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Implicit function theorem for nonlinear time-delay systems with algebraic
constraints

Yahao Chen, Malek Ghanes Member, IEEE , and Jean-Pierre Barbot, Senior Member, IEEE

Abstract— In this note, we discuss a generalization of the well-
known implicit function theorem to the time-delay case. We show
that the latter problem is closely related to the bicausal changes
of coordinates of time-delay systems [4], [5]. An iterative algorithm
is proposed to check the conditions and to construct the desired
bicausal change of coordinates for the proposed implicit function
theorem. Moreover, we show that our results can be applied to
delayed differential-algebraic equations (DDAEs) to reduce their
indices and to get their solutions. Some numerical examples are
given to illustrate our results.

Index Terms— nonlinear systems, time delays, bicausal
changes of coordinates, implicit function theorem, causal-
ity, differential-algebraic equations

I. INTRODUCTION

We start from three different algebraic equations with time-delay
variables:

a(x1,x2) = x1(t)x2(t− 1) + x2(t)x2(t− 1) + e1 = 0,

b(x1,x2) = x1(t)x2(t− 1) + x1(t− 1)x2(t)x2(t− 2) + e2 = 0,

c(x1,x2) = x1(t)x1(t− 1) + x2(t)x2(t− 1) + e3 = 0,

where (x1,x2) = (x1(t), x2(t), x1(t − 1), x2(t − 1), x2(t − 2))
and e1, e2, e3 are nonzero constants. The purpose is to express
x1(t) as a function of x2(t) and its time-delays from each algebraic
equation. For instance, it is clear to get x1(t) =

−e1−x2(t)x2(t−1)
x2(t−1)

for x2(t − 1) ̸= 0 by the first equation, while it is not obvious
if we can have similar conclusions for the other two equations. In
the delay-free case, given some algebraic equations λ(x1, x2) = 0,
where λ ∈ Kp, x1 ∈ Rp, x2 ∈ Rn−p and K denotes the field
of meromorphic functions, if the matrix ∂λ

∂x1
(x1, x2) ∈ Kp×p is

invertible for all (x1, x2) ∈ Rn such that λ(x1, x2) = 0 (or, a
simpler but stronger condition, for all (x1, x2) ∈ Rn), then by
the classical implicit function theorem (see e.g. [19]), there exist
functions g : Rn−p → Kp such that λ(x1, x2) = 0 implies
x1 = g(x2). We will study in this note a generalization of the implicit
function theorem to time-delay equations.

To deal with functions with time-delay variables, the algebraic
framework proposed in [28] is a very useful tool. There are many
applications of this framework see e.g., [2], [17], [22], [23], [29]
for the problems as observations and structure analysis of time-delay
systems, and more recently, the series of papers [3]–[6], [18] and the
book [7] for the generalizations of the classical geometric control
methods to time-delay systems.

With the help of the algebraic framework, we show in section II
below that although we can not express x1(t) as a function of
x2(t), x2(t − 1), x2(t − 2) for the last two equations, by a bi-
causal change of coordinates (see Definition 3 below) [x̃1, x̃2]

T =
φ(x1,x2), the equation b(x̃1, x̃2) = 0 in (x̃1, x̃2)-coordinates
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implies x̃1 = g(x̃2) for some function g (but we can not find such a
bicausal change of coordinates for c(x) = 0). The first problem is that
when is it possible and how do we find such a bicausal coordinates
transformation for a given time-delay algebraic equation? It turns
out that such a problem is closely related to when the functions with
time-delay variables can be regarded as new bicausal coordinates
and how to construct their complementary bicausal coordinates, the
latter problems are discussed in [4], [5], [22]. We will recall some
results from [5] and add two extra equivalent conditions as Theorem 4
in order to explain the relations. Then a generalization of implicit
function theorem to time-delay equations is given as a corollary of
Theorem 4.

To check the equivalent conditions of Theorem 4, we need to
either construct the right-annihilator/kernel or the right-inverse of
polynomial matrix-valued functions, which can be done with the help
of Smith canonical form of polynomial matrix-valued functions (see
[22], also [15] for polynomial matrices with entries in R[δ]). We
will discuss in section IV below that the latter method has troubles
when checking the necessity of those conditions. To deal with the
latter problem, we propose an iterative algorithm by reducing the
polynomial degree of the polynomial matrix-valued functions via
bicausal changes of coordinates, which eventually allows to check
the conditions of Theorem 4 and to construct the desired bicausal
change of coordinates.

Another contribution of this note is to apply the proposed im-
plicit function theorem to delayed differential-algebraic equations
(DDAEs), i.e., implicit time-delay equations (see e.g. [8], [13], [16],
[26] for linear DDAEs and [1], [27], [30] for nonlinear DDAEs).
It is well-known that for delay-free differential-algebraic equations
(DAEs), the classical implicit function theorem is an essential tool
for its index-reduction problem, e.g., given a semi-explicit DAE ẋ1 =

f(x1, x2), 0 = g(x1, x2), if ∂g(x1,x2)
∂x2

̸= 0 for all (x1, x2) ∈ R2

(i.e., the DAE is index-1), then to reformulate the DAE as an ordinary
differential equation (ODE), we use the implicit function theorem to
get x2 = η(x1) from the algebraic constraint and we get an ODE
ẋ1 = f(x1, η(x1)). For a high-index DAE, the geometric reduction
method can be used to reduce the index, see e.g. [10], [11], [24], [25].
We will show below that by assuming that the algebraic constraints of
DDAEs satisfy the proposed implicit function theorem, a time-delay
version of the geometric reduction method can be realized.

This note is organised as follows. Notations and the definitions
of some notions in the algebraic framework are given in section II.
The time-delay implicit function theorem is discussed in section III.
The algorithm to check the conditions of the time-delay implicit
function theorem is given in section IV. In section V, we discuss
the index reduction algorithm and the solutions of nonlinear DDAEs
by applying the results of sections III and IV. The conclusions and
perspectives are put into section VI.

II. NOTATIONS AND PRELIMINARIES

We will follow the algebraic framework of time-delay systems
proposed in [28], the notations below are taken from those in e.g., [5],
[7], [28]. In this note, we do not deal with singularities and assume
throughout that f(x) ̸≡ 0 for no non-trivial meromorphic function f .
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Ir identity matrix of Rr×r .
x(±j) x(t± j), j ≥ 0.
x[j,j̄] [xT (−j), . . . , xT (−j̄)]T ∈ R(j̄−j+1)n, 0 ≤ j ≤ j̄.
x[j̄] x = x[j̄] = x[0,j̄] = [xT , xT (−1), . . . , xT (−j̄)]T ∈

R(j̄+1)n, where x = x(0) = x(t) ∈ Rn.
K the field of meromorphic functions.
d the differential operator: for ξ(x[j̄]) ∈ K and λ(x[j̄]) ∈

Kp, dξ(x[j̄]) =
j̄∑

j=0

∂ξ(x[j̄])

∂x(−j)
dx(−j) and dλ =

[
dλ1
···
dλp

]
.

δ the backward time-shift operator: for a(t), ξ(t) ∈ K,
δjξ(t) = ξ(−j) and δj(a(t)dξ(t)) = a(−j)dξ(−j).

∆ the forward time-shift operator: for a(t), ξ(t) ∈ K,
∆jξ(t) = ξ(+j) and ∆j(a(t)dξ(t)) = a(+j)dξ(+j).

K(δ] the left (ore-)ring of polynomials in δ with entries in K,

any α(x, δ) ∈ K(δ] has the form α(x, δ) =
j̄∑

j=0

αj(x)δj ,

where αj(x) ∈ K.
deg(·) The polynomial degree. For α(x, δ) ∈ K(δ], deg(α) = j̄.

For β(x, δ) = [β1(x, δ), . . . , βn(x, δ)] ∈ Kn(δ], deg(β) =
max{deg(βi), 1 ≤ i ≤ n}.

∧ exterior product
The sums and multiplications for any two elements of K(δ] are
well-defined [28], and the rank of a matrix A(·, δ) ∈ Kr×m(δ] over
K(δ], denoted by rankK(δ]A(·, δ), is also well-defined. Remark
that a polynomial matrix-valued function A(·, δ) ∈ Kr×r(δ] is of
full rank does not necessarily mean that A(·, δ) has a polynomial
inverse over K(δ], the following notion of unimodularity generalizes
that of invertibility of non-polynomial matrices.

