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Torque observation of WRSM with model
uncertainties for EV applications
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Abstract—In this paper, we propose a torque observation
method based on a linear parameter varying (LPV) approach for
a wound rotor synchronous machine (WRSM) used in Electric
Vehicles (EVs), specifically for the Renault ZOE. The novelty of
our approach lies in its ability to handle a wide range of un-
certainties and parameter variations, such as speed fluctuations
and model uncertainties in both magnetic flux and resistance.
This enables more accurate and robust torque estimation, which
is crucial for the demanding performance requirements of EV
applications. We present a comprehensive observation method-
ology, which includes a state and unknown input observability
study, robust LPV observer design, and a convergence analysis.
The effectiveness of this approach is demonstrated through both
simulations and experimental tests conducted on the BEMEVE
real-power test bench. To highlight its merits, the performance
of the LPV observer is compared to different types of observers.

Index Terms—Wound rotor synchronous machine (WRSM),
observability and observation, LPV observer, torque and flux
estimation, uncertainties estimation, EV applications

I. INTRODUCTION

OR safety and control reasons, the propulsion of electric

vehicles (EVS/HEVs) is halted if the difference between
the measured torque and the reference (accelerator pedal)
exceeds a minimum threshold set by the manufacturers, see
also [1] for various reasons of the torque ripple problems
in permanent magnet synchronous machines (PMSMs). Tradi-
tional torque measurement using mechanical sensors is costly
and bulky. Therefore, torque information is often obtained
through data prediction systems, which can limit accuracy.
To improve torque estimation accuracy and reduce costs,
software-based sensor methods that do not require mechanical
sensors for PMSMs have been developed in e.g., [2], [3],
[4]. A sensorless torque estimation method for brushless DC
motors using back electromotive force (BEMF) and observer
techniques to achieve accurate torque estimation is proposed in
[5]. Similarly, another approach presents a sensorless torque
estimation method for induction motors using a Luenberger
observer [6]. This method is based on a mathematical model
of the induction motor and allows for robust torque estimation
despite varying operating conditions. The methods proposed
in [2], [3], [4] take into account magnetic saturation and
magnet demagnetization to ensure better torque estimation ac-
curacy. However, when validated on the full-power test bench
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BEMEVE (https://renault-chair.ec-nantes.fr/bemeve), using a
wound rotor synchronous motor (WRSM) similar to those em-
ployed in early generations of the ZOE EV, the method results
in real-time overruns due to the computational complexity of
solving a time-varying Riccati equation. Furthermore, in [7],
it is assumed that the magnetic uncertainties in the WRSM
are slow-varying parameters—an assumption not adopted in
the present paper—and no formal proof of this assumption
is provided in [7]. Additionally, variations in stator resistance
and rotor speed were not considered. A detailed comparison
between the method proposed in this paper and those in [3], [7]
is presented in Section IV-C. In this paper, we propose a new
torque observer that takes into account to handle variations
in magnetic uncertainties, stator resistances, and motor speed,
thereby improving the accuracy and robustness of torque
estimation. This approach is supported by experimental tests
on a real-power test bench BEMEVE.

In the field of control and observation of electrical machines,
model uncertainties have been a significant area of focus
for researchers over the past few decades. A comprehensive
survey [8] is dedicated to disturbance/uncertainty estimation
and attenuation techniques for PMSMs. The electrical model
uncertainties in PMSMs or AC machines primarily arise from
two factors: resistance variation due to thermal effects [9] and
changes in flux caused by saturation effects [10]. To address
these uncertainties and disturbances, various observer-based
approaches have been developed, as detailed in the survey
paper [11] and the references therein. In general, for nonlin-
ear systems, disturbance observers are employed to estimate
disturbances generated by known linear exogenous systems
[12] or high-order disturbances that are polynomials of time
[13]. The extended state observer used in Active Disturbance
Rejection Control (ADRC) [14] extends disturbances d(t) by
defining d(t) = h(t) and treating d(t) as a state variable. This
allows for the design of a differentiator-like observer with
discontinuous gains to estimate d(t). Additionally, extended
high-gain observers [15] also use extended states to estimate
the influence of uncertainties, with a constant observer gain.
Also in [16], a robust integrated estimation approach estimate
the states, parameters, and disturbances simultaneously for
LTV systems.

To address the variations and uncertainties in the model
of our WRSM, we propose a robust linear parameter varying
(LPV) state observer, which differs from the aforementioned
approaches in two key aspects. First, rather than treating the
machine model as a nonlinear system, we leverage the LPV
technique to represent the model as convex combinations
of linear models and design observer gains as combinations
of constant gains. This approach effectively handles speed
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variations, which are treated as an external parameter entering
the system in a nonlinear manner. Over the past decades, the
control and observation of LPV systems have been extensively
studied both theoretically and in practical applications, as
highlighted in the survey by Hoffmann and Werner [17].
Notably, several works have demonstrated the effectiveness of
LPV formulations for EV applications [18], [19], [20], [21],
particularly for electrical machines [22], [23]. Other significant
contributions to LPV-based observers can be found in [24],
which uses LPV representations for globally Lipschitz nonlin-
ear systems, and in [25], which focuses on interval observer
design for LPV systems with both measured and unmeasured
uncertainties, and in [26] a robust PI observer is designed an
applied to a vehicle suspension platform. Second, we treat
the high-order derivatives of the magnetic uncertainties as a
system disturbance, d(t). Instead of observing it or modeling
it as a constant or slow-varying variable, we employ a robust
control approach [27], [28] to suppress its impact on the
estimation errors. Robust control and observation, as well-
established theories, have also been widely applied in the
context of electric machines [19], [22], [26], [29].

