ

∫ t

0
(Ω∗ − Ω)(τ )dτ + K PΩ(Ω∗ − Ω)

]

+ 1

mφrd

[
Ω̇∗ + cΩ + T̂l

J

]
,

with

Ω∗ and φ∗ the speed and flux references, a = Rr/Lr , c = fv/J

and

K Ivd , K Pvd , K Iφrd , K Pφrd , K IΩ, K PΩ are the parameters to tune

with respect to the time constants of the motor.

5.2 Integral Backstepping Control and Field-Oriented
Control

The aim of this section is to design a control law combining the advantages of the
field-oriented controller strategy with the robustness properties of the backstepping
control, in order to track the desired reference (see the benchmark references defined
in Chap.1, Sect. 1.6).

The proposed controller is designed to regulate the rotor speed and the flux by
using the backstepping technique. This synthesis is carried out in two steps:

• First step: Speed and flux loops design
• Second step: Currents loops design.

It iswell known that the control performance of the inductionmotor is still affected
by the uncertainties such as mechanical parameter uncertainties, external load distur-
bance, nonideal field orientation in a transient state and unmodeled dynamics. The
speed/flux controllers and the current controllers are designed using an improved
backstepping strategy, which increases the robustness of the field-oriented control
for high-performance applications. In particular, in the sequel, the robustness of the
control law is increased with respect to the load disturbance by designing a new
integral backstepping algorithm.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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5.2.1 Speed and Flux Loops

Let us consider the reduced model of the induction motor given by

[
Ω̇
˙φrd

]
=

[
mφrd isq − cΩ − Tl

J−aφrd + aMsr isd

]
. (5.17)

This model is obtained using current controllers (defined later) and tuned to force
the stator currents isd and isq to quickly track their corresponding references i∗sd and
i∗sq . Consequently, references i∗sd and i∗sq can be considered as the new inputs of the
reduced model (5.17).

To solve the speed and flux tracking problems, define the tracking errors as

zΩ = Ω∗ − Ω + K ′
Ω

∫ t
0 (Ω∗ − Ω)dt

zφ = φ∗ − φrd + K ′
φ

∫ t
0 (φ∗ − φrd)dt.

Next, replacing the stator currents isq and isd by their respective desired references
i∗sq and i∗sd in (5.17), it follows that the dynamics of zΩ and zφ are

⎧⎪⎪⎨
⎪⎪⎩

żΩ = Ω̇∗ − mφrd i∗sq + cΩ + Tl

J
+ K ′

Ω(Ω∗ − Ω)

żφ = φ̇∗ + aφrd − aMsr i∗sd + K ′
φ(φ∗ − φrd).

(5.18)

Choosing the virtual control inputs i∗sq and i∗sd in (5.18) as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∗sq = 1

mφrd

[
Ω̇∗ + cΩ + KΩ zΩ + K ′

Ω(Ω∗ − Ω) + Tl

J

]

i∗sd = 1

aMsr

[
φ̇∗ + aφrd + Kφzφ + K ′

φ(φ∗ − φrd)
] (5.19)

where KΩ, K ′
Ω, Kφ, K ′

φ are positive parameters to be tuned, so (5.18) in closed loop
with the control actions (5.19) becomes

żΩ = −KΩ zΩ and żφ = −Kφzφ

It is easy to see that using the following candidate Lyapunov functions

VzΩ = 1

2
z2Ω, and Vzφ = 1

2
z2φ,
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their time derivatives along the trajectories of (5.18) are

V̇zΩ = −KΩ z2Ω, and V̇zφ = −Kφz2φ

which implies the exponential convergence to zero of the tracking errorswith, respec-
tively, arbitrary time constants K −1

Ω and K −1
φ .

5.2.2 Current Loops

Now,we show how to design a controller such that the stator currents, the rotor speed,
and the d-axis component of the rotor flux converge to the desired references.

Since in the first step, we have designed the virtual inputs (i∗sq and i∗sd ) to stabilize
the reduced model, now we shall design the control laws for the complete model.

We start the control design by introducing the following change of variable

ziq = i∗sq − isq + z′
iq

zid = i∗sd − isd + z′
id

z′
iq = K ′′

iq

∫ t
0 (i∗sq − isq)dt

z′
id = K ′′

id

∫ t
0 (i∗sd − isd)dt

(5.20)

where K ′′
iq and K ′′

id are tuning positive constants.
Consider the following candidate Lyapunov functions

⎧⎪⎨
⎪⎩

Vziq = VzΩ + 1

2
z2iq + 1

2
z′2

iq

Vzid = Vzφ + 1

2
z2id + 1

2
z′2

id .

(5.21)

Taking the timederivative along the trajectories of (5.18) and replacing the currents
(isq , isd ), it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̇zΩ = zΩ

[
Ω̇∗ − mφrd isq + cΩ + Tl

J
+ K ′

Ω(Ω∗ − Ω)

]

V̇zφ = zφ

[
φ̇∗ + aφrd − aMsr isd + K ′

φ(φ∗ − φrd)
]
.

(5.22)
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Since isq = −ziq + z′
iq + i∗sq and isd = −zid + z′

id + i∗sd , then (5.22) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V̇zΩ = zΩ

(
Ω̇∗ + mφrd ziq − mφrd z′

iq − mφrd i∗sq

)

+ zΩ

(
cΩ + Tl

J + K ′
Ω(Ω∗ − Ω)

)

V̇zφ = zφ

(
φ̇∗ + aφrd + aMsr zid − aMsr z′

id

)

− zφ

(
aMsr i∗sd + K ′

φ(φ∗ − φrd)
)

.

(5.23)

Substituting equation (5.19) into (5.23), it follows that

{
V̇zΩ = −KΩ z2Ω + mφrd zΩ ziq − mφrd z′

iq zΩ

V̇zφ = −Kφz2φ + aMsr zφzid − aMsr z′
id zφ.

(5.24)

Replacing (5.24) in V̇ziq and V̇zid , we have

{
V̇ziq = −KΩ z2Ω + ziq(mφrd zΩ + żiq) + z′

iq(−mφrd zΩ + ż′
iq)

V̇zid = −Kφz2φ + zid(aMsr zφ + żid) + z′
id(−aMsr zφ + ż′

id).
(5.25)

Choosing the following equalities

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mφrd zΩ + żiq = −Kiq ziq

−mφrd zΩ + ż′
iq = −K ′

iq z′
iq

aMsr zφ + żid = −Kid zid

−aMsr zφ + ż′
id = −K ′

id z′
id

(5.26)

where Kiq , K ′
iq , Kid , and K ′

id are positive constants, satisfying the following inequal-
ities Kiq > K ′

iq and Kid > K ′
id ; it implies that

V̇ziq ≤ 0 and V̇ziq ≤ 0.

From the FOC strategy, with φrq = 0, and since

żiq = i̇∗sq − i̇sq + ż′
iq and żid = i̇∗sd − i̇sd + ż′

id ,

the following dynamics are obtained

⎧⎨
⎩

żiq = i̇∗sq − i̇sq − K ′
iq z′

iq + mφrd zΩ

żid = i̇∗sd − i̇sd − K ′
id z′

id + aMsr zφ.

(5.27)
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According to (1.128), (5.26), and (5.27), the controllers are defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

usq = 1

m1

(
Kiq ziq − K ′

iq z′
iq + 2mφrd zΩ + bpΩφrd + γisq + ωs isd + i̇∗sq

)

usd = 1

m1

(
Kid zid − K ′

id z′
id + 2aMsr zφ − baφrd + γisd − ωs isq + i̇∗sd

)
.

(5.28)
with the reference currents given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∗sq = 1

mφrd

[
Ω̇∗ + cΩ + KΩ zΩ + K ′

Ω(Ω∗ − Ω) + Tl

J

]

i∗sd = 1

aMsr

[
φ̇∗ + aφrd + Kφzφ + K ′

φ(φ∗ − φrd)
]
.

(5.29)

The above procedure can be summarized by the following proposition:

Proposition 5.2 Consider the reduced order model of the induction motor repre-
sented by (5.17) with the reference signals i∗sq , i∗sd , Ω∗, and φ∗, and assume that
they are differentiable and bounded. Then, system (5.17) in closed loop with the
rotor speed, rotor flux, and the current tracking laws (5.19)–(5.28) is asymptotically
stable.

This proposition can be proved by considering the following Lyapunov candidate
function

Vc = VzΩ + Vzφ + Vziq + Vzid

= z2Ω + z2φ + 1

2
z2iq + 1

2
z′

iq
2 + 1

2
z2id + 1

2
z′

id
2.

(5.30)

Taking the time derivative of (5.30), and replacing the suitable terms, we obtain

V̇c = −2KΩ z2Ω − 2Kφz2φ − Kiq z2iq − K ′
iq z′2

iq − Kid z2id − K ′
id z′2

id < 0.

This implies that the tracking errors asymptotically converge to zero as t tends
to ∞. Hence, the stator currents, rotor speed, and the d-axis component of the rotor
flux converge to the desired references.

In Fig. 5.1 is shown the integral backstepping control scheme. This can be sum-
marized as follows:

Summary 5.2 Integral Backstepping Control

usq = 1

m1

(
Kiq ziq − K ′

iq z′
iq + 2mφrd zΩ + bpΩφrd

+ γisq + ωs isd + i̇∗sq

)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 5.1 Integral backstepping controller diagram

usd = 1

m1

(
Kid zid − K ′

id z′
id + 2aMsr zφ − baφrd

+ γisd − ωs isq + i̇∗sd

)

where

zΩ = Ω∗ − Ω + K ′
Ω

∫ t

0
(Ω∗ − Ω)dt

zφ = φ∗ − φrd + K ′
φ

∫ t

0
(φ∗ − φrd)dt

ziq = i∗sq − isq + z′
iq , zid = i∗sd − isd + z′

id

z′
iq = K ′′

iq

∫ t

0
(i∗sq − isq)dt, z′

id = K ′′
id

∫ t

0
(i∗sd − isd)dt

wi th

a = Rr/Lr , b = Msr/σLs Lr , c = fv/J, γ = L2
r Rs + M2

sr Rr

σLs L2
r

,

σ = 1 − (M2
sr/Ls Lr ), m = pMsr/JLr , m1 = 1/σLs

i∗sq and i∗sd f rom (5.29)

and

Kiq , K ′
iq , K ′′

iq , Kid , K ′
id , K ′′

id are the parameters to tune with

respect to the electrical time constants of the motor.

Notice that, the above control scheme to be implemented requires not only the rotor
speed, the d-axis component of the rotor flux, and the stator currents measurements,
but also the knowledge of the torque load Tl and the rotor resistance Rr . As we



5.2 Integral Backstepping Control and Field-Oriented Control 155

shall see in Chap.7, using an adaptive interconnected observer, the estimation of
these variables/parameters will be used to guarantee the stability of the observer–
controller scheme in closed loop in spite of the uncertainties and sudden changes of
the load torque.

5.3 High-Order Sliding Mode Control

5.3.1 Introduction

The purpose of this section is to design high-order sliding mode (HOSM) based rotor
speed and flux controllers for the induction motor (Fig. 5.2). One of the problems
of the sliding mode control (or observer) of order 1 is the effect of the chattering
phenomenon. This is described as the appearance of oscillations of finite frequency
and finite amplitude. These oscillations are caused by the high-frequency switch-
ing of the first-order sliding mode control that can excite unmodeled dynamics, like
sensors and actuators dynamics, which are generally neglected in the system model-
ing. These dynamics are generally faster than the system dynamics. The chattering
phenomenon is also induced by the uncertainties and the perturbations that force
the system dynamics to leave the sliding mode (i.e., to leave the sliding reference
surface), inducing a discontinuous control action.

Taking into account the chattering problem, a solution to avoid these effects is
the use of a high-order sliding mode (HOSM) control, where the chattering effect is
considerably reduced in the control action.

5.3.2 Application to the Induction Motor Control

The speed and current controllers based on the backstepping methodology, pre-
sented in the previous sections, have an exponential convergence with arbitrary rate

Fig. 5.2 High-order sliding mode controller diagram

http://dx.doi.org/10.1007/978-3-319-14586-0_7
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convergence. We show how to design a robust rotor flux and speed controller based
on the sliding mode techniques for the induction motor, in presence of uncertain-
ties and disturbances. At this step, it is assumed that all the variables are available
by measurement, and that all the parameters are known. This strategy implies that
the controlled variables convergence to the desired references is in finite time. Con-
trary to the other controls design based on the sliding mode techniques, the time of
convergence of the proposed controller is determined a priori by the designer.

We begin the design by following the FOC strategy previously introduced. Define
the following sliding variables σφ and σΩ as:

σφ = φrd − φ∗ and σΩ = Ω − Ω∗.

From the IM model (1.108), the relative degrees of the two new outputs σφ and σΩ

with respect to the input u (the voltages usd and usq ) are equal to 2 (r = 2), which
implies that at least a second-order sliding mode controller can be designed for the
flux and speed tracking.

Regarding the chattering problem, to improve the robustness of the controller and
to reduce these effects, we start the procedure according to the HOSM algorithm,
given in Appendix “Appendix: A HOSM Algorithm”, where third-order HOSM
controllers are designed for the two new outputs σφ and σΩ .

This means that through the discontinuous control u̇, which will be applied, the
chattering effect on the system will be reduced.

Furthermore, by forcing σ
(3)
φ and σ

(3)
Ω to track the reference trajectories Fφ and

FΩ , (defined in Appendix “Appendix: A HOSM Algorithm”), implies that σ(2)
φ and

σ
(2)
Ω tend to zero in a pre-fixed finite time t f , in spite of uncertainties and disturbances.

Then, the dynamics of φ
(2)
rd and Ω(2) are given by

[
φ

(2)
rd

Ω(2)

]
=

[
ϕα1

ϕα2

]
+ ϕβ

[
usd

usq

]
(5.31)

where ϕα1 and ϕα2 are expressed as

ϕα1 = −aφ̇rd + (ωs − pΩ)φ̇rq

+ aMsr
(
(baφrq − bpΩφrd − γisq − ωs isd)φrd − isq φ̇rd

)

φ2
rd

φrq

+ aMsr (baφrd + bpΩφrq − γisd + ωs isq), (5.32)

ϕα2 = m
[
φ̇rd isq + φrd(baφrq − bpΩφrd − γisq − ωs isd)

− φ̇rq isd − φrq(baφrd + bpΩφrq − γisd + ωs isq)
] − cΩ̇ − Ṫl

J
,

(5.33)

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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and the matrix ϕβ

ϕβ =
⎡
⎣ aMsr m1 aMsr m1

φrq

φrd−mm1φrq mm1φrd

⎤
⎦ . (5.34)

Following the flux-oriented control strategy, the q-axis component of the rotor
flux is forced to zero, i.e., φrq = 0, then ϕα1 , ϕα2 , and ϕβ are given by

ϕα1 = −a2Msr isd + a2φrd − a(ωs − pΩ)φrq

+ aMsr (baφrd − γisd + ωs isq)

ϕα2 = m
[
(aMsr isd − aφrd + (ωs − pΩ)φrq)isq

− φrd(bpΩφrd + γisq + ωs isd)
] − cΩ̇ − Ṫl

J

and

ϕβ =
[

aMsr m1 0
0 mm1φrd

]
.