Definition 1 ( [22], [28]). A matrix A(·, δ) ∈ Kr×r(δ] is called
unimodular if there exists a matrix B(·, δ) ∈ Kr×r(δ] such that
A(·, δ)B(·, δ) = B(·, δ)A(·, δ) = Ir .

Denote the vector space generated by the differentials dx(−j),
j ≥ 0 over K by E . An element ω ∈ E is called one-form. The
one-form ω is exact, i.e., there exists λ ∈ K such that ω = dλ,
if and only if dω = 0 (Poincaré lemma [21]). The codistribution
spanK {ω1, . . . , ωp} is integrable, i.e., there exist λ1, . . . , λp ∈ K
such that spanK {ω1, . . . , ωp} = spanK {dλ1, . . . , dλp}, if and
only if dωi ∧ ω1 ∧ · · · ∧ ωp = 0, for 1 ≤ i ≤ p (Frobenius
theorem [21]). The sets of one-forms defined over the ring K(δ]
have both the structure of a vector space E over K and the structure
of a (left)-module, M = spanK(δ] {dx}. A (left)-submodule of
M consists of all possible linear combinations of given one forms
over the ring K(δ]. Denote O := spanK(δ] {ω1, . . . , ωp} ⊆ M the
submodule generated by one forms ω1, . . . , ωp over K(δ]. The right-
annihilator (or the kernel) of the submodule O is spanned by all
vectors τ(·, δ) ∈ Kn(δ] such that ωi(·, δ)τ(·, δ) = 0 for 1 ≤ i ≤ p.
The closure of the submodules of M recalled below will play an
important role.

Definition 2 ( [28]). Given a finite generated module M, let N be
a submodule of M of dimension r over K(δ], the closure of N is
the submodule

N := {ω ∈M| ∃ 0 ̸= α(·, δ) ∈ K(δ], α(·, δ)ω ∈ N } ,

or equivalently, N is the largest submodule ofM which contains N
and is of rank r. The submodule N is called closed if N = N .

The following definition of bicausal change of coordinates will be
used in the note:

Definition 3 (bicausal coordinates changes [5], [23]). Consider a
system (differential or not) with state coordinates x ∈ Rn. A mapping
z = φ(x[j̄]) ∈ K

n, is called a bicausal change of coordinates if
there exist an integer j̄z ≥ 0 and a mapping φ−1 ∈ Kn such that

x = φ−1(z[j̄z ]).

Remark that a mapping z = φ(x) is a bicausal change of
coordinates if and only if T (x, δ) ∈ Kn×n(δ] is a unimodular matrix
[7], where dz = dφ(x) = T (x, δ)dx. For a function λ(x) ∈ K, we
will simply write λ in z-coordinates as

λ(z) := λ(φ−1(z), . . . , φ−1(z(−j̄))).

III. IMPLICIT FUNCTION THEOREM FOR TIME-DELAY
ALGEBRAIC EQUATIONS

Now consider the time-delay algebraic equations λ(x) =
λ(x1,x2) = 0 with λ ∈ Kp. The differentials of λ are dλ(x) =
T1(x, δ)dx1 + T2(x, δ)dx2, if T1(x, δ) ∈ Kp×p(δ] is unimodu-
lar, then dx1 = −T−1

1 T2(x, δ)dx2 as dλ(x) = T1(x, δ)dx1 +
T2(x, δ)dx2 = 0. Thus by Poincaré lemma, there exists η ∈ Kp
such that x1 = η(x2). The last analysis explains why we can get
x1 as a function of x2 and x2(−1) from a(x) = 0 in section I,
clearly, da = x2(−1)dx1+(x1δ+x2δ+x2(−1))dx2 and x2(−1)
is unimodular. To have a similar result for b(x) = 0, we have to use
bicausal changes of coordinates (see Example 12(a) below).

In general, we have the following theorem, in which items (i) and
(ii) are taken from Theorem 2 of [5], items (iii) and (iv) are new and
serve to our problem.

We use the following condition (C) for any submodule N ⊆M:
(C): N is closed and its right-annihilator is causal.

Theorem 4. Consider p-functions λk(x) ∈ K, 1 ≤ k ≤ p, of the
variables x ∈ Rn and its time-delays. Define the submodule L :=
spanK(δ] {dλk(x), 1 ≤ k ≤ p} and assume that dimL = p over
K(δ]. Then the following statements are equivalent:

(i) L satisfies (C).
(ii) There exist n − p functions θ1(x), . . . , θn−p(x) such that

spanK(δ] {dλ1, . . . , dλp,dθ1, . . . , dθn−p} = spanK(δ] {dx},
i.e., x̃ = [λ1(x), . . . , λp(x), θ1(x), . . . , θn−p(x)]

T is a bi-
causal change of coordinates.

(iii) L(x, δ) ∈ Kp×n(δ], where dλ(x) = L(x, δ)dx and λ =
[λ1, . . . , λp]

T , has a polynomial right-inverse, i.e., ∃L†(x, δ) ∈
Kn×p(δ] such that LL† = Ip.

(iv) There exists a bicausal change of coordinates[
x̃1
x̃2

]
= φ(x) with x̃1 ∈ Rp and x̃2 ∈ Rn−p such

that L1(x̃1, x̃2, δ) ∈ Kp×p(δ] is unimodular, where
L1(x̃1, x̃2, δ)dx̃1 + L2(x̃1, x̃2, δ)dx̃2 = dλ(x̃1, x̃2) and
L2 ̸≡ 0.

Remark 5. The added condition (iii) is in some cases easier to
be checked than condition (i) because the right-annihilator could be
rendered causal even some non-causal terms shows up in the initial
calculation of the kernel. Take λ = x1(−1)x2+x22 from Example 3.6
of [5], in which it is claimed that the right-annihilator of L =
spanK(δ] {x2δdx1 + (x1(−1) + 2x2)dx2} is not causal because

the non-causal vector-valued functions r(x, δ) =
[
−2x2(+1)−x1

x2δ

]
are in the right-annihilator. However, L(x, δ) = [ x1δ, x1(−1)+2x2 ]
has a polynomial right-inverse

L†(x, δ) =
[ 0

1
(x1(−1)+2x2)

]
(for x1(−1) + 2x2 ̸= 0). In fact, r(x, δ) can be rendered as[

−1
x2

x1(−1)+2x2
δ

]
proving that the right-annihilator is actually causal.

Indeed, choose θ = x1, we have
[
λ(x)
θ(x)

]
is a bicausal change

of coordinates since
[
dλ(x)
dθ(x)

]
= Θ(x, δ)

[
dx1
dx2

]
and Θ(x, δ) =
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[
x2δ x1(−1)+2x2
1 0

]
is unimodular, hence by the equivalence of items

(i) and (ii), the right annihilator of L is indeed causal.

Proof. The proof of (i)⇔ (ii) can be found in [5] and [22].
(i)⇒(iii): Assume that item (i) holds, then by Lemma 12 of

[22], there exist two unimodular matrices P (x, δ) ∈ Kp×p(δ]
and Q(x, δ) ∈ Kn×n(δ] such that P (x, δ)L(x, δ)Q(x, δ) =
[Ip 0]. It follows that L(x, δ)Q(x, δ) = [P−1(x, δ) 0] and thus
L(x, δ)Q1(x, δ) = P−1(x, δ), where Q = [Q1 Q2 ] and Q1(x, δ) ∈
Kn×p(δ]. Hence L(x, δ)Q1(x, δ)P (x, δ) = Ip and L†(x, δ) =
Q1(x, δ)P (x, δ) is a polynomial right-inverse of L(x, δ).