Remark 5.3 As recalled previously, it is clear that no torque can be obtained as long
as the IM rotor flux is zero. This physical constraint induces the singularity for the
IM control.

Taking into account the parameters uncertainties, the functions ϕα1 , ϕα2 , and ϕβ

can be written as
ϕα1 = ϕNom

α1 + Δϕα1 (5.35)

ϕα2 = ϕNom
α2 + Δϕα2 (5.36)

ϕβ = ϕNom
β + Δϕβ (5.37)

where ϕNom
α1 , ϕNom

α2 , and ϕNom
β are the well-known nominal terms whereas Δϕα1,

Δϕα2 (including Ṫl/J ), and Δϕβ contain all the uncertainties due to the parameters
variations and the torque disturbance. In practice, these uncertainties are bounded.
As the matrix ϕNom

β is invertible on the operation domain (φrd �= 0), then the control

input u is given by1

[
usd

usq

]
=

(
ϕNom

β

)−1
[
−

[
ϕNom

α1

ϕNom
α2

]
+

[
νsd

νsq

]]
. (5.38)

From (5.31) to (5.38), switching variables dynamics are defined by

1 The interest of a such feedback, which has been detailed in [13], is that it allows to minimize gain
values of the control discontinuous function.
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[
φ

(2)
rd

Ω(2)

]
= Ψα + Ψβ

[
νsd

νsq

]
. (5.39)

It is clear that functions ϕNom
α1

, ϕNom
α1

and the components of the matrix ϕNom
β

are bounded C1-functions in the operation domain DIM of IM (Definition 3.7).
This implies that the components of the vector Ψα and the matrix Ψβ are uncertain
bounded C1-functions.

Taking the time derivative of σ
(3)
φ and σ

(3)
Ω , it follows that

⎡
⎣σ(3)

φ

σ
(3)
Ω

⎤
⎦ = Ψ̇α + Ψ̇β

[
νsd

νsq

]
−

[
φ∗(3)

Ω∗(3)

]

︸ ︷︷ ︸
ϕ1

+ Ψβ︸︷︷︸
ϕ2

[
ν̇sd

ν̇sq

]
(5.40)

= ϕ1 + ϕ2 · ν̇. (5.41)

Note that previous system has the same form that system (4.26). As mentioned in
previous subsection, the HOSM control synthesis is made in two steps.

Step 1. Switching vector

To design the switching vector, we follow the procedure given in Appendix
“Appendix: A HOSM Algorithm”. First, define the finite time of convergence t f ,
and from (4.67) and Theorem 4.2, the switching vector is defined as

• For t ≤ t f , the switching variables are

Sφ = σ
(2)
φ − χφ

SΩ = σ
(2)
Ω − χΩ

where

χφ = KφF2eFt T σφ(0) − 2ζφωnφ(σ̇φ − KφFeFt T σφ(0))

− ω2
nφ(σφ − KφeFt T σφ(0)) (5.42)

and

χΩ = KΩ F2eFt T σΩ(0) − 2ζΩωnΩ(σ̇Ω − KΩ FeFt T σΩ(0))

− ω2
nΩ(σΩ − KΩeFt T σΩ(0)). (5.43)

• For t > t f , the resulting switching variables are given by

Sφ = σ
(2)
φ + 2ζφωnφσ̇φ + ω2

nφσφ (5.44)

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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and
SΩ = σ

(2)
Ω + 2ζΩωnΩ σ̇Ω + ω2

nΩσΩ (5.45)

where
Kφ =

[
σ

(2)
φ (0) 0 σ̇φ(0) 0 σφ(0) 0

]
(Kφ)−1, (5.46)

KΩ =
[
σ

(2)
Ω (0) 0 σ̇Ω(0) 0 σΩ(0) 0

]
(KΩ)−1, (5.47)

and

Kφ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F2T σφ(0)
F2eFt f T
FT σφ(0)
FeFt f T
T σφ(0)
eFt f T

⎤
⎥⎥⎥⎥⎥⎥⎦

T

, KΩ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F2T σΩ(0)
F2eFt f T
FT σΩ(0)
FeFt f T
T σΩ(0)
eFt f T

⎤
⎥⎥⎥⎥⎥⎥⎦

T

. (5.48)

Notice that these matrices depend on the initial value of σφ(0) and σΩ(0). Fur-
thermore, according to Lemma 4.2 (see [77] for more details) the matrix F and the
vector T are choosen as follows:

T = [
1
]
6×1 , F = Diag [−(1 + i)]6×6 , for 0 ≤ i ≤ 5.

Step 2. Discontinuous Input Design

The discontinuous control ν̇ is
[

ν̇sd

ν̇sq

]
=

[ −αφsign(Sφ)

−αΩsign(SΩ)

]
, (5.49)

where αφ and αΩ are the controller gains to tune.
Then, replacing the discontinuous control (5.49) in (5.40), we obtain

[
Ṡφ

ṠΩ

]
= ϕ1 + ϕ2ν̇ −

[
χφ

χΩ

]
. (5.50)

By using the same procedure established in Theorem 4.2 (see Appendix
“Appendix: A HOSM Algorithm”), there exist gains αφ and αΩ such that the time
derivatives of the Lyapunov function

Wφ = ST
φ Sφ and WΩ = ST

Ω SΩ

satisfy the inequalities

Ẇφ = ṠφSφ ≤ −ηφ|Sφ| ≤ −ηφ

√
Wφ (5.51)

http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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and
ẆΩ = ṠΩ SΩ ≤ −ηΩ |SΩ | ≤ −ηΩ

√
WΩ. (5.52)

Integrating the above inequalities gives

√
Wφ(t) ≤

√
Wφ(t0) − ηφ

2
t (5.53)

and √
WΩ(t) ≤ √

WΩ(t0) − ηΩ

2
t. (5.54)

Let
√

Wφ(t0) − ηφ

2
t f,φ = 0 and

√
WΩ(t0) − ηΩ

2
t f,Ω = 0, then the convergence

time is given by

t f,φ = 2
√

Wφ(t0)

ηφ
(5.55)

and

t f,Ω = 2
√

WΩ(t0)

ηΩ

. (5.56)

Choosing t f = max(t f,φ, t f,Ω), then the convergence in finite time of the tracking
dynamics is guaranteed.

Remark 5.4 The terms (−cΩ̇ − Ṫl/J ) can be added in ϕαNom
2

if they are estimated,
thanks to an observer. Otherwise, these terms are added to the uncertainties Δϕα2
(5.36) to reject by the controller.

Summary 5.3 IM high-order sliding mode control

[
usd

usq

]
= (ϕNom

β )−1
[
−

[
ϕNom

α1

ϕNom
α2

]
+

[
νsd

νsq

]]

where

ϕαNom
1

= −a2Msr isd + a2φrd − a(ωs − pΩ)φrq

+ aMsr (baφrd − γisd + ωs isq)

ϕαNom
2

= m[(aMsr isd − aφrd + (ωs − pΩ)φrq)isq

− φrd(bpΩφrd + γisq + ωs isd)]
ϕβ =

[
aMsr m1 0

0 mm1φrd

]
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and

[
ν̇sd

ν̇sq

]
=

[ −αφ.sign(Sφ)

−αΩ.sign(SΩ)

]
,

wi th

a = Rr/Lr , b = Msr/σLs Lr , c = fv/J, γ = L2
r Rs + M2

sr Rr

σLs L2
r

,

σ = 1 − (M2
sr/Ls Lr ), m = pMsr/J Lr , m1 = 1/σLs

and

αφ,αΩ are parameters to be tuned following (4.70). (5.57)

Notice that the implementation of the HOSM controller requires the knowledge
of the rotor speed, the stator currents, the d-axis component of the rotor flux, the load
torque, and the rotor resistance. As we shall see in Chap. 7, the adaptive intercon-
nected observer given in Chap.3 can be used to replace the unmeasured variables
by its estimates. Furthermore, a stability analysis of the closed-loop system will be
presented in order to ensure the convergence to the reference variables without these
measurements.

5.4 Conclusions

Two control methodologies for designing IM machines robust controllers are pre-
sented in this chapter. One of these designs is based on an improved version of the
classical backstepping control design, and the second one is based on high-order
sliding mode techniques. It is clear that there is a trade-off between the performance
and the complexity of the controller. However, as it will be introduced in the fol-
lowing chapters, the requirements to implement it, the computational cost, and the
simplicity to tune the controllers are the keys to select the better controller.

Furthermore, the control algorithmswhich have been presented have assumed that
all variables are measurable. However, if they are not available, they can be replaced
by their estimates given by an observer including the unknown load torque. It is clear
that the properties of the tracking convergence (asymptotic or in finite time) can be
ensured locally if the observer estimation errors decay (asymptotically or in finite
time) to zero. This problem will be studied in Chap.7.

http://dx.doi.org/10.1007/978-3-319-14586-0_7
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_7
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5.5 Bibliographical Notes

As noted in Chap.4, the principles of modern AC machines control can be found in
the classical books [17, 60], where the field-oriented control algorithm appears as a
seminal control strategy [7].

Owing to the intrinsic difficulty to precisely reconstruct the unmeasured variables
of the AC machines, the robustness of the controllers is a required property. Thus,
new robust nonlinear controllers can be employed, thanks to their high-performance
properties.

A brief outline of the main research directions for the robust control of the induc-
tion motor is given in the following:

The field-oriented control strategy has been improved by many papers among
them [85]2 partially used in this chapter and where nonlinear compensation terms
complete the classical PI controllers.

Control methods based on the approximate linearization around an equilibrium
point have been studied in [49]. These methods are not adapted to the trajectory
tracking in the whole working domain of the controlled machine. Themore complete
method of the exact input–output linearization technique has been developed in [8,
15, 16, 17].

The IM adaptive control is proposed in [56, 68, 82]. The backstepping control
algorithm [53] has been carried out in [63, 79]. Recently the FOC strategy has been
combined with the backstepping control. Furthermore, an integral term has been
added, at each step of the backstepping algorithm, to increase the robustness of the
above combination of controllers [88].3

The sliding mode control has also been applied in [1, 2, 57, 58, 81, 95]. An
extended approach is the high-order sliding mode control. This strategy allows
finite time control, andmoreover, significantly reduces the “chattering phenomenon”
induced by the basic sliding mode. The chattering implies finite frequency and finite
amplitude oscillations appearing when the basic sliding mode algorithm is imple-
mented. In [77], an high-order sliding mode control algorithm has been introduced
that allows a priori choice of the finite time of convergence. In [86],4 for the induction
motor, this algorithm is applied to design a high-order sliding mode (HOSM) based
rotor speed and flux controllers.

2 This chapter includes excerpts of “Traore D, De Leon J, Glumineau A, Loron L (2007) Speed
sensorless field-oriented control of induction motor with interconnected observers: experimental
tests on low frequencies benchmark. IET control theory applications, 1–6(10):1681–1692, DOI
10.1049/iet-cta.2009.0648” with permission from IET.
3 This chapter includes excerpts of “Traore D, De Leon J, Glumineau A (2010) Sensorless induction
motor adaptive observer-backstepping controller: experimental robustness tests on low frequencies
benchmark. IET Control Theory Applications 4(10):1989–2002, DOI 10.1049/iet-cta.2009.0648”
with permission from IET.
4 This chapter includes excerpts of [86], (2008) IEEE. Reprinted, with permission, from “Traore
D, Plestan F, Glumineau A, de Leon J (2008) Sensorless induction motor: High-order sliding
mode controller and adaptive interconnected observer. IEEE Transactions on Industrial Electronics,
55(11):3818–3827”.

http://dx.doi.org/10.1007/978-3-319-14586-0_4


Chapter 6
Sensorless Output Feedback Control
for SPMSM and IPMSM

Abstract In this chapter, the observers previously designed in Chap. 3 are associated
with the control strategies proposed in Chap. 4, in order to achieve the SPMSM and
the IPMSM sensorless controls. These observer-control schemes assume that only
the currents and the voltages are available from measurements. Furthermore, these
schemes are tested on the benchmarks specified in Chap. 1, Sect. 1.6. The first part of
this chapter is devoted to the observer-control scheme where the control is designed
using the backstepping techniques, and in the second part, the controller is designed
using high order sliding mode techniques. For the backstepping control case, an
observer-controller scheme applied to the SPMSM is constituted by a backstepping
controller combined with an adaptive interconnected observer. Next, for the IPMSM,
an adaptive interconnected observer combined with an integral backstepping con-
troller is introduced. For both control-observer schemes, sufficient conditions are
obtained to ensure the tracking stability of the closed-loop systems. For the high
order sliding mode control case, first for the SPMSM, a sliding mode observer is
associated with a quasi continuous high order sliding mode controller. Next, for the
IPMSM, an observer-control scheme constituted of an adaptive observer combined
with a finite time convergence high order sliding mode controller, by following a Max-
imum Torque Per Ampere (MTPA) strategy, is analyzed. Thanks to the benchmark
trajectories previously introduced in Chap. 1, Sect. 1.6, significant simulation results
illustrate the robustness and performance of all these observer-controller schemes.

6.1 Robust Adaptive Backstepping Sensorless Control

6.1.1 SPMSM Case

In this section, we present on how to implement a robust sensorless speed observer-
controller scheme for a Surface Permanent Magnet Synchronous Motor (SPMSM).
This observer-controller strategy combines an adaptive high gain interconnected
observer (see Sect. 3.2) with a nonlinear backstepping controller (see Sect. 4.1.1).
Furthermore, the advantages of the proposed scheme are shown.