(iii)⇒ (i): Assume that there exists L†(x, δ) ∈ Kn×p(δ] such
that L(x, δ)L†(x, δ) = Ip. Then by Lemma 4 of [22], there
always exists a unimodular matrix U(x, δ) =

[
U1(x,δ)
U2(x,δ)

]
∈

Kn×n(δ] such that
[
U1(x,δ)
U2(x,δ)

]
L†(x, δ) =

[
R(x,δ)

0

]
with

R(x, δ) ∈ Kp×p(δ] being of full rank over K(δ]. Then by
L(x, δ)L†(x, δ) = Ip and U1(x, δ)L

†(x, δ) = R(x, δ), we
get that U1(x, δ) = R(x, δ)L(x, δ) + T (x, δ)U2(x, δ) for some
matrix T (x, δ) ∈ Kp×(n−p)(δ]. It follows that

[
U1(x,δ)
U2(x,δ)

]
=[

R(x,δ)L(x,δ)+T (x,δ)U2(x,δ)
U2(x,δ)

]
=

[
I T (x,δ)
0 I

] [
R(x,δ)L(x,δ)
U2(x,δ)

]
is

unimodular and thus
[
R(x,δ)L(x,δ)
U2(x,δ)

]
is unimodular as well. So

spanK(δ] {R(x, δ)L(x, δ)dx} satisfies (C) by Theorem 13 of [22].
Notice that spanK(δ] {R(x, δ)L(x, δ)dx} and L have the same right-
annihilator and spanK(δ] {R(x, δ)L(x, δ)dx} ⊆ L. Hence L is
closed and its right-annihilator is causal.

(ii)⇒(iv): Assume that item (ii) holds. Define x̃1 :=
λ(x) + η(θ(x)), where η is any function in Kp of θ =

[θ1, . . . , θn−p]
T and their delays, and x̃2 := θ(x). Then

[
dx1
dx2

]
=[

Ip E(x,δ)
0 In−p

]
Θ(x, δ)dx, where E(x, δ)dθ = E(θ, δ)dθ = dη(θ)

and Θ(x, δ)dx =
[
dλ(x)
dθ(x)

]
. Since Θ(x, δ) is unimodular as[

λ(x)
θ(x)

]
defines a bicausal change of coordinates, we have that[

Ip E(x,δ)
0 In−p

]
Θ(x, δ) is unimodular and

[
x̃1
x̃2

]
defines a bicausal

change of x-coordinates. Hence by λ(x̃1, x̃2) = x̃1 − η(x̃2), we
have that L1(x̃1, x̃2, δ) = Ip is unimodular.

(iv)⇒(iii): Suppose that item (iv) holds, then dλ = L(x, δ)dx =

L(x, δ)Ψ−1(x, δ)Ψ(x, δ)dx = L(x, δ)Ψ−1(x, δ)
[
dx̃1
dx̃2

]
=

[L1(x,δ) L2(x,δ) ]
[
dx̃1
dx̃2

]
, where Ψ(x, δ)dx = dφ(x) and Ψ(x, δ) ∈

Kn×n(δ] is unimodular. Because L1(x, δ) is unimodular, we have
[L1(x,δ) L2(x,δ) ]

[
L−1
1 (x,δ)

0

]
= L(x, δ)Ψ−1(x, δ)

[
L−1
1 (x,δ)

0

]
=

Ip. It follows that L†(x, δ) = Ψ−1(x, δ)
[
L−1
1 (x,δ)

0

]
is a polynomial

right-inverse of L(x, δ).

The results of Theorem 4 can be easily extended to functions with
dependent differentials via the results of (strongly) integrability of
left-submodules in [18]. In the delay-free case [12], for s-functions
λk(x) ∈ K, 1 ≤ k ≤ s, if the rank of dλ over K is p ≤ s,
then we can choose p-functions (whose differential are independent
over K) from λk(x) as parts of new coordinates. While in the time-
delay case, for functions with dependent differentials over K(δ],
even the conditions of Theorem 4 are satisfied, we can not always
choose p functions from λk(x, δ) as new bicausal coordinates.
For example, take λ1(x1,[1],x2,[2]) = x1(−1) + x2(−2) and
λ2(x1,[2],x2,[2]) = (x1 + x2(−1))(x1(−1) + x2(−2)), we have
dλ1 = δdx1 + δ2dx2 and dλ2 = (x1(−1) + x2(−2) + (x1 +
x2(−1))δ)dx1 + ((x1(−1) + x2(−2))δ + (x1 + x2(−1))δ2)dx2,
it can be seen that dλ1 and dλ2 are dependent over K(δ], and

the submodule L = spanK(δ] {dλ1, dλ2} is closed and its right-
annihilator spanK(δ]

{[
δ
−1

]}
is causal, but we can not choose either

λ1 or λ2 as a new bicausal coordinate since neither spanK(δ] {dλ1}
nor spanK(δ] {dλ2} is closed. Observe that we may still construct
λ̃ = x1 + x2(−1) as a new bicausal coordinate and L̃ =

spanK(δ]

{
dλ̃

}
= L. In general, the following results hold:

Proposition 6. Consider s-functions λi(x) ∈ K, 1 ≤ i ≤ s,
with dimL = p ≤ s, where L := spanK(δ] {dλk, 1 ≤ k ≤ s}. If
L satisfies (C), then we can find p-functions λ̃1, . . . , λ̃p ∈ K,
which do not necessarily belong to {λ1, . . . , λs}, such
that L̃ = spanK(δ]

{
dλ̃k(x), 1 ≤ k ≤ p

}
= L and

λ(x) = [λ1(x), . . . , λs(x)]
T = 0 is equivalent to

λ̃(x) = [λ̃1(x), . . . , λ̃p(x)]
T = 0, i.e., x(t) satisfies λ(x) = 0 if

and only if it satisfies λ̃(x) = 0.

Proof. Choose any p-functions λ1(x), . . . , λp(x) from λ(x) such
that the differentials dλk, 1 ≤ k ≤ p, are independent
over K(δ]. Then the submodule spanK(δ] {dλ1, . . . , dλp} are
(strongly) integrable in the sense of [18]. Thus its closure
spanK(δ] {dλ1, . . . , dλp}, which coincides with L (because L is
closed), is (strongly) integrable as well by Lemma 2 of [18]. So there
exist p-functions λ̄1, . . . , λ̄p such that spanK(δ]

{
dλ̄1, . . . , dλ̄p

}
=

spanK(δ] {dλ1, . . . , dλp} = L. However, it is not necessarily true
that λ(x) = 0 if and only if λ̄(x) = 0. Now since L satisfies
(C), by Theorem 4, we can choose x1 = λ̄1, . . ., xp = λ̄p,
xp+1 = θ1, . . . , xn = θn−p as new bicausal coordinates. It
follows that λk, 1 ≤ k ≤ s depends only on (x1, . . . , xp) and
their delays, i.e., λ = λ(x1, . . . ,xp). For 1 ≤ k ≤ p, fix
xk = xk(−1) = · · · = xk(−j̄) = ck, where ck is a constant,
and solve the algebraic equations λ(c1, . . . , cp) = 0. By setting
λ̃k = xk−ck = λ̄k(x)−ck, 1 ≤ k ≤ p, we have λ(x1, . . . ,xp) = 0
if and only if λ̃(x1, . . . ,xp) = 0.

We are now ready to present a generalization of the implicit
function theorem for time-delay algebraic equations.

Corollary 7 (implicit function theorem). Consider s-algebraic equa-
tions λ(x) = 0 and L := spanK(δ] {dλk, 1 ≤ k ≤ s}. Let dimL =
p ≤ s, if L satisfies (C), then there exists a bicausal change of
coordinates

[
x̃1
x̃2

]
= φ(x) with x̃1 ∈ Rp and x̃2 ∈ Rn−p such that

λ(x̃1, x̃2) = 0 implies x̃1 = η(x̃2).

Proof. If p < s, then we use the results of Proposition 6 to replace
λ(x) = 0 by λ̃(x) = 0. Then because L̃ = L satisfies item (i)
of Theorem 4, we have dx̃1 = L−1

1 L2(x̃1, x̃2, δ)dx̃2 by item (iv).
Hence by Poincaré lemma, there always exist functions η ∈ Kp such
that x̃1 = η(x̃2).

Remark 8. The result of Corollary 6 is sufficient but not nec-
essary, take the following example, λ(x1,[1],x2,[1]) = (x1 +
x1(−1))/x2(−1) + e = 0 with a constant e ̸= 0, we have

dλ = (
1

x2(−1)
+

1

x2(−1)
δ)dx1 − (

x1 + x1(−1)
x22(−1)

δ)dx2.