© Springer International Publishing Switzerland 2015
A. Glumineau and J. de León Morales, Sensorless AC Electric Motor Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-14586-0_6
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In the proposed scheme, the adaptive high gain interconnected observer only
requires the supply of the electrical measurements, the stator currents and the stator
voltages, and provides the estimation of the rotor speed, the stator resistance, and the
load torque as well. In this section, the stability of the whole closed-loop system is
analyzed, taking into account that the rotor speed and the load torque are replaced in
the control law by their estimated values. The tracking dynamics convergence of the
complete scheme is analyzed using the Lyapunov theory, and sufficient conditions
are given to ensure the stability of the closed-loop system.

This observer-controller scheme is implemented to control the motor with load
(see Fig. 6.1) and tested via simulation on an industrial benchmark in order to illustrate
its performance. The trajectories of the benchmark were chosen to test the motor
under unobservability conditions. Some robustness tests are carried out to show the
robustness of the observer-controller scheme.

To analyze the stability of the closed-loop system, consider the following
Lyapunov function candidate:

Voc = Vo + Vc (6.1)

which is composed of the Lyapunov function Vc associated with the backstepping
controller (Chap. 4, Sect. 4.1.1), and Vo for the adaptive interconnected observer, as
shown in Chap. 3, Sect. 3.2, which are given by

Vo = εT
1 Sx1ε1 + εT

2 Sx2ε2 + εT
3 Sτ ε3,

Vc = 1
2 z2

1 + 1
2 z2

2 + 1
2 z2

3.
(6.2)

Fig. 6.1 Adaptive high gain observer and backstepping controller for SPMSM

http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_3
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Notice that the time derivative of Vo associated with the observer (see [22]) is
given by

V̇o ≤ −δVo + μψ
√

Vo. (6.3)

On the other hand, taking the time derivative of Voc and replacing the state esti-
mates (X̂) provided by the adaptive interconnected observer in the control inputs vsq

and vsd design, we obtain

V̇oc = −w1z2
1 + z2{z1 + β2 + Kvsq(X̂)}

+ z3{− Rs

Ls
isd + pΩisq + 1

Ls
vsd(X̂)}. (6.4)

Adding the terms ±vsq(X) and ±vsd(X) in (6.4), and after straightforward
computations, it follows that

V̇oc ≤ −w1z2
1 − w2z2

2 − w3z2
3 + K |z2||vsq(X̂) − vsq(X)|

+ 1

Ls
|z3||vsd(X̂) − vsd(X)|.

On the practical domain DS (see Definition 3.6 in Chap. 3) it is easy to see that the
terms |vsq(X̂)−vsq(X)| and |vsd(X̂)−vsd(X)| satisfy the Lipschitz conditions, i.e.,

|vsq(X̂) − vsq(X)| ≤ L1{‖ε1‖Sρx1
+ ‖ε2‖Sρx2

+ ‖ε3‖Sρτ
}

|vsd(X̂) − vsd(X)| ≤ L2{‖ε1‖Sρx1
+ ‖ε2‖Sρx2

+ ‖ε3‖Sρτ
} (6.5)

where L1 and L2 are the associated Lipschitz constants. Using the following
inequalities:

|z j | ‖ε1‖Sρx1
≤ ξ j1

2
‖ε1‖2

Sρx1
+ 1

2ξ j1
z2

j

|z j | ‖ε2‖Sρx2
≤ ξ j2

2
‖ε2‖2

Sρx2
+ 1

2ξ j2
z2

j

|z j | ‖ε3‖Sρτ
≤ ξ j3

2
‖ε3‖2

Sρτ
+ 1

2ξ j3
z2

j ,

(6.6)

for j = 2, 3; it follows that the time derivative of Voc satisfies

V̇oc ≤ −δVo + μψ
√

Vo + ϑ1 ‖ε1‖2
Sρx1

+ ϑ2 ‖ε2‖2
Sρx2

+ϑ3 ‖ε3‖2
Sρτ

− ϑ4z2
1 − ϑ5z2

2 − ϑ6z2
3

(6.7)

where

ϑ1 =
(

L1 K

2
+ L2

2Ls

)
{ξ21 + ξ31}, ϑ2 =

(
L1 K

2
+ L2

2Ls

)
{ξ22 + ξ32},

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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ϑ3 =
(

L1 K

2
+ L2

2Ls

)
{ξ23 + ξ33}, ϑ4 = w1,

ϑ5 = w2 − L1 K

2

{
1

ξ21
+ 1

ξ22
+ 1

ξ23

}
, ϑ6 = w3 − L2

2Ls

{
1

ξ31
+ 1

ξ32
+ 1

ξ33

}
.

Taking ϑO = max(ϑ1,ϑ2,ϑ3) and ϑC = min(ϑ4,ϑ5,ϑ6), the inequality (6.7)
can be expressed as

V̇oc ≤ −(δ − ϑO)Vo + μψ
√

Vo − ϑC (z2
1 + z2

2 + z2
3) (6.8)

and choosing η = min(δ − ϑO ,ϑC ), we obtain

V̇oc ≤ −ηVoc + μψ
√

Voc. (6.9)

It is easy to see that after the following change of variable voc = 2
√

Voc, and
taking the time derivative of voc, we obtain

v̇oc ≤ −ηvoc + ψμ. (6.10)

From the solution of (6.10), i.e.,

voc = voc(t0)e
−η(t−t0) + ψμ

η

(
1 − e−η(t−t0)

)
, (6.11)

and applying Corollary 3.1 (Chap. 3), the estimation and tracking errors of the closed-
loop system converge toward a ball B�oc of radius �oc with �oc = ψμ

η . This ensures
the strong uniform practical stability of the closed-loop system.

The performance of the closed-loop error system is summarized in the following
theorem.

Theorem 6.1 The adaptive high gain interconnected observer (3.110) combined
with the backstepping controller (Summary 4.1.1) is a sensorless adaptive observer-
controller for the extended model of the SPMSM (1.119), where the estimation errors
and the tracking error dynamics are strongly uniformly practically stable.

6.1.1.1 Simulation Results

Now, the observer-controller scheme is applied to control the SPMSM and tested in
simulation, using the Simulink/MatLab software, in order to show the performance
of this strategy.

The parameters of the SPMSM are given in Table 6.1.
The observer gains are tuned to satisfy the convergence conditions, as in [86].

The controller gains are chosen with respect to the open-loop time constants of the
mechanical and the electrical dynamics.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Table 6.1 SPMS motor
parameters

Current 9.67 A Torque 9 Nm

Speed 3,000 rpm Ψr 0.1814 Wb

Rs 0.45 ohm Ls 3.425 mH

J 0.00679 kg m2 fv 0.0034 kg m2/s

p 3

Summary 6.1.1 Tuning parameters

Adaptive Interconnected Observer

� = 80, k = 0.05, kc1 = 0.001, kc2 = 0.1, ρ1 = 2,500,

ρx = 6,000, ρθ = 100, kc2 = 0.01,α = 0.1.

Backstepping Controller

w1 = 1,000 rad/s, w2 = 1,000 rad/s and w3 = 1,500 rad/s.

The SPMSM model controlled by the observer-controller scheme has been tested
according to a sensorless industrial benchmark introduced in Chap. 1 (see Sect. 1.6).
The rotor speed and the load torque references are plotted: see Fig. 6.2.

In this section, nominal case means that the controller and the observer are
designed by using the same parameters as the motor model parameters but the initial
conditions can be selected arbitrarily in the operation domain DS . In Fig. 6.3a is
displayed the rotor speed and its reference for the nominal case, and the motor is
loaded following the benchmark trajectories.
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Fig. 6.2 Reference trajectories of the sensorless industrial benchmark. a Speed reference. b Load
torque

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 6.4 Nominal case. a Estimated speed. b Speed estimation error

The rotor speed tracking is very efficient as displayed by Fig. 6.3b, which shows
the speed error (speed reference-measured speed). The measured rotor speed is used
in simulations only for comparison purpose. Of course, only the estimated rotor
speed is supplied to the controller. In addition, Fig. 6.4a shows the estimated and the
measured speeds. The speed error is shown in Fig. 6.4b. From simulation results, it is



6.1 Robust Adaptive Backstepping Sensorless Control 169

R
es

is
ta

nc
e 

(o
hm

)

0.255

0.26

0.25

0.275

0.27

0.265

0.28

0.285

0.29

0.295

0.3

R
es

is
ta

nc
e 

er
ro

r 
(o

hm
)

-0.04

-0.035

-0.045

-0.02

-0.025

-0.03

-0.015

-0.01

-0.005

0

0.005

Rs
Rs obs

Time (s)
0 4 6 8 10 14122

Time (s)
0 4 6 8 10 14122

(a) (b)

Fig. 6.5 Resistance estimation. a Estimated resistance. b Resistance estimation error
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Fig. 6.6 Load torque estimation. a Estimated and applied load torques. b Load torque estimation
error

clear that the observer has good performance. Figures 6.5 and 6.6 display the stator
resistance and load torque estimation, respectively, for the nominal case.

Now, in order to illustrate the robustness of the sensorless control scheme, the
influence of parameter deviations is investigated. Parameter deviations are inten-
tionally introduced in the observer-controller scheme. First, a resistance variation of
+50 % with full load torque application is carried out. The results for this case are
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Fig. 6.7 Case +50 %Rs . a Estimated and real speeds. b Speed estimation error
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Fig. 6.8 Case +50 % Rs . a Estimated and real resistances. b Resistance estimation error

displayed in Figs. 6.7, 6.8 and 6.9 showing the speed, resistance, and load torque
estimation, respectively.

Figure 6.10 shows the estimated speed for a variation of −50 % introduced in the
resistance value with fully loaded motor. Furthermore, the resistance and load torque
estimation are exhibited in Figs. 6.11 and 6.12, respectively. The results reveal the
efficiency of the proposed observer-controller scheme.
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Fig. 6.9 Load torque estimation, case +50 % Rs . a Estimated and applied load torques. b Load
torque estimation error
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Fig. 6.10 Case −50 % Rs . a Estimated and real speeds. b Speed estimation error

Conclusions

A robust sensorless speed observer-control scheme for a surface PMSM has been
designed by combining an adaptive high gain interconnected observer that estimates
the rotor speed and the position, and that identifies the stator resistance and the load
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Fig. 6.12 Load torque estimation, case −50 % Rs . a Estimated and applied load torques. b Load
torque estimation error

torque simultaneously, with a backstepping controller forcing the rotor speed and
the stator currents to track the desired references. Sufficient conditions have been
given to ensure the practical stability of the estimation and the tracking errors. The
closed-loop system has been tested by simulation on an industrial benchmark, where
the proposed controller-observer scheme shows good performance in spite of the
uncertainties and the unknown load torque.
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6.1.2 IPMSM Case

In this section, a sensorless speed control for the IPMSM is designed by com-
bining an adaptive interconnected observer, proposed in Sect. 3.2.2, and a robust
backstepping controller with integral actions, introduced in Sect. 4.1.2. The total
observer-controller-system scheme is shown in Fig. 6.13.

The stability of the closed-loop system with the observer-controller scheme is
analyzed and sufficient conditions are given to guarantee the practical stability. The
performance of the proposed scheme under parametric uncertainties, the unknown
load torque and at low speed, are illustrated via simulation results. Furthermore, a
comparative study is considered where the proposed integral backstepping control
is compared with the classical backstepping controller.

Stability Analysis of Observer-Controller in Spite of Uncertain Parameters
and Unknown Load Torque

We start the stability analysis of the system in closed-loop with the observer-controller
scheme, by considering the following candidate Lyapunov function:

Voc = Vo + Vc (6.12)

where Vc is the Lyapunov function of the controlled system defined as

Vc = Vd + Vq

= 1

2

[
z2
Ω + z2

q + z′2
q + z2

d + z′2
d

] (6.13)

Fig. 6.13 Adaptive interconnected observer and integral backstepping controller

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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and Vo is the Lyapunov function associated to the observer dynamics given by

Vo = εT
1 S1ε1 + εT

2 S2ε3 + εT
3 S3ε3. (6.14)

The time derivative of Vo is given by

V̇o ≤ −δVo + μψo

√
Vo, (6.15)

for suitable positive constants coefficients δ,μ,ψo (see [38]).
Taking into account that the control laws are function of the estimates provided

by the observer, the time derivative of Vc is

V̇c = −kΩ z2
Ω + zq

{
di∗sq

dt
+ Rs

Lq
isq + p

Ld

Lq
Ωid + p

1

Lq
Φ f Ω

− 1

Lq
vsq(X̂) + k′

q(i∗sq − isq) + k′
q(i∗sq − isq)

}
+ z′

qk′
q(i∗q − isq)

+ zd

{
Rs

Ld
isd − p

Lq

Ld
Ωisq − 1

Ld
vsd(X̂)

}
+ k′

d{zd + z′
d}{zd − z′

d}.
(6.16)

Adding the terms ±vsq(X) and ±vsd(X) in the above equation, it follows that

V̇c = −kΩ z2
Ω − {kq − k′

q}z2
q − k′

q z′2
q − 1

Lq
zq{vsq(X̂) − vsq(X)}

− {kd − k′
d}z2

d − k′
d z′2

d − 1

Ld
zd{vsd(X̂) − vsd(X)}.

(6.17)

Introducing the following inequalities:

|z j | ‖ε1‖s1 ≤ ξ j1

2
‖ε1‖2

s1
+ 1

2ξ j1
|z j |2

|z j | ‖ε2‖s2 ≤ ξ j2

2
‖ε2‖2

s2
+ 1

2ξ j2
|z j |2

|z j | ‖ε3‖s3 ≤ ξ j3

2
‖ε3‖2

s3
+ 1

2ξ j3
|z j |2

|vsq(X̂) − vsq(X)| ≤ L1{‖ε1‖s1 + ‖ε2‖s2 + ‖ε3‖s3}
|vsd(X̂) − vsd(X)| ≤ L2{‖ε1‖s1 + ‖ε2‖s2 + ‖ε3‖s3}

(6.18)

∀ ξ j1, ξ j2, ξ j3 ∈ ]0 1[; for j = q, d; where L1 and L2 are the Lipschitz constants.
Taking the time derivative of (6.12), and substituting (6.15)–(6.18) yields

V̇oc ≤ −δVo + μψo
√

Vo + ϑ1 ‖ε1‖2
s1

+ ϑ2 ‖ε2‖2
s2

+ ϑ3 ‖ε3‖2
s3

−ϑ4z2
Ω − ϑ5z2

q − ϑ6z′2
q − ϑ7z2

d − ϑ8z′2
d

(6.19)
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where

ϑ1 = L1ξq1

2Lq
+ L2ξd1

2Ld
, ϑ2 = L1ξq2

2Lq
+ L2ξd2

2Ld
,

ϑ3 = L1ξq3

2Lq
+ L2ξd3

2Ld
, ϑ4 = kΩ,

ϑ5 = {kq − k′
q} − L1

2Lq

{
1

ξq1
+ 1

ξq2
+ 1

ξq3

}
, ϑ6 = k′

q ,

ϑ7 = {kd − k′
d} − L2

2Ld

{
1

ξd1
+ 1

ξd2
+ 1

ξd3

}
, ϑ8 = k′

d .