It can be seen by using Lemma 9 below that the right-annihilator of
L = spanK(δ] {dλ} is not causal (∆x1 = x1(+1) is not causal).
However, λ(x) = (x1 + x1(−1))/x2(−1) + e = 0 is equivalent
to λ̂(x) = (x1 + x1(−1)) + e4x2(−1) = 0 (for x2(−1) ̸= 0),
and spanK(δ]

{
dλ̂

}
satisfies (C). In fact, by the bicausal change

of coordinates
[
x̃1
x̃2

]
=

[ x1
x1+ex2

]
, we have λ̂(x̃1, x̃2) = x̃1 +

x̃2(−1) = 0 implying that x̃1 = −x̃2(−1). Observe that L
does not satisfy (C) for all x(t) but it satisfies (C) for all x(t)
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such that λ(x) = 0 because L restricted to {x |λ(x) = 0}
is spanK(δ]

{
1+δ

x2(−1)
dx1 + e

x2(−1)
δdx2

}
, which coincides with

spanK(δ]

{
dλ̂

}
and satisfies (C). Remark that when and how we

can find λ̂ in the general case is an interesting problem, but we will
not discuss that in details as the purpose of the remaining note is to
show how to check the condition of Corollary 6 (section IV) and to
use it to solve DDAEs (section V)

IV. AN ALGORITHM FOR CHECKING THE CONDITION OF
THE IMPLICIT FUNCTION THEOREM

To construct the right-annihilator of a left-submodule is, in general,
not an easy task (see e.g., Remark 5), which makes the conditions of
Theorem 4 and Corollary 7 difficult to be checked. A conventional
way to find the kernel of a polynomial matrix-valued function
L(x, δ) ∈ Kp×n(δ] is to transform L(x, δ) into its Smith canonical
form Q(x, δ)L(x, δ)P (x, δ) = [L1(x, δ), 0] by two unimodular
matrices Q and P (see e.g., [4], [5], [22]). However, the existence
of (causal) unimodular matrices to transform L(x, δ) into its Smith
canonical form requires already its kernel to be causal [22]. There-
fore, the necessity of item (i) of Theorem 4 is uncheckable by the
last method, i.e., if the kernel of L(x.δ) is not causal, we can
not transform L(x.δ) into its Smith form via (causal) unimodular
matrices in order to verify if the kernel is indeed not causal.

The following lemma provides some easily checkable necessary
conditions for the causality of the right-annihilator of a submodule
generated by the differential of a function. Consider a function
λ(z[0,j̄]) ∈ K of the variables z = [z1, . . . , zq]

T ∈ Rq and its
time-delays. Let αdz = [α1, . . . , αq]dz = dλ, where αi(z, δ) =
j̄i∑
j=0

αji (z)δ
j ∈ K(δ], 1 ≤ i ≤ q, and denote j̄ = deg(α) =

max{j̄i, 1 ≤ i ≤ q}.

Lemma 9. If the right-annihilator of α(z, δ) is causal, then there
exists a permutation of αi (by that of zi) such that α1 ̸≡ 0, j̄1 ≤ j̄2
and the right-annihilator of [α1(z, δ), α2(z, δ)] is causal as well.
Moreover, if that is causal, then rewrite

[α1, α2] = [ᾱ1, ᾱ2] + α
j̄1
1 [α̂1, α̂2],

where α̂1(δ) = δj̄1 , α̂2(z, δ) =
α
j̄2
2 (z)

α
j̄1
1 (z)

δj̄2 , we have that

(i) the delays of the variables z of α̂2(z, δ) = α̂2(z[j̄1,j̄], δ) are at

least j̄1, i.e., [∆j̄1 α̂1,∆
j̄1 α̂2] = [1,∆j̄1 α̂2] is causal;

(ii) Let (ξ1, ξ2) = z[j̄1,j̄] with ξ2 = (z1(−j̄1), z2(−j̄2)). Then by
fixing ξ1 as constants, the codistribution

D := spanK

dz1(−j̄1) +
α
j̄2
2 (z[j̄1,j̄])

α
j̄1
1 (z[j̄1,j̄])

dz2(−j̄2)


is integrable. That is, there exists a function λ̂(z[j̄1,j̄]) ∈ K such
that

D = spanK

{
∂λ̂(z[j̄1,j̄])

∂ξ2
dξ2

}
. (1)

(iii) z̃ = φ(z) = [z̃1, . . . , z̃q]
T , where

z̃1 = ∆j̄1 λ̂(z[j̄1,j̄]), z̃2 = z2, . . . , z̃q = zq,

defines a bicausal change of coordinates and αdz under z̃-
coordinates, i.e., α̃dz̃ = [α̃1, . . . , α̃q]dz̃ with α̃(z̃, δ) =
α(z, δ)Ψ−1(z, δ), where Ψ(z, δ)dz = dφ(z), satisfies
deg(α̃1) = j̄1, deg(α̃2) < j̄2 and deg(α̃i) = j̄i for 3 ≤ i ≤ q,

that is, the polynomial degree of α2 is reduced by the bicausal
coordinates change.

Proof. The proof of Lemma 9 is given after that of Theorem 10.

The above lemma shows a way to reduce the polynomial degree
of the differential of a delayed function via bicausal changes of
coordinates. With the help of Lemma 9 and inspired by the classical
method to transform a polynomial matrix into its triangular normal
form (or Hermite form, see e.g., [15]), we propose Algorithm 1 below,
which can be used to check the equivalent conditions of Theorem 4
and to construct the desired complementary bicausal coordinates
(θ1, . . . , θn−p).

Algorithm 1

Input: λ1(x), . . . , λp(x)
Output: YES/NO

1: Set k ← 1, l← 1, q ← n, z = [z1, . . . , zq]
T ← [x1, . . . , xn]

T .
2: if k > 1 then
3: Fix x1, . . . , xk−1 as constants, set q ← n − k + 1 and set

z = [z1, . . . , zq]
T ← [xk, . . . , xn]

T to regard λk(x) =
λk(x1, . . . ,xk−1, z) = λk(z) as a function of z-variables
and its time-delays.

4: end if
5: Set α(z, δ)dz = dλk(z, δ) to get α = [α1, . . . , αq] ∈ Kq(δ].
6: Find a permutation matrix P lk ∈ Rq×q such that α1 ̸≡ 0, j̄1 ≤
j̄2 and [∆j̄1 α̂1,∆

j̄1 α̂2] is causal after z ← P lkz and α ←
α(P lk)

−1.
7: if ̸ ∃P lk then
8: return NO
9: else

10: Find λ̂(z[j̄1,j̄]) ∈ K such that (1) holds.

11: Set z̃1 ← ∆j̄1 λ̂, z̃2 ← z2, . . ., z̃q ← zq .
12: Define a bicausal change of z-coordinates z̃ = φlk(z) =

[z̃1, z̃2, . . . , z̃q]
T ∈ Kq .

13: Set Ψk(z, δ)dz ← dφlk(z), α̃(z, δ)← α(z, δ)Ψ−1
k (z, δ) and

z ← (φlk)
−1(z̃) to have α̃(z̃, δ) = [α̃1(z̃, δ), . . . , α̃q(z̃, δ)]

and λk(z̃).
14: if ∃2 ≤ i ≤ q : α̃i ̸≡ 0 then
15: Set α← α̃ and z ← z̃, l← l + 1 and go to line 5.
16: else
17: if deg(α̃1(z̃, δ)) ̸= 0 then
18: return NO
19: else
20: if k = p then
21: return YES
22: else
23: Set [xk, . . . , xn]

T ← [z̃1, . . . , z̃q]
T .

24: k ← k + 1, l← 1.
25: Go to line 2
26: end if
27: end if
28: end if
29: end if

Theorem 10. The functions λk(x),1 ≤ k ≤ p, satisfy the equivalent
conditions in Theorem 4 if and only if Algorithm 1 returns to YES.
Moreover, if Algorithm 1 returns to YES, then let z̃2, . . . , z̃q with q =
n−p+1, be the functions from the last iteration, i.e., [z̃2, . . . , z̃q]T =
Qpφp ◦ · · · ◦Q1φ1, where, for each 1 ≤ k ≤ p,

φk = φ
lk
k ◦ P

lk
k · · ·φ

2
k ◦ P

2
kφ

1
k ◦ P

1
k ∈ K

n−k+1 (2)
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and Qk = [0, In−k] ∈ R(n−k)×(n−k+1) selects the last n−k rows
of φk, and lk denotes the number of iterations for λk, we have that
[λ1, . . . , λp, θ1, . . . , θn−p]

T is a bicausal change of x-coordinates,
where θ1 = z̃2, . . ., θn−p = z̃q .