By selecting ϑO = max(ϑ1,ϑ2,ϑ3) and ϑC = min(ϑ4,ϑ5,ϑ6,ϑ7,ϑ8), then
the inequality (6.19) becomes

V̇oc ≤ −(δ − ϑO)Vo + μψo
√

Vo − ϑC (z2
Ω + z2

q + z′2
q + z2

d + z′2
d ). (6.20)

Choosing η = min(δ − ϑO ,ϑC ), from (6.20) it is obtained that

V̇oc ≤ −ηVoc + μψo
√

Voc. (6.21)

Define the following change in variable voc = 2
√

Voc, and taking the time derivative
of voc, we obtain

v̇oc ≤ −ηvoc + ψoμ

whose solution is given as

νoc ≤ νoc(t0)e−η(t−t0) + ψoμ

η

(
1 − e−η(t−t0)

)
. (6.22)

Following the same procedure as the proof given for the observer (see Sect. 3.2.2),
the strongly uniformly practical stability of the observer-controller scheme can be
ensured. Hence, the estimation and tracking errors of the closed-loop system converge

toward a ball B�oc of radius �oc with �oc = ψoμ

η
.

Then, the above result can be summarized in the following theorem.

Theorem 6.2 Consider the IPMSM dynamic model (1.70) with a reference signal
Ω∗ assumed to be differentiable and bounded. Then, by using the estimates provided
by the adaptive interconnected observer (3.84) and (3.85) for the integral back-
stepping controller designed in Sect.4.1.2, the closed-loop system tracking error is
strongly uniformly practically stable.

Simulation Results

The performance of the proposed IPMSM sensorless controller is investigated thanks
to simulations. Simulations are carried out following the observer-controller scheme
shown in Fig. 6.13.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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Table 6.2 IPMSM nominal
parameters

Current 6 A Torque 5.3 Nm

Speed 3,000 rpm Ψr 0.341 Wb

Rs 3.25 ohm p 3

Ld 18 mH Lq 34 mH

J 0.00417 kg m2 fv 0.0034 kg m2 s−1

Table 6.2 gives the nominal parameters of the IPMSM that are used for the
simulation tests. The simulation has been carried out using Matlab/Simulink soft-
ware. The motor is tested according to industrial test trajectories (see Chap. 1 for
more details).

As usual for industrial applications, the stator resistance as well as the stator
inductance is known with some uncertainties with respect to their nominal values.
So it is important to study their deviation effects with respect to the sensorless control
scheme performance. The gain tuning design is given below (for more details see
Appendix A.2 of [38]).

Summary 6.2.1 Tuning parameters

Controller

kΩ = 120, k′
Ω = 12, kq = 150, k′

q = 10, kd = 100, k′
d = 8.

Observer

ρ1 = 900, ρ2 = 800, ρ3 = 15,� = 80, kc1 = 0.1,

kc2 = 0.01,α = 0.1.

Observer initial conditions

Ω̂ = 10 rad/s, θ̂m = 0.6 rad, T̂l = 0 Nm, R̂s = 2 ohm.

The IPMSM nominal parameter values are given in Table 6.2.
The simulation results of the IPMSM sensorless control are given in Figs. 6.14,

6.15, 6.16, 6.17, 6.18, 6.19 and 6.20 for the nominal parameters case: the controller
and the observer are designed using the same parameters as the motor model para-
meters. The motor is initially running under no-load condition. Full-load torque is
applied in the time intervals from t = 1.5 to 2.5 s, and from t = 7 to 15 s.

Figure 6.14a shows the reference and the measured rotor speeds. The speed error
due to the perturbation is very small and quickly converges to zero after the transients
that are induced by the load torque application (see Fig. 6.14b).

Figure 6.15a shows the estimated and measured speeds. The speed error is dis-
played in Fig. 6.15b. These responses are detailed in Fig. 6.16. The estimated speed
tracks the actual speed very well. Figure 6.17 gives the measured and estimated
positions. By Figs. 6.18 and 6.19, the resistance and load torque estimations are

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 6.14 Speed tracking: nominal case. a Reference and measured speeds, b speed error
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Fig. 6.15 Speed tracking: nominal case. a Real and estimated speeds, b speed error

respectively displayed. Figure 6.18 shows the estimation of the stator resistance with
a voluntary quick change from 1.9 to 3.25 �. The estimated resistance converges
very well to the actual value. The torque estimation is displayed by Fig. 6.20. It is
clear that the observer has good performance for these estimations.
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Fig. 6.16 Zoom of Speed tracking: nominal case. a Real and estimated speeds, b speed error
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Fig. 6.17 Measured and estimated positions w.r.t. time (s): nominal case

Now, in order to illustrate the robustness of the sensorless control scheme,
the influence of parameter deviations is investigated. Parameter deviations are
intentionally introduced in the observer-controller scheme. First, Figs. 6.21, 6.22
and 6.23 show the responses for a +50 % variation of the stator resistance value.

Secondly, the robustness with respect to the inductances is tested. Figures 6.24,
6.25 and 6.26 show the responses for a +20 % change of the (d, q) axes stator
inductances.

Figures 6.27 and 6.28 show the responses for a +25 % deviation of the rotor inertia
J . A zoom is given on the speed error to display that, for uncertain case, only practical
stability is obtained (no asymptotic stability). However, the response on the speed
tracking is satisfactory.
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Fig. 6.18 Rs estimation: nominal case. a Real and estimated resistances, b resistance error
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Fig. 6.19 Torque estimation: nominal case. a Real and estimated torques, b torque error

For all these cases, the robustness and the efficiency of the proposed sensorless
control under parameter variations and the load torque variation clearly has been
illustrated.

Finally, to compare the performance of a Classical Backstepping Controller (CBC)
with respect to the new Integral Backstepping Controller (IBC), it is shown in
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Fig. 6.20 Zoom of torque estimation: nominal case. a Real and estimated torques, b torque error
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Fig. 6.21 Speed tracking: robustness w.r.t. +50 % Rs deviation. a Real and estimated speeds,
b speed error

Fig. 6.29 the speed errors for a +20 % Ld − Lq deviation, and in Fig. 6.30 the speed
errors for a −20 % Ld − Lq deviation. These two latter figures clearly show the ben-
efits of the integral backstepping algorithm with respect to the classical backstepping
control.
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Fig. 6.22 Resistance estimation: robustness w.r.t. +50 % Rs deviation. a Real and estimated
resistances, b resistance error
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Fig. 6.23 Torque estimation: robustness w.r.t. +50 % Rs deviation. a Real and estimated torques,
b torque error

Conclusions

A robust sensorless control for the salient-pole IPMSM combining a robust back-
stepping controller plus an integral action with an adaptive interconnected observer
has been presented. Based on Lyapunov stability analysis, sufficient conditions have
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Fig. 6.24 Speed tracking: robustness w.r.t. +20 % Ld − Lq deviation. a Real and estimated speeds,
b speed error
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Fig. 6.25 Resistance estimation: robustness w.r.t. +20 % Ld − Lq deviation. a Real and estimated
resistances, b resistance error
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Fig. 6.26 Torque estimation: robustness w.r.t. +20 % Ld − Lq deviation. a Real and estimated
torques, b torque error
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Fig. 6.27 Speed tracking: robustness w.r.t. +25 % J deviation. a Real and estimated speeds, b speed
error



184 6 Sensorless Output Feedback Control for SPMSM and IPMSM

0 5 10 15
-50

0

50

100

150

200

250

300

350
  S

pe
ed

  (
ra

d/
s)

  Time (s)

Ω
real

Ω
obs

2 4 6 8 10 12 14
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 S
pe

ed
 e

rr
or

  (
ra

d/
s)

  Time (s)

(a) (b)

Fig. 6.28 Zoom of speed tracking: robustness w.r.t. +25 % J deviation. a Real and estimated speeds,
b speed error
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Fig. 6.29 Speed errors w.r.t. −20 % Ld − Lq deviation with: a backstepping control, b integral
backstepping control

been obtained to ensure the practical stability of the system in closed-loop with the
proposed observer-controller.

Notice that the tuning of the observer-controller is simple and easy. The com-
putational effort is not important, and for all the cases tested by simulation, it can
be concluded that this control strategy is robust under parametric uncertainties and
unknown load torque.
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Fig. 6.30 Speed errors w.r.t. −20 % Ld − Lq deviation with: a backstepping control, b integral
backstepping control

6.2 Robust Adaptive High Order Sliding Mode Control

6.2.1 SPMSM Case

This section deals with the sensorless Surface Permanent Magnet Synchronous
Motor (SPMSM) control by using a super-twisting algorithm observer (designed in
Sect. 3.3.2) combined with the high order sliding mode control designed in Sect. 4.2.1.
The advantage of these algorithms is based on the attractive property of the sliding
mode technique: the robustness. Moreover, thanks to the finite time convergence of
the super-twisting algorithm, the estimation of non-measurable variables can be done
before to apply the control action to the motor. Thus, the separation principle is easy
to satisfy in this case. Furthermore, the super-twisting observer is implemented to
estimate the speed and the position of the motor from the stator currents and voltages,
which are available from measurements. The observer-controller scheme is shown
in Fig. 6.31.

Using an industrial benchmark for the SPMSM, introduced in Chap. 1, simulation
results are shown to illustrate the performance of the proposed scheme. The results
are obtained in presence of parameter uncertainties on stator resistance and on stator
inductance.

Convergence of the Observer-Controller Scheme

Since the observer has a finite-time convergence, as established in [19], there is no
difficulty to prove the convergence of the observer-controller scheme. Then, it is

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 6.31 Super-twisting observer and quasi-continu HOSM controller

only necessary to tune the gains of the observer such that the observer converges
sufficiently fast in finite-time and once the observer convergence is ensured, the
controller can be then started, i.e., the observer-controller scheme can be successfully
applied without stability problem.

Simulation Results

The proposed observer-controller scheme has been simulated in closed-loop with the
SPMS motor to evaluate the robustness performance. The parameters of the SPMSM
are given in Table 6.1 (Sect. 6.1.1). This motor is coupled to another synchronous
machine that is torque controlled. The motor is tested according to an industrial
benchmark (see Chap. 1 for more details). Of course the measured speed is used only
for comparison purpose. The stator resistance and the stator inductance are varied
from their nominal values, and then the resulting effects are studied.

Better performance of the proposed scheme is achieved, when the parameters of
the controller and of the observer are chosen as follows:

Summary 6.2.1 Tuning parameters

Controller: α1 = 9 ∗ 104, α2 = 3 ∗ 103

Observer: α1,1 = 10, α1,2 = 10, α2,1 = 500, α2,2 = 500.

Figure 6.32a shows the measured speed Ω and the estimated speed as well as the
speed error for the nominal case in Fig. 6.32b. It can be seen that the estimation error
is very small showing the speed estimation quality.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 6.32 a Measured and estimated speeds. b Observed speed error
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Fig. 6.33 a Measured and reference speeds. b Tracking speed error

Figure 6.33a displays the measured and the reference speeds, whereas the tracking
error is plotted in Fig. 6.33b. This result attests the good tracking of the observer-
controller scheme.

Figure 6.34 shows the control inputs (vsd , vsq ) applied to the motor.
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Fig. 6.35 a Reference and estimated speeds for +50 %Rs . b Speed error

Robustness tests

Now, in order to test the robustness of the proposed scheme, variations of +50 and
−50 % in the stator resistance value are introduced in the observer-controller scheme
parameters. In Figs. 6.35 and 6.36 are plotted the corresponding responses.
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Fig. 6.37 a Reference and estimated speeds for +20 %Ls . b Speed error

The following test results consider stator inductance variations of +20 % given
in Fig. 6.37 and of −20 % variation which is plotted in Fig. 6.38 .

Finally, the results considering a +50 % variation of the total inertia are shown in
Fig. 6.39.

All these tests clearly show the robustness of the proposed observer-controller
scheme.
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Conclusion

A sensorless robust control of a surface permanent magnet synchronous motor is
achieved via a super-twisting sliding mode observer which estimates the rotor posi-
tion and the rotor speed of the SPMSM. Furthermore, the controller is designed
applying higher order sliding mode techniques, to achieve a robust and precise
control. Moreover, the system in closed-loop with the observer-based controller has
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been tested by using a specific industrial benchmark. Significant robustness tests are
implemented and simulation results illustrate the efficiency of the proposed
sensorless observer-controller scheme.

6.2.2 IPMSM Case

In Sect. 4.2.3, a high order sliding mode control with finite time convergence, fixed a
priori, has been designed assuming the perfect knowledge of the state of the system.

For sensorless purpose, the controller is now designed by replacing the state
variables by their estimates provided by the observer designed in Sect. 3.2.2. Then,
in order to guarantee the correct behavior of the system in closed-loop with the
observer-controller scheme, an analysis of stability is necessary. Sufficient conditions
ensuring the stability of the closed-loop system are obtained (see also Lemma 2.1 in
[80]), which can be summarized as follows (see [37] for details):

Lemma 6.1 Consider the IPMSM model (1.70) in closed-loop with the high order
sliding mode controller given in Summary 4.2.3 with gains defined by (4.68), (4.70),
and using the estimations given by the interconnected observer (3.84) and (3.85).
Then, there exist ε∗, KΩ,i , Kisd ,i and λΩ,i ,λisd ,i , for i = 1, 2; such that the rotor
speed and the current tracking errors satisfy

|Ω − Ω∗| ≤ 1

λΩ,2
(KΩ,1ε

∗ + KΩ,2)

|isd − i∗sd | ≤ 1

λisd ,1
(Kisd ,1ε

∗ + Kisd ,2). (6.23)

Remark 6.1 Two cases can be distinguished:

(1) Nominal case (no parameter variations) and unloaded drive, an asymptotic
stability result of the closed-loop system is obtained under the action of the
controller using the estimates provided by the observer. More precisely, the esti-
mated and tracking errors tend to zero.