Remark 11. Algorithm 1 and Theorem 10 provide another way to
prove (i) ⇒ (ii) of Theorem 4, the original proof in [5] uses a
contradiction with the help of the extended Lie brackets. Algorithm 1
proves (i) ⇒ (ii) by directly constructing the complementary bi-
causal coordinates (θ1, . . . , θn−p) in Theorem 4 (ii) using condition
(C) and Lemma 9.

Proof of Theorem 10. “Only if :” Assume that L satisfies (C). Then
by Theorem 13 of [22], the latter assumption is equivalent to that
there exists a matrix Θ(x, δ) ∈ K(n−p)×n(δ] such that

[
L(x,δ)
Θ(x,δ)

]
is unimodular, where L(x, δ)dx = dλ(x). It follows that Lk :=
spanK(δ] {dλ1, . . . , dλk} for all 1 ≤ k ≤ p satisfy (C) because

we can always find Θk such that
[
Lk(x,δ)
Θk(x,δ)

]
is unimodular, where

Lk(x, δ)dx =

[
dλ1(x)
...

dλk(x)

]
. Remark that the property that Lk satisfies

(C) is invariant under bicausal changes of coordinates. Now consider
k = 1, i.e., in each 1 ≤ l ≤ l1-iteration of Algorithm 1, the
right-annihilator of L1 is causal and thus by Lemma 9, we can
always find P l1 such that ∆j̄1 [α̂1, α̂2] is causal. By reducing the
polynomial degree of α2 and permutations, the polynomial degree
of α eventually reduces to j̄1. Then for l = l1, we have α̃i ≡ 0,
2 ≤ i ≤ q by construction. Moreover, deg(α̃1) = 0 for l = l1
as L1 is closed. So the algorithm does not returns to NO in the
the first l1-iterations. Suppose that the algorithm does not return to
NO for k = 1, . . . , k∗ − 1, i.e., after (l1 + · · · + lk∗−1)-iterations,

then
[
λ1···
λk∗

]
becomes

 λ1(x1)
···

λk∗−1(x1,...,xk∗−1)

λk∗ (x1,...,xk∗−1,z1,...,zq)

 with q = n −

k∗ + 1 and

[
dλ1···

dλk∗−1
dλk∗

]
=


c1 0 ··· 0 ··· 0

...
. . .

...
... ···

...
⋆ ··· ck∗−1 0 ··· 0
⋆ ··· ⋆ α1 ··· αq




dx1
...

dxk∗−1
dz1

...
dzq

 ,
where ck ̸≡ 0 and deg(ck) = 0 for all 1 ≤ k ≤ k∗ − 1, “⋆”
denotes some irrelevant terms. Thus by Lk∗ satisfies (C), we get
that spanK(δ] {α(z)dz} satisfies (C) (when fixing (x1, . . . , xk∗−1)
as constants), which indicates that Algorithm 1 does not return to
NO for k = k∗. Hence the algorithm returns to YES once k = p.

“If :” Suppose that the algorithm returns to YES. Then, we can
construct the following bicausal changes of x-coordinates:

ψ1 = φ1, ψ2 =
[

M1ψ1
φ2(N1ψ1)

]
, . . . , ψp =

[
Mp−1ψp−1

φp(Np−1ψp−1)

]
,

where φk, 1 ≤ k ≤ p, are defined by (2), Mk = [ Ik 0 ] ∈ Rk×n

and Nk = [ 0 In−k ] ∈ R(n−k)×n. Indeed, ψk defines a bicausal
change of coordinates on Kn because dψk =

[
Ik 0
⋆ Ψk

]
dψk−1,

where Ψk(x1, . . . ,xk−1, z, δ)dz = dφk(x1, . . . ,xk−1, z) and Ψk,
by the constructions in Algorithm 1, is unimodular. Then define
the following bicausal change of coordinates x̃ = [x̃1, . . . , x̃n]

T =
ψ(x) = ψp ◦ · · · ◦ ψ1(x), we have in x̃-coordinates that

[
dλ1···
dλp

]
=

 c1 0 ··· 0 ··· 0

...
. . .

...
... ···

...
∗ ··· cp 0 ··· 0




x̃1
...
x̃p
x̃p+1

...
x̃n

 ,

where ci = ci(x̃) ̸≡ 0 and deg(ci) = 0 for all 1 ≤ i ≤ p. It follows
that [λ1, . . . , λp, x̃p+1, . . . , x̃n]

T is a bicausal change of coordinates

because T (x, δ), where Tdx̃ =


dλ

dx̃p+1

...
dx̃n

, is a unimodular matrix.

Thus item (ii) of Theorem 4 holds with θ1 = x̃p+1, . . ., θn−p = x̃n.
Moreover, by using φk and Qk, we can express [x̃p+1, . . . , x̃n]

T =
Qpφp ◦ · · · ◦Q1φ1.

Proof of Lemma 9. We need to prove that there exist two integers
1 ≤ r ≤ q − 1 and r + 1 ≤ s ≤ q such that the right-annihilator
of [αr, αs] is causal. Suppose that the right-annihilators of [αr, αs]
are not causal for all 1 ≤ r ≤ q − 1, r + 1 ≤ s ≤ q. Let[
βl(r,s)
γl(r,s)

]
∈ K2(δ], where l(r, s) = (r − 1)(q − r

2 ) + s − r

and 1 ≤ l ≤ l∗ =
q(q−1)

2 , be a basis for the right-annihilator
of [αr, αs], then define τl := [0, . . . , 0, βl, 0, . . . , 0, γl, 0, . . . , 0]

T ,
where βl and γl are in the r-th and s-th rows of τl, respectively.
It follows that ατl = 0 for all 1 ≤ l ≤ l∗. Thus the right-
submodule T = spanK(δ] {τ1, . . . , τl∗} is in the right-annihilator of
spanK(δ] {αdz}, so dim T ≤ q−1. Recall that the right-annihilator
of a left-submodule is always closed (see [7]). By the construction,
T is closed and dim T ≥ q − 1, which implies T coincides with
the right-annihilator of spanK(δ] {αdz} because they have the same

dimension q − 1 and are both closed. If τl, for all 1 ≤ l ≤ q(q−1)
2 ,

are not causal, we have that the right-annihilator of α is not causal.
Hence if the right-annihilator of α is causal, then there must exist
r, s such that τl is causal.

(i) If the right-annihilator of [α1(z, δ), α2(z, δ)], generated
by

[
β(z,δ)
γ(z,δ)

]
, is causal, then the right-annihilator of

[α
j̄1
1 (z)δj̄1 , α

j̄2
2 (z)δj̄2 ] is also causal. Indeed, write β(z, δ) =

j̄β∑
j=1

βj(z)δj and γ(z, δ) =
j̄γ∑
j=1

γj(z)δj , we can deduce both

j̄1 + j̄β = j̄2 + j̄γ and [α
j̄1
1 (z)δj̄1 , α

j̄2
2 (z)δj̄2 ]

[
β
j̄β (z)δ

j̄β

γj̄γ (z)δj̄γ

]
= 0

by α1β + α2γ = 0. It follows that the right annihilator of [α̂1, α̂2]

is causal. Then because α̂1 = δj̄1 , by a direct calculation, the
right-annihilator of [α̂1, α̂2] is generated by [∆j̄1 α̂2,−1]T . Hence
[∆j̄1 α̂1,∆

j̄1 α̂2] is causal.
(ii) Let (ξ̃1, ξ2) = z[0,j̄] and ξ2 = (z1(−j̄1), z2(−j̄2)). If

we fix ξ̃1 as constants, then λ(z[0,j̄]) = λ(ξ̃1, ξ2) = λ(ξ2)
can be seen as a function of ξ2. It follows that the one form
ω̂ = α

j̄1
1 (ξ̃1, ξ2)dz1(−j̄1) + α

j̄2
2 (ξ̃1, ξ2)dz2(−j̄1) is exact (by

fixing ξ̃1). It follows by Frobenius theorem that the codistribution

spanK

{
2∑
i=1

α̂
j̄i
i (z[j̄1,j̄])dz(−j̄i)