(2) Uncertain case (with parameter variations and bounded load torque). Then, a
strong uniform practical stability condition of the closed-loop system is obtained,
i.e., the convergence of the tracking error to a ball whose radius depends on the
bounds of the parameter uncertainties and of the observer and controller gains.

Simulation Results

The sensorless control diagram of the observer-controller scheme with the MTPA
strategy for the IPMSM is shown in Fig. 6.40. The proposed sensorless scheme
has been tested by using Matlab/Simulink software following the specification of
the industrial benchmark defined in Chap. 1. The trajectories of this benchmark are
chosen to test the motor under different operation conditions, including when the

http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Fig. 6.40 Adaptive observer and HOSM controller scheme for IPMSM

motor works in the non-observable condition. At initial time, the speed and the load
torque values are zero. Then, the reference speed is carried to 100 rad/s, and in the time
interval from 1.5 to 2.5 s the load torque is applied. This first step allows to test the
performance and the robustness of the observer at low speed. Following the possible
acceleration on the setup, from 4 to 6 s, the speed is carried out to 314 rad/s and
remains constant until 10 s with the load torque applied from 7 s. This second step is
defined to test the observer during a great speed transient and to check its robustness
at high speed. Then, the motor is driven to reach zero speed from 13 to 15 s when
the load torque is applied. The system in closed-loop with the controller-observer
scheme is then tested at zero speed. The motor parameters used in this simulation
are given in Table 6.2 (Sect. 6.1.2).

Summary 6.2.1 Tuning parameters

Observer

ρ1 = 900, ρ2 = 800, ρη = 15,� = 80,

kc1 = 0.1, kc2 = 0.01,α = 0.1, Kθm = 40.

Controller the convergence time t f is fixed to 50 ms

For t ≤ 50 ms

ζΩ = 0.32, ωnΩ = 250 rad/s, ωnid = 32 rad/s, α = 5.104

For t > 50 ms

ζΩ = 0.35, ωnΩ = 325 rad/s, ωnid = 85 rad/s , α = 6.106
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FΩ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1.1 0 0 0 0
0 0 −1.2 0 0 0
0 0 0 −1.3 0 0
0 0 0 0 −1.4 0
0 0 0 0 0 −1.5

⎤
⎥⎥⎥⎥⎥⎥⎦

, JΩ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Fid =

⎡
⎢⎢⎣

−1 0 0 0
0 −1.1 0 0
0 0 −1.2 0
0 0 0 −1.3

⎤
⎥⎥⎦ , Jisd =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

The stator resistance can vary from its nominal value, and then its effect is studied.
First, for the nominal case, Fig. 6.41a shows the estimated and measured speeds.

The speed error owing to the torque perturbation is very small and quickly converges
to zero (see Fig. 6.41b). For the nominal case, the measured and observed positions
are given at the beginning of the test (Fig. 6.42) and at the end (Fig. 6.43). When the
speed is equal to zero (with non-identical initial conditions for the observer and the
motor) the estimated and real resistances and the load torque estimation are given by
Figs. 6.44 and 6.45, respectively. The sensorless control is capable of non-persistent
zero-speed operation with full load torque with very small errors. The inputs voltages
and d−q currents are shown in Fig. 6.46. The current iq increases with the increase of
the load torque. The d-axis current tracks its reference designed by using the MTPA
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strategy. The MTPA strategy shares the load torque rejection to the two axis currents
(d and q). The amount of the developed torque using MTPA strategy depends on the
saliency of the IPMSM.

Next, in order to illustrate the robustness of the sensorless control scheme, resis-
tance deviations are intentionally introduced. First, Figs. 6.47 and 6.48 show the
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tracking and estimation responses for a +50 % variation of the nominal value of the
stator resistance.

The case when a −50 % deviation is introduced in the stator resistance is displayed
in Fig. 6.49.

The robustness and the efficiency of the proposed sensorless control under para-
meter variations and load torque clearly appear.
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Conclusion

An adaptive interconnected observer combined with a high order sliding mode con-
troller for sensorless control of the IPMSM has been introduced. The adaptive inter-
connected observer simultaneously estimates the state variables (the position and
the speed), an unknown parameter (the stator resistance) and a disturbance (the load
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torque). A stability analysis of the closed-loop system has been given, where sufficient
conditions have been obtained to guarantee the strong uniform practical stability of
the estimation error. The whole system is tested by using a specific industrial bench-
mark. Significant robustness tests are implemented and simulation results illustrate
the efficiency of the proposed sensorless observer-controller scheme.
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6.3 Conclusions

Robust observer-control schemes for the SPMSM and the IPMSM have been pre-
sented in this chapter. Sufficient conditions to guarantee the closed-loop stability of
these schemes are given.

The robustness of the proposed observer schemes have been presented and tested
on an industrial benchmark. From the obtained responses, the efficiency of these
schemes shows the advantages of these sensorless control strategies.

6.4 Bibliographical Notes

For the SPMSM sensorless control purpose, different approaches based mainly on
electromotrive force [14, 69, 73], adaptive observers [12, 25], and extended Kalman
filter [10, 52] have been studied to estimate both the speed and the position of the
PMSM.

When analyzing all these results, it is clear that previous results have rarely eval-
uated robustness of the closed-loop system with respect to parameter variations,
while this is a key point to get a robust performance for sensorless control. More-
over, these studies never investigate the robustness of the observer-controller scheme
when the observability of the SPMSM is lost. The published observers have been
tested with classical vector control using a proportional-integral controller. From
this point of view, more adapted nonlinear robust controls as high order sliding mode
and backstepping [72, 76] could be more efficient. But all of them use the speed
measurement. In [48], an angular velocity observer is proposed to estimate the speed
but the measurement of the position is required.

For the PMSM case, the drawbacks mentioned above were treated in [21]1, where
it is proposed a robust sensorless observer-based control scheme such that the motor
speed tracks a desired reference by using only the measurement of the motor currents
and voltages. The observer-controller scheme combines a backstepping controller
and an adaptive interconnected observer. The proposed scheme is verified according
to the framework of a specific industrial benchmark. A good sensorless tracking is
obtained in spite of uncertainties in the stator resistance, which usually is bad known
while the nominal (unknown) load torque is applied.

The same approach for the IPMSM case is given in [38]2, where a sensorless
speed control for the IPMSM is designed by combining an adaptive interconnected
observer and a robust backstepping controller with integral actions.

1 This chapter includes excerpts of [21], originally published in the proceedings of IFAC world
Congress, Milano, Italy, IFAC-PapersOnLine IFAC 2011.
2 This chapter includes excerpts reprinted from Journal of the Franklin Institute, 349(5):1734–1757,
Hamida M, Glumineau A, De Leon J (2012) Robust integral backstepping control for sensorless
IPM synchronous motor controller. Copyright (2012), with permission from Elsevier.
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In [20]3, another Observer-Controller scheme deals with the sensorless SPMSM
control problem by using a super-twisting based observer combined with a high order
sliding mode control.

In [37]4, the case of the IPMSM is treated by combining an adaptative intercon-
nected observer with a high order sliding mode control. An analysis of stability is
given based on previous results Lemma 6.1 (see also Lemma 2.1 in [80]).

For some of these algorithms, the initial value of the rotor position can be neces-
sary. This problem has been treated in [10, 50, 51].

3 This chapter includes excerpts of [20], Copyright (2010) IEEE. Reprinted, with permission, from
“Ezzat M, De Leon J, Gonzalez N, Glumineau A, Observer-controller scheme using high order
sliding mode techniques for sensorless speed control of permanent magnet synchronous motor. In:
Decision and Control (CDC), 49th IEEE Conference on Decision Control, Atlanta, USA”.
4 This chapter, includes excerpts of [37], originally published in the proceedings of IFAC Power
Plant and Power System Control conference (PPPSC), Toulouse, France, IFAC-PapersOnLine IFAC
2012.



Chapter 7
Sensorless Output Feedback Control
for Induction Motor

Abstract In this chapter, the IM sensorless control problem is considered, where
observer-control schemes are combinations of the observers designed in Chap.3,
with the control strategies proposed in Chap.5. These observer-controller schemes
take into account that the mechanical variables are not measurable (rotor position,
rotor speed, and load torque), and only the currents and the voltages are available
by measurement. For the induction motor, first an observer-controller scheme is
constituted by combining an adaptive interconnected observer with a backstepping
controller. The observer is designed to estimate the rotor speed, the fluxes, the load
torque, and simultaneously to identify a sensitive parameter: the rotor resistance.
The controller is designed to track the reference trajectories of the rotor speed and
of the flux modulus. Finally, an observer-controller constituted by an adaptive inter-
connected observer combined with a high order sliding mode controller is designed.
Sufficient conditions are given to ensure the stability of the closed-loop system.
Furthermore, the tracking errors convergence of these schemes is analyzed in pres-
ence of parametric uncertainties, and a strong uniform practical stability condition is
obtained. All these control strategies are experimentally tested on amotor setup using
the control benchmark trajectories introduced in Chap.1 (Sect. 1.6), with parametric
uncertainties robustness tests and a non-measured load torque. For all the cases, the
Field-Oriented Control (FOC) strategy will be the basis of the control algorithms.

7.1 Classical Sensorless Field-Oriented Control

7.1.1 Trajectory Tracking for Sensorless Field-Oriented
Control

For the IM sensorless control problem, the speed and the flux are not measurable.
Moreover, the load torque is assumed to be an unknown bounded perturbation.

Denote Ω∗ and φ∗ the smooth bounded reference signals of the rotor speed Ω

and the rotor flux modulus
√

φ2
rd + φ2

rq , respectively. Following the strategy of the

Field-Oriented Control [7] (i.e., φrq = 0,), the resulting electromagnetic torque is

© Springer International Publishing Switzerland 2015
A. Glumineau and J. de León Morales, Sensorless AC Electric Motor Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-14586-0_7
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given by

Te = pMsr

Lr
φrd isq (7.1)

which is proportional to the product of φrd and isq. Notice that by holding constant
the magnitude of the rotor flux in (7.1), there is a linear relationship between the
variable isq and the electromagnetic torque Te.

For the FOC strategy, an important step is to estimate the stator frequency ωs and
the (d, q) frame angular position. For flux-oriented field control design, the stator
frequency is given by

ωs = ρ̇ = pΩ + a
Msr

φrd
isq

(see [70]). Then, a robust observer of the (d, q) frame angular position is designed
as

˙̂ρ = pΩ̂ + a
Msr

φ̂rd

isq − kωs

(isq − îsq)

β1φ̂rd

(7.2)

with β1 = Msr/(σLs Lr ) and kωs > 0.
Thus, to apply the FOC strategy, it is necessary to replace the speed and the flux

measurements by their estimations in the controllers: i.e., in the control equations i∗sd
(5.7), and i∗sq (5.12). Then, the new controllers, in terms of the estimated variables,
are

i∗sd(t) = K iφrd

∫ t

0
(φ∗ − φ̂rd)(τ )dτ + K pφrd (φ

∗ − φ̂rd)

+ 1

aMsr
φ̇∗ + 1

Msr
φ∗ (7.3)

i∗sq(t) = 1

KT

(
K iΩ

∫ t

0
(Ω∗ − Ω̂)(τ )dτ + K pΩ(Ω∗ − Ω̂)

)

+ 1

mφ̂rd

(
Ω̇∗ + cΩ̂ + T̂l

J

)
. (7.4)

Remark 7.1 Notice that in order to avoid a singularity in (7.4), the observer must
be initialized with a rotor flux value different from zero, so that controller (7.4) is
well defined. This condition represents a physical condition for the induction motor:
no rotor flux implies no torque (see [17]). Moreover, the flux controller (7.3) allows
to guarantee that φrd reaches its reference φ∗. Before the motor is fluxed, (i.e.,
φrd < φ∗), the speed reference is kept to 0 without load torque. As soon as the motor
is fluxed, there is no more singularity for the controller (7.4) for all t ≥ 0.

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
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The stator current i∗sd(φrd), which is expressed in terms of φrd , is replaced by its

estimate i∗sd(φ̂rd) (7.3), and similarly i∗sq(Ω,φrd), which depends on Ω and φrd , is

replaced by its estimate i∗sq(Ω̂, φ̂rd) (7.4).
The reduced model of the induction motor (5.4) can be rewritten in closed-loop

as follows:
(

Ω̇
˙φrd

)
=
(

mφrd i∗sq(Ω̂, φ̂rd) − cΩ − Tl
J

−aφrd + aMsr i∗sd(φ̂rd)

)
. (7.5)

Now, adding the terms ±mφrd i∗sq(Ω,φrd) and ±aMsr i∗sd(φrd) in reduced model
(7.5), it follows that
{

Ω̇ = mφrd i∗sq(Ω,φrd) − cΩ − Tl
J + mφrd [i∗sq(Ω̂, φ̂rd) − i∗sq(Ω,φrd)]

φ̇rd = −aφrd + aMsr i∗sd(φrd) + aMsr [i∗sd(φ̂rd) − i∗sd(φrd)]. (7.6)

Define the rotor flux and the speed tracking errors as eφ = φ∗ − φrd and
eΩ = Ω − Ω∗, whose dynamics are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėφ = (−a − aMsr K pφrd

)
eφ − aMsr K iφrd

∫ t
0 eφ(τ )dτ

−aMsr

(
K iφrd

∫ t
0 εφ(τ )dτ + K pφrd εφ

)

ėΩ = − K pΩ

J

(
1 + εφ

φ̂rd

)
eΩ − K iΩ

J

(
1 + εφ

φ̂rd

) ∫ t
0 eΩ(τ )dτ

+
(

K pΩ

J

[
1 + εφ

φ̂rd

]
− c

)
εΩ

+ K iΩ
J

(
1 + εφ

φ̂rd

) ∫ t
0 εΩ(τ )dτ + εφ

φ̂rd

(
Ω∗ + cΩ̂ + eTl

J

)

(7.7)

where the rotor flux and speed estimation errors are expressed by εφ = φrd − φ̂rd

and εΩ = Ω − Ω̂ .
Now, by using the following change of coordinates:

χΩ = (∫ t
0 eΩ(τ )dτ , eΩ

)T
, (7.8)

χφ = (∫ t
0 eφ(τ )dτ , eφ

)T
, (7.9)

then, Eq. (7.7) becomes

{
χ̇φ = Āφχφ + BφΓφ(εφ)

χ̇Ω = ĀΩχΩ + BΩΓΩ(εΩ)
(7.10)

http://dx.doi.org/10.1007/978-3-319-14586-0_5
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where

ĀΩ =
(

0 1
α1Ω α2Ω

)
, withα1Ω − K IΩ

J
andα2φ = − K PΩ

J
,

Āφ =
(

0 1
α1φ α2φ

)
, withα1φ = −aMsr K Iφrd andα2φ = −a − Msr K Pφrd ,

Bφ = BΩ =
(
0
1

)
,

Γφ(εφ) = −aMsr

[
K pφrd εφ + K Iφ

∫ t

0
εφ(τ )dτ

]
,

ΓΩ = Γ1(εΩ) + Γ2(εφ) + Γ3(εΩ, εφ),where

Γ1(εΩ) = K iΩ
J

∫ t

0
εΩ(τ )dτ +

[K pΩ

J
− c

]
εΩ,

Γ2(εφ) = εφ

φ̂rd

[
Ω∗ + cΩ̂ + eTl

J

]
− K pΩ

J

(
εφ

φ̂rd

)
eΩ − K iΩ

J

( εφ

φ̂rd

) ∫ t

0
eΩ(τ )dτ ,

Γ3(εΩ, εφ) = εφ

φ̂rd

[K pΩ

J
εΩ + K iΩ

J

∫ t

0
εΩ(τ )dτ

]
.