}
= spanK {ω̂}, where α̂

j̄i
i =

α
j̄i
i

α
j̄1
1

depends only on z[j̄1,j̄] by item (i), is integrable when fixing

ξ1, where (ξ1, ξ2) = z[j̄1,j̄]. Hence there exists a function λ̂ =

λ̂(z̄[j̄1,j̄]) ∈ K such that (1) holds
(iii) By construction, we have dλ̂(z[j̄1,j̄]) = β̂(z[j̄1,j̄], δ)dz +

cα̂1(z[j̄1,j̄], δ)dz1 + cα̂2(z[j̄1,j̄], δ)dz2 for some function c =

c(z[j̄1,j̄]) ∈ K, where β̂ = [β̂1, . . . , β̂q], β̂1 ≡ 0, deg(β̂2) ≤ j̄2− 1,
and for 3 ≤ i ≤ q, deg(β̂i) = j̄i if j̄i ≥ j̄1 and β̂i ≡ 0 if j̄i < j̄1.
Now let φ(z) = [∆j̄1 λ̂(z), z2, . . . , zq]

T and Ψdz = dφ(z), we get

Ψ =

∆j̄1 (cα̂1) ∆j̄1 (β̂2+cα̂2) ∆j̄1 β̂3 ··· ∆j̄1 β̂q
0 1 0 ··· 0
0 0 1 ··· 0
0 0 0 I 0
0 0 0 ··· 1

 ,
which is upper triangular and ∆j̄1(cα̂1) = ∆j̄1(cδj̄1) = c(+j̄1)
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is of polynomial degree zero, and thus Ψ(z, δ) is unimodular and
φ(z, δ) is a bicausal change of coordinates. Then we have αΨ−1 =
ᾱ1+α

j̄1
1 δj̄1

ᾱ2+α
j̄1
1 α̂2

α3···
αq


T  1

c(+j̄1)
−(

∆j̄1 β̂2
c(+j̄1)

+∆j̄1 α̂2) −∆j̄1 β̂3
c(+j̄1)

··· −∆j̄1 β̂q
c(+j̄1)

0 1 0 ··· 0
0 0 1 ··· 0
0 0 0 I 0
0 0 0 ··· 1


By a direct calculation, we have α̃1 = ᾱ1

c(+j̄1)
+

α
j̄1
1
c δj̄1 , α̃2 =

−(ᾱ1 + α
j̄1
1 δ

j̄1)∆
j̄1 β̂2

c(+j̄1)
− ᾱ1∆

j̄1 α̂2 + ᾱ2 and α̃i = αi − (ᾱ1 +

α
j̄1
1 δ

j̄1)(∆j̄1 β̂i
c(+j̄1)

) for 3 ≤ i ≤ q. Notice that deg(ᾱ1+α
j̄1
1 δ

j̄1) = j̄1,

deg(∆
j̄1 β̂2

c(+j̄1)
) ≤ j̄2 − 1 − j̄1 and deg(−ᾱ1∆

j̄1 α̂2 + ᾱ2) ≤ j̄2 − 1.
Hence deg(α̃1) = j̄1, deg(α̃2) < j̄2 and deg(α̃i) = deg(αi) = j̄i,
∀ i ≥ 3.

Example 12. (a). Consider b(x) = 0 in section I, we apply
Algorithm 1 to b(x). For k = 1, l = 1,

α = [ x2(−1)+x2x2(−2)δ, x1(−1)x2(−2)+x1δ+x1(−1)x2δ
2 ] .

It is seen that P 1
1 = I2 and [α̂1, α̂2] = [δ,

x1(−1)
x2(−2)

δ2]. Thus

∆j̄1 [α̂1, α̂2] = [1, x1
x2(−1)

δ1] with j̄1 = 1 is causal. Then

spanK

{
dx1(−1) + x1(−1)

x2(−2)
dx2(−2)

}
is integrable and we find

the function λ̂ = x1(−1)x2(−2) satisfying (1) (ξ1 is absent and
ξ2 = (x1(−1), x2(−2))). The bicausal coordinate transformation
is φ1

1 =
[
z̃1
z̃2

]
=

[
x1x2(−1)

x2

]
as ∆1λ̂ = x1x2(−1). Thus under

z̃ = (z̃1, z̃2)-coordinates, b = b(x̃z , z̃2) = z̃1 + z̃1(−1)z̃2 and
α̃ = [1+ z̃2δ, z̃1(−1)]. So α̃2 ̸≡ 0 and we go to the second iteration
(i.e., line 15→line 5). For k = 1, l = 2, we use the permutation
matrix P 2

1 =
[
0 1
1 0

]
to have α̃

[
dz̃1
dz̃2

]
= [ z̃1(−1) 1+z̃2δ ]

[
dz̃2
dz̃1

]
.

Define new coordinates
[
x̃1
x̃2

]
= P 2

1

[
z̃1
z̃2

]
to have b(x̃1, x̃2) =

x̃2+x̃2(−1)x̃1+e2 and db = [ x̃2(−1) 1+x̃1δ ]
[
dx̃1
dx̃2

]
. Now although

1 + x̃1δ ̸≡ 0, we can already conclude that b(x̃1, x̃2) satisfies
item (iv) of Theorem 4 without continuing the algorithm because
x̃2(−1) is unimodular. Moreover, we get φ1 = P 2

1φ
1
1 by (2) and

the complementary coordinate θ = Q1φ1 = x1x2(−1). It can be
checked that

[
b(x)
θ(x)

]
is indeed a bicausal change of coordinates.

Moreover, by Corollary 7, b(x) = 0 implies x̃1 = −e2−x̃2
x̃2(−1)

.
(b). Consider c(x) = 0 in section I and apply Algorithm 1 to c(x).

For l = 1, α = [x1(−1) + x1δ, x2(−1) + x2δ] and α̂ = [δ, x2x1
δ],

we see that j̄1 = 1 and ∆1α̂ = [1,
x1(+1)
x2(+1)

] is not causal. Thus
Algorithm 1 returns to NO, meaning that c(x) can not be regarded as
a bicausal coordinate and there does not exits a bicausal coordinates
transformation such that Theorem 4 (iv) holds.

(c). As the third example, we consider two functions together:{
λ1 = x2x1(−2) + x3(−1)x2(−1)
λ2 = x3(−1)x2(−1)x1(−1) + x2x1(−2)x1 + x3(−1)x2(−1)x1

and apply Algorithm 1. For k = 1, l = 1, α = [x2δ
2, x1(−2) +

x3(−1)δ, x2(−1)δ], we find P 1
1 =

[
0 0 1
0 1 0
1 0 0

]
and α(P 1

1 )
−1P 1

1 dx =

[ x2(−1)δ x1(−2)+x3(−1)δ x2δ
2 ]

[
dx3
dx2
dx1

]
. Thus we have α1 =

x2(−1)δ, α2 = x1(−2) + x3(−1)δ and j̄1 = j̄2 = 1.
So [∆1α̂1,∆

1α̂2] = [1, x2x3
] is causal. Then we find λ̂ =

x2(−1)x3(−1) and φ1
1 = [x̃1, x̃2, x̃3]

T = [x2x3, x2, x1]
T to get

α̃ = [δ, x̃3(−2), x̃2δ2] and λ1 = x̃1(−1) + x̃2x̃3(−2). Since both
α̃2 and α̃3 are not zero, we drop all the tildes and go to next iteration

(i.e., line 15→line 5). For k = 1, l = 2, λ1 = x1(−1)+x2x3(−2),
we find P 2

1 =
[
0 1 0
1 0 0
0 0 1

]
and φ2

1 = [x̃1, x̃2, x̃3] = [x2x3(−2) +
x1(−1), x1, x3]T . Then α̃ = [1, 0, 0], we have deg(α̃1) = 0 and go
to k = 2 (i.e., line 25→line 2). Notice that φ1 = φ2

1 ◦P 2
1φ

1
1 ◦P 1

1 =
[x̃1, x̃2, x̃3]

T = [x2x1(−2) + x2(−1)x3(−1), x2x3, x1]T and in
φ1-coordinates, we have λ2 = x̃1x̃3 + x̃2(−1)x̃3(−1).

Now we are at line 2 and we restart the procedure. For k = 2,
l = 1, set z1 = x̃2 and z2 = x̃3 to have λ2(z1, z2) = x̃1z2 +
z1(−1)z2(−1) and α = [z2(−1)δ, x̃1+z1(−1)δ]. We find P 1

2 = I2
and φ1

2 =
[
z̃1
z̃2

]
=

[ z1z2
z2

]
. It follows that α̃ = [δ, x̃1] and λ2 =

z̃1(−1) + x̃1z̃2. Drop the tildes of z̃1(−1) and z̃2(−1). For k = 2,
l = 2, λ2 = z1(−1) + x̃1z2, we find P 2

2 =
[
0 1
1 0

]
and φ2

2 =[
z1(−1)+x̃1z2

z1

]
. Thus α̃ = [1, 0] and the algorithm returns to YES.

Moreover, we have φ2 = φ2
2 ◦P 2

2φ
1
2 ◦P 1

2 =
[
x̃1z2+z1(−1)z2(−1)

z1

]
.

Thus the complementary coordinate θ = z1 = x̃2 = x2x3, we can

check that
[
dλ1
dλ2
dθ

]
is indeed an unimodular matrix.

V. APPLICATIONS TO NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS WITH

TIME-DELAYS

Consider a delayed differential-algebraic equation (DDAE) of the
following form:

Ξ :

j̄∑
j=0

Ej(x[̄i])δ
j ẋ = F (x[̄i]) (3)

with an initial-value function x(s) = ξx(s), s ∈ [−ī, 0], where Ej :
R(̄i+1)n → Kp×n and F : R(̄i+1)n → Kn, where ī and j̄ denote
the maximal delay of x and ẋ, respectively. We can shortly rewrite (3)

as E(x, δ)ẋ = F (x), where E(x, δ) =
j̄∑
j=0

Ej(x[̄i])δ
j ∈ Kp×n(δ].

Remark that the form (3) is general and is able to describe a lot of
physical models under delay affects as in e.g. [1], [16], [27]), the
DDAE Ξ reduces to a delay-free DAE of the form E(x)ẋ = F (x)
[10], [20], [24] when j̄ = ī = 0.

Definition 13. A function x : R → Rn is a solution of Ξ with
the initial-value function ξx if there exists T > 0 such that x(t) is
continuously differentiable on [−ī, T ) and satisfies (3) for all t ∈
[0, T ).

We will call Ξ an index-0 DDAE if E(x, δ) is of full row rank over
K(δ]. An index-0 DDAE is very close to a delayed ODE, the latter
has the classifications of the retarded, the neutral and the advanced
types, and can be solved via the step method (see e.g., [14]). For an
index-0 DDAE Ξ, if p = n and rankE0(x) = p, we can always
rewrite Ξ as a delayed ODE of the neutral type:

ẋ = (E0)−1F (x)−
j̄∑
j=1

(E0)−1Ej(x)δj ẋ = f(x[0,̄i], ẋ[1,j̄]).

Remark that if rankKE
0(x) ̸= p, then an index-0 DDAE re-

sults in a mixed type, or in particular, an advanced type delayed
ODE, for which, in general, is hard to define a smooth solution
unless the initial-value functions satisfy some restrictive conditions.
In the present note, we are only interested in delayed ODEs of
neutral or retarded types, so below we make the assumption that
rankKE

0(x) = p for index-0 DDAEs.
Now given a DDAE Ξ : E(x, δ)ẋ = F (x), which may not be

index-0, we propose the following algorithm to reduce its index with
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Algorithm 2 DDAE reduction algorithm

Input: E(x, δ) and F (x)
Output: Ek∗(zk∗ , δ) and Fk∗(zk∗)

1: Set k ← 0, zk ← x, Ek ← E, Fk ← F , rk−1 = p, nk−1 = n
2: if rankK(δ]Ek(zk, δ) = rk−1 then
3: return k∗ ← k, zk∗ ← zk, Ek∗ ← Ek, Fk∗ ← Fk
4: else
5: Denote rankK(δ]Ek(zk, δ) = rk < rk−1.
6: Find a unimodular matrix Qk(zk, δ) ∈ Krk−1×rk−1(δ]

such that Qk(zk, δ)Ek(zk, δ) =
[
Ek1(zk,δ)

0

]
, where

Ek1(zk, δ) ∈ Krk×rk−1(δ] and rankK(δ]Ek1(zk, δ) = rk.

7: Denote Qk(zk, δ)Fk(zk) =
[
Fk1(zk)
Fk2(zk)

]
, where Fk2(zk) ∈

Krk−1−rk .
8: Define the submodule Fk := spanK(δ] {dFk2(zk)}. Denote

dimFk = nk−1 − nk ≤ rk−1 − rk.
9: Assume that Fk satisfies (C).

10: if nk−1 − nk < rk−1 − rk then
11: Find functions F̃k2(zk) ∈ Knk−1−nk such that

spanK(δ]

{
dF̃k2

}
= Fk and F̃k2(zk) = 0 is equivalent

to Fk2(zk) = 0.
12: Fk2 ← F̃k2
13: end if
14: Find functions θi(zk) ∈ K, 1 ≤ i ≤ nk such that

[
zk+1
z̄k+1

]
=

φk(zk) =
[
θ(zk)
Fk2(zk)

]
is a bicausal change of zk-coordinates,

where θ = [θ1, . . . , θnk ]
T .

15: Set [Ẽk1, Ẽk2] ← Ek1Ψ
−1
k and zk ← φ−1

k (zk+1, z̄k+1),
where Ψkdzk = dφk and Ẽk1(zk+1, z̄k+1, δ) ∈ Krk×nk (δ].

16: Set Ek+1(zk+1, δ) ← Ẽk1(zk+1, 0, δ) and Fk+1(zk+1) ←
Fk1(zk+1, 0).

17: Set k ← k + 1 and go to line 2.
18: end if

the help of the results in sections III and IV. Algorithm 2 generalizes
the geometric reduction algorithm for delay-free DAEs in [10].

Theorem 14. Consider a DDAE Ξ, given by (3). Assume that the
submodule Fk of Algorithm 2 satisfies (C) for k ≥ 0. We have that:

(i) There exists an integer 0 ≤ k∗ ≤ p such that Algorithm 2
returns to Ek∗(zk∗ , δ) and Fk∗(zk∗).

(ii) The DDAE

Ξ∗ : Ek∗(zk∗ , δ)żk∗ = Fk∗(zk∗)

is index-0, and Ξ∗ and Ξ have isomorphic solutions, i.e.,
there exists a bicausal change of coordinates Φ(x) =
[zk∗ , z̄k∗ , . . . , z̄1]

T such that zk∗(t) is a solution of Ξ∗

with the initial-value function ξzk∗ if and only if x(t) =

Φ−1(zk∗(t), 0, . . . , 0) is a solution of Ξ with the initial-value
function ξx = Φ−1(ξzk∗ , 0, . . . , 0).

(iii) For Ek∗(zk∗ , δ) =
j̄z∗∑
j=0

Ejk∗(zk∗)δ
j , suppose that

rankKE
0
k∗(zk∗) = rk∗ , then Ξ has a unique solution

with the initial-value function ξx if and only if rk∗ = nk∗ .

Proof. (i) By using the results of Lemma 4 of [22], Corollary 6 and
Theorem 4 above, respectively, we can guarantee the existences of
the unimodular matrix Qk(zk, δ) of line 6, the functions F̃k2(zk)
of line 11 and the functions θi(zk) of line 14. Thus the algorithm
does not stop until rk∗ = rk∗−1. Then by p ≥ r0 > r1 > · · · >
rk∗−1 = rk∗ ≥ 0, it can be deduced that 0 ≤ k∗ ≤ p.