Then, the rotor flux and speed trackings and the estimation error dynamics are
given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇φ = Āφχφ + BφΓφ(εφ)

χ̇Ω = Ā′
ΩχΩ + BΩΓΩ(εΩ)

ε̇1 =
[

A1(Z2) − S−1
1 Γ CT

1 C1 − B1C1

]
ε1

+ g1(u, y, X2) + Δg1(u, y, X2, X1) − g1(u, y, Z2, Z1)

+[A1(X2) + ΔA1(X2) − A1(Z2)]X1 − (B2C2 + K CT
2 C2)ε2

ε̇2 = [A2(Z1) − S−1
2 CT

2 C2]ε2 + [A2(X1) + ΔA2(X1) − A2(Z1)]X2

+ g2(u, y, X1, X2) + Δg2(u, y, X1, X2) − g2(u, y, Z1, Z2).

(7.11)

To show how the stator currents and rotor speed trackings are achieved by using
the estimates provided by the observer, define the candidate Lyapunov function for
the overall error dynamics (7.11)

Voc = Vo + Vc

= εT
1 S1ε1 + εT

2 S2ε2 + χT
φ Pφχφ + χT

Ω PΩχΩ, (7.12)

where Vo = εT
1 S1ε1 + εT

2 S2ε2 = ‖ε‖2Sθ
and Vc = χT

φ Pφχφ + χT
Ω PΩχΩ are the

Lyapunov functions of the estimated errors and of the tracking errors, respectively.
Defining δo = (1− ς)δ, and taking the time derivative of Vo, after straightforward

computations the following inequality is satisfied:
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V̇o ≤ −(1 − ς)δVo ≤ −δoVo.

Now, computing the time derivative of Voc (7.12) along the dynamics of system
(7.11), yields

V̇oc ≤ −δoVo + χT
φ (Pφ Āφ + ĀT

φ Pφ)χφ + 2χT
φ Pφ BφΓφ(εφ)

+ χT
Ω(PΩ ĀΩ + ĀT

Ω PΩ)χΩ + 2χT
Ω PΩ BΩΓΩ(εΩ).

After some computations, it follows that

V̇oc ≤ −δo ‖ε‖2Sθ
− χT

φ Qφχφ + 2l1
∥∥χφ

∥∥
Pφ

‖ε‖Sθ

− χT
Ω QΩχΩ + 2l2 ‖χΩ‖PΩ

‖ε‖Sθ

where the nonlinear terms Γφ(εφ) and ΓΩ(ε�) satisfy the following inequalities∥∥Γφ(εφ)
∥∥ ≤ l1 ‖ε‖Sθ

, ‖ΓΩ(εΩ)‖ ≤ l2 ‖ε‖Sθ
, where l1 and l2 are positive constants.

By using the following inequalities:

‖ε‖Sθ

∥∥χφ

∥∥
Pφ

≤ ξ1

2

∥∥χφ

∥∥2
Pφ

+ 1

2ξ1
‖ε‖2Sθ

,

‖ε‖Sθ
‖χΩ‖PΩ

≤ ξ2

2
‖χΩ‖2PΩ

+ 1

2ξ2
‖ε‖2Sθ

,

∀ξ1, ξ2 ∈]0, 1[, and by substituting the above inequalities in V̇oc, it follows that

V̇oc ≤ −
(

δo − l1
ξ1

− l2
ξ2

)
‖ε‖2Sθ

− (ηφ − l1ξ1)
∥∥χφ

∥∥2
Pφ

− (ηΩ − l2ξ2) ‖χΩ‖2PΩ
.

Let us define the following constants:

ϑ1 = (ηφ − l1ξ1) > 0, ϑ2 = (ηΩ − l2ξ2) > 0, ϑ3 =
(

δ − l1
ξ1

− l2
ξ2

)
> 0.

Then, it follows that

V̇oc ≤ −ϑVoc.

where ϑ = min(ϑ1,ϑ2,ϑ3).
Hence, the estimation and the tracking errors of the overall system converges

asymptotically to zerowith arbitrary rate of convergenceϑ. This proves that controller
(7.4) is well defined for all t ≥ 0.

Then, with the assumption of persistent inputs the system is not in the unobserv-
ability area, we can establish the following result about the stability of the closed-loop
system under parametric uncertainties.

Lemma 7.1 Consider: (a) System (1.119) that satisfies conditions given in Remark
3.17 and for which an interconnected observer (3.110) can be designed; (b) System

http://dx.doi.org/10.1007/978-3-319-14586-0_1
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_3
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(5.4) controlled by (7.3) and (7.4). Then, by using estimations provided by the inter-
connected observer (3.110), the speed and flux tracking errors converge asymptoti-
cally to zero.

Remark 7.2 For the case of non-persistent inputs, a complementary analysis is nec-
essary that is detailed in Appendix “Appendix: Stability of the Observer-Controller
Scheme”.

7.1.2 Experimental Results

Experimental results of the above observer-controller are now given. To test robust-
ness conditions, we take a +30% variation of Rs for the design of the observer-
controller. For the experiment, only the stator currents are measured. The speed and
the flux amplitude are provided by the observer. The experimental results for the
nominal case, i.e., when the parameters (except stator resistance) are known, are
shown in Fig. 7.1.

These figures show the good performance of both system “observer+ controller”
for the trajectory tracking problem and for the perturbation rejection. In terms of
tracking trajectory, we note that the estimated rotor speed (see Fig. 7.1b) converges
to the measured speed (Fig. 7.1a) near and under unobservable conditions. The same

a

b

c

d

e f

Fig. 7.1 Experimental result in nominal case

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_3
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conclusion is obtained for the estimated flux (Fig. 7.1f) with respect to the reference
flux (see Fig. 7.1e). The estimated load torque (Fig. 7.1d) converges to the measured
load torque (Fig. 7.1c), except under unobservable conditions (from 7 to 9s). Never-
theless, it appears a small static error when the rotor speed increases (from 3 to 6s).
In terms of perturbation rejection, we have noted that the load torque is well rejected
excepted at the time when it is applied: see Fig. 7.1a–b, e–f at time 1.5 and 5s, and
when it is removed (Fig. 7.1a–b, e–f at time 2.5 s).

The robustness of the observer-controller scheme is confirmed by the results
obtained in presence of rotor resistance variations, i.e. a variation of +50% on the
rotor resistance is introduced for the observer-controller scheme design, see Fig. 7.2.
It is obtained similar experimental results for the rotor resistance at the nominal case
under observable conditions. We can see that a static error appears when the motor is
under unobservable condition: during the time interval from 7 to 9s, see Fig. 7.2a–b.
However, the static error increases a little when the load torque is applied at time
1.5 and 5s, see Fig. 7.2a–b. In conclusion, the increase in the rotor resistance value
slightly affects the performance of the speed trajectories tracking.

A second test is made with a −50% variation on the rotor resistance value. The
experimental results are given in Fig. 7.3. For the speed, flux, and load torque esti-
mation, the conclusion is the same as for the+50% variation case ( see Fig. 7.2). But
for this robustness test, the control induces noise. This can be seen on the measured
torque (see Fig. 7.3c).

a

b

c

d

e f

Fig. 7.2 Experimental result with rotor resistance variation: +50%
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a

b

c

d

e f

Fig. 7.3 Experimental result with rotor resistance variation: −50%

A new robustness test is made by introducing a variation of +10% on rotor self-
inductance value. The results of this test are shown in Fig. 7.4. By analyzing Fig. 7.4,
we can see that the rotor self-inductance variation does not affect the performances
of both “control + observer” scheme. Nevertheless, a small oscillation appears at
the time when the load torque is applied (see Fig. 7.4a–b).

A last robustness test is to introduce a+10%variation of the stator self-inductance
value. The results of this test are shown in Fig. 7.5. Comparing this result with the
rotor self-inductance variation case yields the same conclusion except the oscillations
that become important at time 5s when the load torque is applied: see Fig. 7.5a–b.

7.1.3 Conclusion

In this section, the field-oriented control of the IMwithout mechanical sensors (posi-
tion, speed, and load torque sensors) is investigated. An interconnected observer
provides a good estimation of the load torque even when nominal load is applied.
Furthermore, a control strategy composed of a field-oriented control plus a high-gain
PI controller achieves a good speed and flux tracking for IMwithout mechanical sen-
sors. Moreover, the proposed “observer + controller” scheme has been tested and
evaluated on experimental setup with a significant “Sensorless Control Benchmark.”
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a

b

c

d

e

f

Fig. 7.4 Experimental result with rotor self-inductance variation: +10%

a

b

c

d

e f

Fig. 7.5 Experimental result with stator self-inductance variation: +10%
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The trajectories of this benchmark are defined in the operation region where the
speed and the torque are in opposite directions (generator mode).

The stability of the system in closed-loopwith the “controller+ observer” scheme
has been proved by the Lyapunov theory, where sufficient conditions have been
obtained.

Finally, the robustness of the “controller + observer” scheme is confirmed by the
good performances under parameter variations.

7.2 Robust Adaptive Observer-Backstepping Sensorless
Control

7.2.1 Sensorless Observer-Controller Scheme Stability
Analysis

To implement the controller (5.7)–(5.12), it is necessary to replace the rotor speed,
flux measurements, load torque, stator resistance, and the stator frequency by their
estimated values. Then, the speed, flux controllers, and reference control inputs are
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∗sq(Ω̂, T̂l , φ̂rd , R̂s) = 1

mφ̂rd

[
Ω̇∗ + cΩ̂ + T̂l

J
+ (KΩ + K ′

Ω)(Ω∗ − Ω̂)

+KΩ K ′
Ω

∫ t
0 (Ω∗ − Ω̂)dt

]

i∗sd(φ̂rd , R̂s) = 1

aMsr

[
φ̇∗

rd + aφ̂rd + (Kφ + K ′
φ)(φ∗

rd − φ̂rd)

+KφK ′
φ

∫ t
0 (φ∗

rd − φ̂rd)dt
]

(7.13)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

usq = 1

m1

[
Kiq(i∗sq − isq) + K ′′

iq Kiq
∫ t
0 (i∗sq − isq)dt

−abφ̂rq + bpΩ̂φ̂rd + γ̂(R̂s)isq + ω̃s isd + i̇∗sq

]

usd = 1

m1

[
Kid(i∗sd − isd) + K ′′

id Kid
∫ t
0 (i∗sd − isd)dt

−abφ̂rd − bpΩ̂φ̂rq + γ̂(R̂s)isd − ω̃s isq + i̇∗sd

]
.

(7.14)

where

ω̃s = pΩ̂ + a
Msr

φ̂rd
isq − (isq − îsq)

β1φ̂rd
kωs (7.15)

is the estimation of ωs , β1 = Msr
σLs Lr

and kωs is a positive constant. The closed-loop
system with the controls (7.13) and (7.14) is given by

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
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[
Ω̇
˙φrd

]
=
⎡
⎢⎣

mφrd i∗sq(Ω̂, T̂l , φ̂rd) − cΩ − Tl

J
− ΔΓΩ

−aφrd + aMsr i∗sd(φ̂rd) − ΔΓφrd

⎤
⎥⎦ . (7.16)

To analyze the closed-loop system stability, first by expressing (7.16) in terms of
the speed and flux tracking error dynamics, respectively, zΩ and zφrd , it follows that
system (7.16) can be rewritten in the following form:

{
żΩ = −KΩ zΩ + Λ1(εΩ, εTl , εφ, εRs ) − ΔΓΩ

żφrd = −Kφzφrd − Λ2(εφ, εRs ) − ΔΓφrd

(7.17)

where εΩ = Ω − Ω̂, εTl = Tl − T̂l , εφ = φrd − φ̂rd , εRs = Rs − R̂s, are the
estimation errors, and

Λ1(εΩ, εTl , εφ, εRs ) = mφrd{i∗sq(Ω̂, T̂l , φ̂rd , R̂s) − i∗sq(Ω, Tl ,φrd , Rs)}

Λ2(εφ, εRs ) = aMsr {i∗sd(φ̂rd , R̂s)−i∗sd(φrd , Rs)},ΔΓφrd andΔΓΩ are the uncertain
terms.

Notice that Λ1(εΩ, εTl , εRs , εφ) is Lipschitz with respect to εΩ, εTl , εRs , εφ, and
Λ2(εφ, εRs ) is Lipschitz with respect to εφ, and εRs . Then the stability of the closed-
loop system (7.17) associated to the observer dynamics can be established by the
following theorem.

Theorem 7.1 Consider system (7.16)with the reference signalsΩ∗ andφ∗
rd assumed

to be differentiable and bounded. Then the closed-loop system given by system (7.16)
with the speed, flux, and current tracking laws (7.13) and (7.14) using the estimates
provided by the adaptive interconnected observer (3.110), has strongly uniformly
practically stable tracking errors.

The proof follows a similar procedure as Proposition 5.2 in Chap.5.

7.2.2 Experimental Results

The proposed observer-controller scheme shown in Fig. 7.6 has been tested using a
1.5kW induction motor (see the setup characteristics in Sect. 1.6).