(ii) Ξ∗ is index-0 because Ek∗(zk∗ , δ) is of full row rank over
K(δ]. Now consider the 1, . . . , k steps of Algorithm 2, the unimodular
matrices Qk(zk, δ) for each k does not change solutions, we have
that zk+1(t) is a solution of Ek+1(zk+1, δ)żk+1 = Fk+1(zk+1) if
and only if x(t) = z0(t) is a solution of Ξ, where

x(t) = z0(t) = φ−1
0 (z1(t), 0),

· · · ,
zk(t) = φ−1

k (zk+1(t), 0).

(4)

Each bicausal change of coordinates φk(zk, δ) is defined on Knk−1 ,
we extend it to Kn by setting Φk = [φk, z̄k, z̄k−1, . . . , z̄1]

T (Φ0 =
φ0). Notice that if k∗ = 0, then Ξ∗ coincides with Ξ, we have
item (ii) holds. If k∗ > 0, then let k + 1 = k∗, we have that
Φ := Φk∗ = [zk+1, z̄k+1, . . . , z̄1]

T = [zk∗ , z̄k∗ , . . . , z̄1]
T maps

any solution x(t) (and its delays) of Ξ to (zk+1(t), 0, . . . , 0) =
(zk∗(t), 0, . . . , 0), where zk∗(t) solves Ξ∗ by (4).

(iii) Rewite Ξ∗ as

E0
k∗(zk∗)żk∗ = Fk∗(zk∗)−

j̄zk∗∑
j=1

Ejk∗(zk∗)δ
j żk∗ .

If rankKE
0
k∗(zk∗) = rk∗ , we can always find the right-inverse

(E0
k∗)

†(zk∗) of E0
k∗(zk∗) over K. Then all solutions of Ξ∗ are

solutions of the followings delayed ODE corresponding to all choices
of free variables v = v(t):

żk∗ = (E0
k∗)

†Fk∗(zk∗)−
j̄∑
j=1

(E0
k∗)

†Ejk∗(zk∗)δ
j żk∗ + g(zk∗)v,

where g(zk∗) ∈ Knk∗×(nk∗−rk∗ ) is of full column rank over K and
E0
k∗(zk∗)g(zk∗) = 0. So Ξ∗ has a unique solution with an initial-

value function ξzk∗ if and only if the free variables v is absent, i.e.,
nk∗ − rk∗ = 0. Finally, since Ξ∗ and Ξ have isomorphic solutions
by item (ii), we have that item (iii) holds.

Example 15. Consider the following nonlinear DDAE

Ξ :

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

][ ẋ1
ẋ2
ẋ3
ẋ4

]
=

 x2
x32x1(−1)/(ln c−x1)

ex1(−3)+x3(−2)x2(−3)−c
x1(−1)−x1(−2)+x3x2(−1)−x3(−1)x2(−2)


where c > 0 is a constant. We apply Algorithm 2 to Ξ. It is seen that
E0 = E ∈ R5×4 is constant and rankK(δ]E0 = r0 = 3. Let Q1 =

I5, we get F02 =
[

ex1(−3)+x3(−2)x2(−3)+c
x1(−1)−x1(−2)+x3x2(−1)−x3(−1)x2(−2)

]
(i.e., line 7). By a direct calculation, it is found that F0 =
spanK(δ] {dF02} is closed and dim spanK(δ] {dF02} = 1 <
p − r0 = 2. Thus we use the results of Proposition 6 to find
F̄02 = x1(−1) + x3x2(−1) such that spanK(δ]

{
dF̄02

}
= F0.

It can be checked by applying Algorithm 1 to F̄02 that F0 satisfies
(C). We modify F̄02 to F̃02 = x1(−1)+x3x2(−1)− ln c such that
F̃02 = 0 is equivalent to F02 = 0 (i.e., line 11). Then z̄1 = F̃02 =
x1(−1)+x3x2(−1)− ln c, z1 = [x1, x2, x4]

T is a bicausal change
of coordinates and in (z̄1, z1)-coordinates, Ξ becomes (i.e., line 15)[
Ẽ01(z1,z̄1,δ) Ẽ02(z1,z̄1,δ)

0 0

] [
ż1
˙̄z1

]
=

[
F01(z1,z̄1)
F02(z1,z̄1)

]
:


1 0 0 0
0 1 0 0

− 1
x2(−1)

δ
z̄1−ln c+x1(−1)

x22(−1)
δ 0 − 1

x2(−1)
δ

0 0 0 0
0 0 0 0

[ ẋ1
ẋ2
ẋ4
˙̄z1

]
=


x2

x32x1(−1)

ln c−x1
−x4x1(−1)

cez̄1(−2)−c
z̄1−z̄1(−1)


Thus by setting z̄1 = 0, we get (i.e., line 16)

E1 = Ẽ01 =

[
1 0 0
0 1 0

− 1
x2(−1)

δ
− ln c+x1(−1)

x22(−1)
δ 0

]
, F1 =

 x2
x32x1(−1)

ln c−x1
−x4x1(−1)

 .
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Now set k = 2 and go from line 17 to line 2. In the second
iteration, we have rankK(δ]E1 = r1 = 2 < r0. Choose Q2(z1, δ) =[

1 0 0
0 1 0
1

x2(−1)
δ

ln c−x1(−1)

x22(−1)
δ 1

]
to define F12 = 1 + x2(−1)x1(−2) −

x4x1(−1). We can check via Algorithm 1 that spanK(δ] {dF12}
satisfies (C) and z̄2 = F12, z2 = [x̃1, x̃2]

T = [x1, x2x1(−1)]T
define a bicausal change of z1-coordinates. By similar calculations
as in the first iteration, we have that (line 16)

E2 =

[
1 0

x̃2
x̃1(−1)

δ x̃1(−1)

]
, F2 =

 x̃2
x̃1(−1)

x̃32
x̃21(−1)(ln c−x̃1)


Go from line 16 to line 2, we have rankK(δ]E2 = r2 = 2 = r1,
thus Algorithm 2 returns to k∗ = 2 and z∗ = z2. The DDAE Ξ∗ :
E2(z

∗, δ)ż∗ = F2(z
∗) is clearly index-0 and we can rewrite it as an

delayed ODE of the neutral-type:

˙̃x1 =
x̃2

x̃1(−1)
, ˙̃x2 =

x̃32
x̃31(−1)(ln c− x̃1)

− x̃2
x̃21(−1)

˙̃x2(−1) (5)

Given initial-value conditions x̃1(s) = ξx̃1(s), s ∈ [−1, 0] and
x̃2(s) = ξx̃2(s), s ∈ [−1, 0], we can calculate the solution
(x̃1(t), x̃2(t)) of (5) with respect to (ξx̃1 , ξx̃2) by the step method.
Hence by Theorem 14 (ii), Φ−1(x̃1(t), x̃2(t), 0, 0) is the solution of
Ξ with the initial-value conditions Φ−1(ξx̃1 , ξx̃2 , 0, 0), where Φ =

[x1, x2x1(−1), z̄2, z̄1]T = [x1, x2x1(−1), 1 + x2(−1)x1(−2) −
x4x1(−1), x1(−1) + x3x2(−1) − ln c]T is a bicausal change of
coordinates.

VI. CONCLUSIONS AND PERSPECTIVES

In order to generalize the implicit function theorem to the time-
delay case, we propose two extra equivalent conditions to the results
of bicausal changes of coordinates in [5]. A technical lemma and
an iterative algorithm are given to check those equivalent conditions.
Moreover, we show that the generalized implicit function theorem can
be used for reducing the index and solving time-delay differential-
algebraic equations.

There are some further problems can be investigated based on
our results. The example in Remark 8 shows that it is possible to
find a weaker condition for the time-delay implicit function theorem.
Another problem is to extend Algorithm 2 to the general case when
Fk does not satisfies (C). Moreover, an interesting observation from
Example 15, which has already been pointed out in [1], [8], is that
even the original DDAE Ξ has a form of retarded type, the resulting
delayed ODE can still be of neutral type (or even advanced type
in general), the problem of finding when a given DDAE can be
reformulated as a delayed ODE of retarded, neutral, or advanced
type, is open and challenging. Another topic is to use our results to
design reduce-order observers for both the states [6] and the inputs
[9] of time-delay systems.
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