The parameters of the observer-controller scheme are chosen as follows.

http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_1


212 7 Sensorless Output Feedback Control for Induction Motor

Summary 7.2.2 Tuning parameters

Observer

α = 5,� =10, k = 0.16, kc1 = 450, Kc2 = 0.5

θ1 = 5000, θ2 = 7000 and θ3 = 10−9

Controller

KΩ = 200 s−1, K ′
Ω = 0.001s−1, Kφ = 1100 s−1

K ′
φ = 0.012 s−1, Kid = 550 s−1, K ′

id = 20 s−1, K ′′
id = 34 s−1

Kiq = 1200 s−1, K ′
iq = 10 s−1, K ′′

iq = 35s−1, Kωs = 90 rad.m4 s5 kg2 A4

The identified parameters of the IM were previously obtained offline and they are
assumed to be close to the real values of the IM. It is clear that they are not exactly
the actual values. However in the sequel, these identified parameters are used for the
so-called nominal system and they will be used to start the performance test of the
proposed scheme.

The proposed observer and controller are implemented using the stator resistance
Rs0 = 1.9� as the initial value of stator resistance estimation in the observer.

The experimental test is achieved by a significant benchmark (see Chap.1,
Sect. 1.6 for details); the time-varying reference trajectories are defined such that, at
initial time, the rotor speed and load torque values are zero until the flux reaches its
nominal value.

Fig. 7.6 Adaptive interconnected observer and integral backstepping control scheme

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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Figures7.7 and 7.8 show the responses obtained from the experimental results
by considering the nominal case with identified parameters. Notice the good perfor-
mance of the proposed scheme,where the control actionmaintains the rotor speed and
load torque close to the desired references even though in presence of the disturbance

Fig. 7.7 Experimental results in nominal case
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(load torque). It is worth mentioning that on the experimental setup, the load torque
is measured as a reference to compare with the estimated value provided by the
observer.

In terms of trajectory tracking, notice that the estimated rotor speed (Fig. 7.7b)
converges to the measured speed (Fig. 7.7a) near and under conditions of unobserv-
ability. A similar conclusion is obtained for the estimated flux (Fig. 7.7f) with respect
to the reference flux (Fig. 7.7e). The estimated load torque (Fig. 7.7d) converges to the
measured load torque (Fig. 7.7c), under conditions of observability and at very low
frequency (conditions of unobservability) from 7 to 9s. Nevertheless, a small static
error appears when the rotor speed increases (from 4 to 6s). In terms of disturbance
rejection, it is noted that the load torque is well rejected except at its application
times (1.5 and 5s), see Fig. 7.7h, j, and when it is removed (2.5 s) (Fig. 7.7h, j).

A comparisonwith the results obtained by a field-oriented control based onPI con-
trollers and a non-adaptive observer, developed in [85], on the same setup andwith the
same experimental conditions is now developed. It has been shown that this observer
is sensitive with respect to variation of the stator resistance. This problem clearly
appears for the estimation of the flux, and more particularly, at low speed. This is an
important point when a sensorless field-oriented control strategy is implemented.

Now, using an adaptive observer, the robustness with respect to the variation of
the stator resistance is more confident. This can be seen in Fig. 7.9 which shows the
responses of the stator resistance estimation (Fig. 7.10). This is also clear for the flux
and speed tracking, by comparing the results obtained in the nominal case by our
observer-controller with a FOC/IP controller (see respectively Figs. 7.7 and 7.8) and
for the case of a rotor resistance variation: −50% (see Figs. 7.10 and 7.11).

In addition, in Fig. 7.12 is shown the responses obtained when a rotor resistance
variation of−50 and+50% is considered for the observer-controller test. The robust-
ness of the observer-controller scheme with respect to this parameter changes is
clearly shown. From these responses, one concludes that the rotor resistance changes
do not affect the performance of the speed trajectories tracking, when the conditions
of observability are verified for the IM. When the motor is under conditions of
unobservability, from 7 to 9s, only a relatively small steady-state error comes out
(Figs. 7.10a, b and 7.12a, b). Moreover, large peaks appear in the responses when
the load torque is applied at time 1.5 and 5s (Fig. 7.10h, j and Fig. 7.12h, j).

The last experiment first introduces a variation of +10% on the rotor self-
inductance, and in the second experiment, a variation of +10% on the stator self-
inductance value. This amplitude is realistic with the uncertainties on inductance
values for electric motors. The responses of the system under the observer-controller
action are, respectively, shown in Figs. 7.13 and 7.14 where one can see that the rotor
and the stator self-inductance variation do not affect the performances of the system
in closed-loop with the observer-controller algorithm. Nevertheless, small oscilla-
tions appear when the load torque is applied at time 5s: Figs. 7.13a, b and 7.14a, b.
Finally, in all cases one can see that the speed and the flux track in the desired ref-
erences despite different changes in the parameters. This shows that the proposed
scheme is robust under the parametric uncertainties and the load torque disturbance.
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Fig. 7.8 FOC/IP controller: Experimental results in nominal case

7.2.3 Conclusions

A field-oriented controller combined with an integral backstepping technique is
designed for the IM drive without mechanical sensors.

The major contributions of this study are summarized as follows:

(1) An adaptive interconnected observer to estimate the speed, fluxes, and load
torque, whose performances are tested under disturbances and parametric uncer-
tainties.
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Fig. 7.9 Rs estimation with initial error: +50%

(2) A field-oriented control combined with a robust integral backstepping technique
to achieve a good speed and flux tracking for the IM without mechanical sensor
under different operating conditions, particularly at low speed. These results are
obtained thanks to an improved backstepping design using integral terms that
eliminate the static errors in inner and outer loops to increase the robustness of
the scheme.

(3) Sufficient conditions to guarantee the practical stability based on Lyapunov the-
ory for the observer and for the “observer-controller” schemes.

(4) The successful application of the observer-controller scheme on an experimen-
tal setup with a significant sensorless control benchmark dealing with the low
frequencies case.

(5) The robustness of the observer-controller scheme under significant parameters
variations and unknown perturbation are shown for different operation condi-
tions.

7.3 Robust Adaptive High Order Sliding Mode Control

In this section, the control of the IMwithout mechanical sensors (position, speed and
load torque sensors) is designed by associating the adaptive interconnected observer,
introduced in Chap.3 (Sect. 3.4), with the HOSM controller, introduced in Chap.5

http://dx.doi.org/10.1007/978-3-319-14586-0_3
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Fig. 7.10 Experimental results with rotor resistance variation: −50%
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Fig. 7.11 FOC/IP controller: Experimental results with rotor resistance variation: −50%
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Fig. 7.12 Experimental results with rotor resistance variation: +50%
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Fig. 7.13 Experimental results with rotor self-inductance variation: +10%
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Fig. 7.14 Experimental results with stator self-inductance variation: +10%
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(Sect. 5.3). The stability of the system in closed-loop with the controller + observer
scheme is proved. Finally, the robustness of this scheme is evaluated experimentally
showing its performances under parameter variations.

7.3.1 Analysis of the Closed-Loop System

As introduced previously, the position, speed, fluxmeasurements and the stator resis-
tance values are replaced by their estimated values in the control algorithm.

Next, define the new sliding variable as

σφ̂ = φ̂rd − φ∗, σ
Ω̂

= Ω̂ − Ω∗.

Then the control input (5.38) given by

[
usd

usq

]
= (ϕ̂Nom

β )
−1

[
−
[

ϕ̂Nom
α1

ϕ̂Nom
α2

]
+
[

νsd

νsq

]]
(7.18)

with ϕ̂Nom
β , ϕ̂Nom

α1
and ϕ̂Nom

α2
, the estimated values of ϕNom

β , ϕNom
α1

and ϕNom
α2

(given
by observer (3.110)).

By using the same design procedure as for control (5.31)–(5.38), the switching
variables dynamics read as

⎡
⎣σ

(3)

φ̂

σ
(3)
Ω̂

⎤
⎦ = ˙̂

Ψα + ˙̂
Ψβ

[
νsd

νsq

]
−
[

φ∗(3)

Ω∗(3)

]

︸ ︷︷ ︸
ϕ̂1

+ Ψ̂β︸︷︷︸
ϕ̂2

[
ν̇sd

ν̇sq

]
(7.19)

with
[
ν̇sd ν̇sq

]T =
[
−αφsign(Sφ̂) − αΩsign(S

Ω̂
)
]T

.

From (7.19) and the definition of switching vector (5.50), it yields

[
Ṡφ̂ Ṡ

Ω̂

]T = ϕ̂1 + ϕ̂2 · ν̇ −
[
χφ̂ χ

Ω̂

]T
. (7.20)

By using the same design procedure introduced in Theorem 4.2. (Appendix
“Appendix: AHOSMAlgorithm”), there exist gainsαφ andαΩ such that the switch-
ing surfaces satisfy the following inequalities

Ṡφ̂Sφ̂ ≤ −ηφ̂|Sφ̂|, Ṡ
Ω̂

S
Ω̂

≤ −η
Ω̂

|S
Ω̂

|.

Hence, the estimation and the tracking errors of the closed-loop system asymp-
totically converge to zero in finite-time.

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_3
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_4
http://dx.doi.org/10.1007/978-3-319-14586-0_4
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Remark 7.3 When the control inputs are not persistent, the IM tracks indistinguish-
able trajectories, and by using the samemethodology given in [85], the strong uniform
practical stability is proved.

7.3.2 Experimental Results

Experimental results obtained using the observer-control scheme are displayed to
show the performance of the proposed approach under different operation conditions.

The observer parameters, satisfying the convergence conditions, are chosen as

Summary 7.3.2 Tuning parameters

Observer

α = 50,� =10, k = 0.16, kc1 = 250, kc2 = 0.5, kωs = 60

θ1 = 5000, θ2 = 7000 and θ3 = 10−12.

To optimize the behavior and the performance of the controlled induction motor,
and owing to technical reasons, two groups of tuning parameters have been chosen:
the first has been chosen to induce the reaching of the motor flux, the second to
reject the disturbance, (i.e., the load torque) and to ensure high level accuracy for the
trajectory tracking.

Then, the sliding mode controller parameters are chosen such that the time of
convergence is set at t f = 0.3s and

Summary 7.3.2 bis Tuning parameters

Controller the convergence time t f is fixed to 0.3 s

For t ≤ 0.3 s, ζΦ = 0.32 ζΩ = 0.32, ωnΩ = 250 rad/s,

ωnid = 32 rad/s, α = 5.104

For t > 0.3 s. ζφ = 0.35, ωnφ = 447 rad/s, αφ = 15 × 104,

ζΩ = 0.7, ωb = 200 rad/s, αΩ = 8.106.

For experimental implementation of the observer-control scheme, we assume that
only the stator currents are measured. Rotor speed and flux amplitude are provided
by observer (3.110), whereas the flux angle is provided by estimator (7.15). The
stator resistance observer is initialized as Rs0 = 1.9ohm. The initial value of φrd in
the observer is φrd0 = 0.1Wb. The experimental sampling time T equals 200µs.

http://dx.doi.org/10.1007/978-3-319-14586-0_3


224 7 Sensorless Output Feedback Control for Induction Motor

The aim of Fig. 7.15 is to show the control laws actions to drive the flux. The
measured and estimated speeds are displayed in Fig. 7.15-Top. It can be viewed in
this figure that the estimated speed reaches the measured speed at the convergence
time t f . Figure7.15-Middle displays the desired and the estimated flux. It can be
viewed in Fig. 7.15-Bottom that the flux tracking error converges to 0 in the a priori
defined time of convergence t f . This result confirms the good performance of the
control law in the sense of tracking quality.

The experimental results1 for the nominal case using the identified parameters
(except stator resistance) are shown in Fig. 7.16. These figures show the good per-

Fig. 7.15 Top Measured speed Ω and its estimated versus time; Middle Reference flux and its
estimated versus time; Bottom Flux tracking error versus time

1 For each figure, each line is refereed to a, c: measured speed and load torque, e: reference flux, b,
d, f, g: estimated speed, load torque, flux, and stator resistance, h, i, j: speed, load torque, and flux
estimation error.
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Fig. 7.16 Experimental result in nominal case

formance of the complete system observer-controller for the trajectory tracking and
the disturbance rejection. In terms of trajectory tracking, we note that the estimated
motor speed (Fig. 7.16b) converges to themeasured speed (Fig. 7.16a) near and under
conditions of unobservability. The same conclusion is obtained for the estimated flux
(Fig. 7.16f) with respect to the reference flux (Fig. 7.16e). The estimated load torque
(Fig. 7.16d) converges to the measured load torque (Fig. 7.16c), under conditions of
observability and at very low frequency (conditions of unobservability) from 7 to
9s. Nevertheless, a small static error appears when the motor speed increases (from
4 to 6s). In terms of disturbance rejection, we have noted that the load torque is well
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rejected except at the time interval (1.5 and 5s) when it is applied (see Fig. 7.16h
and j); and when it is removed at time 2.5 s (see Fig. 7.16h and j). In Fig. 7.16g, it can
be viewed that the stator resistance estimation remains almost constant despite the
noise and transient dynamics of speed and load torque. This test shows the capability
of the proposed controller to guarantee flux and speed tracking for slowly varying
speed reference with excitation frequency close to zero (in the time interval from 7
to 9s).

Fig. 7.17 Experimental result with rotor resistance variation: +50%
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The robustness of the observer-controller scheme is confirmed from the result
obtained under rotor resistance variations:+50 and−50% around the nominal value
(see Figs. 7.17 and 7.18). These figures display similar experimental results as for the
rotor resistance nominal case under conditions of observability. In conclusion, we can
say that the variation in the rotor resistance value does not affect the performance
of the speed trajectory tracking, when the observability conditions of the IM are
satisfied. When the motor is under unobservable condition (from 7 to 9s), a static
error appears: see Figs. 7.17a, b and 7.18a, b. The static error transient increases
when the load torque is applied at time 1.5 and 5s: Figs. 7.17h, j and 7.18h, j.

Last robustness tests are made by taking into account variations of +10% of
the nominal value of the rotor/stator self-inductance. The results of these tests are
shown in Figs. 7.19 and 7.20. By analyzing these figures, we can see that the rotor
and stator self-inductance variation does not significantly affect the performances of
the observer+controller scheme. Nevertheless, a small oscillation appears when the
load torque is applied at time 5s (see Figs. 7.19a, b and 7.20a, b).

7.3.3 Conclusions

In this section is presented a study investigating the performance of anHOSMcontrol
of the IM without mechanical sensors: position, speed, and load torque sensors. The
major contributions of this study are summarized as follows:

(1) The design of an adaptive interconnected observer that well estimates the rotor
speed, rotor fluxes, and load torque even when an external load disturbance is
applied.

(2) The successful development of afield-oriented control using anHOSMcontroller
to achieve a robust speed and flux tracking for the IM under observable and
unobservable conditions. The proposed HOSM controller ensures a finite time
convergence, high accuracy (higher than “standard” SM), and robustness.

(3) The strong uniform practical stability based on the Lyapunov theory has been
considered for the observer convergence. Stability of the observer-controller
scheme has been also proved where sufficient conditions have been obtained
ensuring that the tracking and the estimation errors tend to a ball of radius
expressed in terms of the controller-observer parameters and system uncertain-
ties.

(4) The successful application of the observer-controller scheme on an experimental
setup with a significant sensorless control benchmark. The robustness of the
observer and the controller is confirmed by significant parameter variations tests.
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Fig. 7.18 Experimental result with rotor resistance variation: −50%
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Fig. 7.19 Experimental result with rotor self-inductance variation: +10%
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Fig. 7.20 Experimental result with stator self-inductance variation: +10%
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7.4 Conclusions

In this chapter, two observer-controller schemes have been presented to solve the
tracking problem of the sensorless inductionmotor. One of these schemes is based on
a backstepping control technique using the estimates given by an adaptive intercon-
nected observer. A stability analysis of the closed-loop system has been developed,
and sufficient conditions have been given to guarantee the strong uniform practical
stability of the tracking error. The advantage of applying this observer-controller
scheme is the simplicity to tune the control and observer gains. No important com-
putational effort is necessary to implement such a control scheme.

On the other hand, a high order slidingmode controller combinedwith an adaptive
interconnected observer has been studied. Thanks to the finite time convergence of the
controller, which can be fixed in advance, and its attractive robustness properties, the
proposed scheme becomes an interesting alternative to control induction machines.

Several experimental tests have been realized to show the real performance of both
of the induction motor sensorless controllers. From the experimental results, we can
conclude that the scheme constituted by the backstepping controller combined with
the adaptive interconnected observer has shown better performance compared to the
high order slidingmode control plus the adaptive interconnected observer. Simplicity
to tune, less computational effort, and high quality of the responses have been the
remarkable advantages of this scheme. Nevertheless, the HOSM controller is slightly
more robust under parametric uncertainties than the integral backstepping controller.

7.5 Bibliographical Notes

As introduced inChap.5, for the sensorless control of the inductionmotor, the knowl-
edge of the rotor speed is crucial for control applications, and generally a sensor is
used. However, the minimization of the number of sensors contributes to simplify
the installation and decreases the cost of both control and maintenance.

Consequently, there is considerable interest in IM control without mechanical
sensors. Amajor difficulty is the estimation of the state variable at low frequencies. In
[44], the authors have demonstrated that the main conditions to lose the observability
of the IM are: the excitation voltages frequency is zero and the rotor speed is constant.
A more complete analysis of the IM observability is given in Chap.2 of this book.
Another difficulty is to ensure the robustness against parameter variations. In the
literature, several approaches have been proposed to estimate the rotor velocity,
and/or the load torque, and/or some sensitive parameters from the measurements: the
stator currents and voltages, and then to design sensorless controls, see for example:
[26, 27, 29, 32, 35, 36, 49, 64, 67, 70, 71, 82]. Almost all the IM sensorless control
papers do not validate the sensorless controls on significant trajectories and with
robustness tests. It is essential to check the sensorless control when the observability
property is lost to validate if the algorithms are robust with respect to this singularity.

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_2
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Of course, this test has to be donewith nominal torque and completedwith robustness
test with respect to parameters variation as the stator resistance variation [43] and the
inductance variation. Regarding the observer developed in [85], it has been shown
that the observer is sensitive with respect to a variation in the stator resistance. For
example, in [84] an industrial sensorless drive was tested and did not succeed to
track the significant test trajectories (see [34]) introduced in Chap.1. This sensitivity
problemclearly appears for the observation of flux andmore particularly at low speed.
This is an important point when a sensorless field- is implemented. By using the
adaptive observer, the robustness with respect to the variation of the stator resistance
is more confident.

The classical sensorless field-oriented control has been tested for the trajectory
tracking control on significant references in [85]2. A best result is obtained using a
robust adaptive observer-backstepping sensorless control in [88]3 and [89]4. In [89]
an observer-controller stability analysis is given, with sufficient conditions to ensure
that the tracking dynamics are strongly uniformly practically stable (see [59]). More
precisely, the tracking errors converge to a ball whose radius can be reduced by tuning
the gains of the observer-controller scheme. Furthermore, experimental results using
this scheme are given.

Another approach is proposed in [86]5 where a robust adaptive high order sliding
mode control combined with an adaptive interconnected observer is implemented
in the IM. One of the most interesting characteristics of this approach is that the
convergence time of the controller can be a priori fixed. Experimental results are
also given where the robustness and the performance are shown.

Appendix: Stability of the Observer-Controller Scheme

Recall that the main goal of this chapter is to synthesize a robust sensorless control of
induction motor, assuming that the speed and the flux are not available by measure-
ment, and the load torque is considered as an unknown input. In order to implement
the above control law it is necessary to replace speed and flux, the stator resistance,

2 This chapter includes excerpts from “Traore D, De Leon J, Glumineau A, Loron L (2007) Speed
sensorless field-oriented control of induction motor with interconnected observers: experimental
tests at low frequencies benchmark. IET Control Theory Applications, 1–6(10):16811692, DOI
10.1049/iet-cta.2009.0648” with permission from IET.
3 This chapter includes excerpts of “Traore D, De Leon J, Glumineau A (2010) Sensorless induction
motor adaptive observer-backstepping controller: experimental robustness tests on low frequencies
benchmark. IET Control Theory Applications 4(10):19892002, DOI 10.1049/iet-cta.2009.0648”
with permission from IET.
4 This chapter, includes excerpts of [89], originally published in the IFAC journal: Automatica,
48:682687, IFAC-PapersOnLine IFAC 2012.
5 This chapter includes excerpts of [86], (2008) IEEE. Reprinted, with permission, from “Traore
D, Plestan F, Glumineau A, de Leon J (2008) Sensorless induction motor: High-order sliding-
mode controller and adaptive interconnected observer. IEEE Transactions on Industrial Electronics,
55(11):38183827”.

http://dx.doi.org/10.1007/978-3-319-14586-0_1
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and the stator frequency by their estimated values provided by the observer. To
achieve this goal, one rewrites the speed and flux controllers (5.19), and the control
inputs (5.28) as functions of the estimate variables as follows:

⎧⎨
⎩

i∗sq = 1
mφ̂rd

[Ω̇∗ + cΩ̂ + T̂l
J + (KΩ + K ′

Ω)(Ω∗ − Ω̂)+ KΩ K ′
Ω

∫ t
0 (Ω∗ − Ω̂)dt]

i∗sd = aMsr
[φ̇∗ + aφ̂rd + (Kφ + K ′

φ)(φ∗ − φ̂rd) + KφK ′
φ

∫ t
0 (φ∗ − φ̂rd)dt]

(7.21)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

usq= 1
m1

[Kiq(i∗sq − isq) + K ′′
iq(Kiq − K ′

iq)
∫ t
0 (i∗sq − isq)dt + 2mφ̂rd(Ω∗−Ω̂)

+K ′
Ω

∫ t
0 (Ω∗ − Ω̂)dt + bpΩ̂φ̂rd + (γ1 + m1 R̂s)isq + ω̃s isd + i̇∗sq ]

usd= 1
m1

[Kid(i∗sd − isd) + K ′′
id(Kid − K ′

id)
∫ t
0 (i∗sd − isd)dt + 2aMsr (φ

∗−φ̂rd)

+K ′
φ

∫ t
0 (φ∗ − φ̂rd)dt − baφ̂rd + (γ1 + m1 R̂s)isd − ω̃s isq + i̇∗sd ]

(7.22)

with ω̃s is the estimation of the stator pulsation defined in (7.15). The reduced model
of the induction motor (5.4) in closed-loop with the controls (7.22) is given by

[
Ω̇
˙φrd

]
=
[

mφrd i∗sq(Ω̂, φ̂rd) − cΩ − Tl
J

−aφrd + aMsr i∗sd(φ̂rd)

]
. (7.23)

Remark 7.4 In order to avoid a singularity problem in (7.21), the observer is initial-
ized using a flux initial condition different from zero, such that controller (7.21) is
well-defined. This condition is actually a physical condition of IM: no flux implies
no torque (see [66] for more details). Moreover, the flux controller (7.21) allows to
guarantee that φrd quickly reaches its reference φ∗. Before the motor is fluxed, (i.e.,
φrd = φ∗) the speed reference is kept to zero.

Here, it will be demonstrated that the singularities of controller (7.21) are avoided
for all t ≥ 0.

The speed andflux tracking error dynamics (5.18) can be rewritten in the following
form:

{
żΩ = −KΩ zΩ − (KΩ + K ′

Ω − c)BΩ1ε1 + εT
2 BT

Ω2
Γ (zΩ) + ε3

J − Γ (εΩ)

żφ = −Kφzφ − (Kφ + K ′
φ − a)Bφε2 − Γ (εφ.)

(7.24)

where the estimation errors are

εΩ = Ω − Ω̂, εφ = φrd − φ̂rd ,

http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
http://dx.doi.org/10.1007/978-3-319-14586-0_5
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and the nonlinear terms:

Γ (zΩ) = 1

φ̂rd

[
Ω̇∗ + cΩ̂ + T̂l

J
+ (KΩ + K ′

Ω)(Ω∗ − Ω̂) + KΩ K ′
Ω

∫ t

0
(Ω∗ − Ω̂)dt

]
,

Γ (εΩ) = −KΩ K ′
Ω

∫ t

0
εΩdt, Γ (εφ) = −KφK ′

φ

∫ t

0
εφdt,

BΩ1 = Bφ = [
0 1 0

]
, BΩ2 = [

0 −1 0
]

Then, one can establish the following lemma.

Lemma 7.2 Consider system (1.108), and assuming that the reference signals i∗sq ,
i∗sd , Ω∗ and φ∗ are differentiable and bounded, and conditions given in Remark 3.17
hold. Then, system (1.108) in closed-loop with the speed, flux, and current tracking
laws (7.21) and (7.22), using the estimates provided by an adaptive interconnected
observer (3.110), is strongly uniformly practically stable.

The proof follows the same procedure as the control analysis given in Chap.5.
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Chapter 8
Conclusions

Thanks to the considerable progress in technological developments, the applicability
of recent control techniques for AC machines is now possible according to the
requirements of manufacturers. This book has aimed to introduce some recent results
in control and observation theories applied to the control of AC machines for a
wide range of operations. Special attention has been paid to the sensorless AC
machines case, in particular, by the application of nonlinear observers and robust
control strategies.

It is clear that intensive research activity in AC machines control has been carried
out recently. In this book, has been treated specific topics on control and observation
theories. They have significant qualities thanks to their robustness in the presence of
uncertainties and disturbances and thanks to their convergence property.

As an initial step, the observation problem for nonlinear systems was presented as
well as the analysis of AC machines observability property. This topic attracts more
attention in the sensorless case because the AC machines observability property
fails at low speed. Taking into account that the observability for some classes of
nonlinear system can depend on the input, some definitions have been introduced
and used to determine whether the system is observable. This property is important
for these systems because for the observer design, the convergence requires that
the inputs satisfy the persistent condition: the inputs sufficiently excite the system
to keep the observability property. Once the observability of the AC machines is
verified, the study of an observer design can start. When a solution exists and if the
observability depends on the system inputs, its convergence is ensured provided the
input is persistent. Several structures forwhich an observer can be designed have been
presented for the AC machines. In this way, Chap.3 is devoted to the introduction of
the different structures for which the mathematical models of the AC machines can
be transformed into a form that allows the design of an observer.

The estimation of the non-measurable components of the state and the identifica-
tion of some important unknown parameters or disturbances can be simultaneously
done online by using the proposed adaptive interconnected observers. Mainly three
kinds of observers have been studied: Luenberger like type, Kalman like type, and
Sliding Mode Observer. Furthermore, the observers can be classified in terms of

© Springer International Publishing Switzerland 2015
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their convergence: those with asymptotic convergence (interconnected observer and
adaptive interconnected observer) and those with a finite-time convergence (slid-
ing mode and super-twisting observers). Both classes of observers have interesting
robust properties and advantages in their implementation. However, some consider-
ations were taken into account in their selection. For instance: the tuning simplicity,
computational effort, performance, and robustness under perturbations are aspects
that play an important role to select the appropriate strategy.

For the industrial motion applications, the control of AC machines is one of the
main goals for researchers and engineers due to the advantages of these machines:
low cost, ruggedness, and versatility. However, they are complex to control, and some
parameters are not well known.

Thanks to recent results in control design and to technological developments, it
is possible to improve AC machines control and their performances. Recent results
in control design are given in Chap.4 for the PMSM and in Chap.5 for the induction
motor. Robust nonlinear techniques are introduced to design controllers that achieve
the desired control objectives. One of the proposed techniques is the backstepping
control (with or without additional integral terms). Its simplicity to tune and to imple-
ment allows to easily apply such controllers in this framework. The other presented
control approach is the high order sliding mode control with finite-time convergence
property and robust performance in presence of uncertainties.

Then, the design of the observer-controller schemes were described based on the
main characteristics of each controller and each observer. The focus was to illustrate
the performance of the proposed observer-controller schemes based on nonlinear
observers and robust controllers applied to theACmachines control. In the framework
of significant benchmarks and thus for a wide range of operation, according to the
simulation and the experimental results, it was shown satisfactory performances
for the speed tracking control algorithms associated with nonlinear observers. The
experimental results obtained for the induction motor under parametric uncertainties
and external disturbances have shown that the rotor speed control robustly tracks
the desired reference under variation of the load torque and variation of the machine
parameters.

Given the wide field of research in electrical machines, a lot of developments exist
from a theoretical or practical point of view. Novel technologies must be integrated
andmore powerful control strategiesmust be implemented to answer to the new chal-
lenging problems for industrial applications. One of the most interesting prospects of
research for AC machine control development could be to increase the applicability
of these machines even if faults appear. Fault diagnosis methods can be used. These
algorithms can be seen as natural extensions of the observation scheme developed in
this book. Next, a prospect could be to adapt the control to the detected fault in order
to carry on the machine control with limited but safe objectives. A direct application
can be the electric traction system in automotive or aeronautic areas.
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