The key contributions and innovations of this paper are as
follows:

o A comprehensive treatment of uncertainties and parame-
ter variations is presented for the WRSM model. Specifi-
cally, unlike existing LPV models of electrical machines,
the speed variation w, is treated as an LPV parameter.
The magnetic uncertainties gq, g4, and gy are modeled
as states to be observed. Additionally, the higher-order
derivatives of these magnetic uncertainties, gq = dy,
Gq = dg, and Gy = dy, are considered as disturbances.
Resistance uncertainties AR, and AR are also included
in the model, and their effects on the convergence of
estimation errors are thoroughly analyzed.

e A systematic state and input observability analysis is
performed for the system model, providing a clear un-
derstanding of its dynamics.

o The design of our LPV observer distinguishes itself
from existing methods by incorporating both Kalman-
like features [30] and enhanced robustness against distur-
bances. Observer gain scheduling is achieved via a finite
set of linear and bilinear (quadratic) matrix inequalities
(LMIs/BMIs), utilizing polytopic synthesis [31]. A novel
algorithm is proposed to convert these BMIs into LMIs,
which can then be efficiently solved using the Matlab
LMI Toolbox.

o The proposed observer is validated through both simu-
lation and real-time experiments conducted in different
scenarios on a built-in test bench, which was developed
for the EV machines of the Renault ZOE vehicle.

o The performance of the proposed observer is compared
to different types of observers to further demonstrate its
interest.

The remainder of the article is structured as follows:
Section II presents the mathematical model of the WRSM.
Section III describes the state and unknown input observability.
Section IV details the robust LPV state observer design.

Section V provides the simulation results. The experimental
results and discussion, demonstrating the accuracy and robust-
ness of the proposed method, are presented in Section VI.
Finally, Section VII concludes the article and outlines future
research perspectives.

II. MATHEMATICAL MODEL OF WRSM

The dynamics for the flux of a WRSM in the rotor reference
frame (d — g frame) are given by

% = 04 — (Rs + ARy)ig + wel

A

CE8 = vy — (Ry + ARy)ig — woha 1)
A

de = vy — (Rf + ARy)iy,

where the lower indices d,q and f indicate the d,g-frame
and the excitation-frame, respectively; Aq, Ag, Ag, V4, Vg, Vf
and 4q4,%4,%f, are the flux, the voltages and and currents,
respectively; R, and Ry are the resistances of the stator and of
the excitation circuit, and AR, and ARy are differences from
the measured resistances and the real ones, which are assumed
to be some unknown but bounded variables; w, is the stator
electrical angular velocity, which is assumed to be known
from measurement or estimation. By considering the model
uncertainties caused by e.g., nonlinear magnetic saturation,
imprecise system identifications, the relation of the rotor and
stator flux with the current can be represented by

Ad = Lqiq + Myiy + ALgig + AMfif
—_—
9ga
Ag = Lgig + ALqiq
——
9q

Ap = Myig+ Lyiyg + AMyiqg+ ALyiy,
—

9r

where Lg, Ly, Ly are inductance of the machine, My denotes
the d-axis-field mutual inductance. ALy, ALy, ALy, AM;y
are magnet model uncertainties of inductance and they are
not assumed to be constants. All those uncertainties form
compactly as gq, g, and gy representing, respectively, the
deviations between real and assumed flux in d, ¢ and f-axis.
The electromagnetic torque of the machine has a direct relation
with the flux in d — ¢ frame:

3

5(?)(/\diq — Agld)s 2

where p is the number of pole pair of the machine. Thus
to obtain the real value of the flux Ay and A, in order to
estimate the torque T, it is essential to estimate the values of
the unknown variables g4 and g, (note that the value of gy is
not necessarily needed for the torque estimation).

The flux-current relation can be rewritten in a more compact
matrix form:

T, =

Ad iq 9d Ly 0 My
M| =H |ig| +|gs|, H=|0 L, 0]. (3
)\f if gf Mf 0 Lf
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By substituting (3) into (1), we get a current model of the
WRSM as follows

d id gd
H - & Z_.q + Q.q
vf gr

4
vg — (Rs + ARy )ig + we(Lyiq + 9q) @

= |vg — (Rb + ARs)iq — we(Ldz’d + Mfif + gd) ,
Uf — (Rf + ARf)if

where gq4, G4, G5 are time derivatives of g4, g4, g, respectively.
It is assumed in [2] or in its following works [4], [7] that those
magnetic uncertainties gq and g, are static (i.e., gq = gq = 0)
or slowing-varying variables (i.e., g4 = g, = 0). In the present
paper, we do not make such assumptions. Instead we regard
the higher order time derivatives of the magnetic uncertainties
as external disturbances injected to the system, namely, we
denote

Ja cd Cq dq
9| = |Cq] > el = |dg| - 5
gy cf cr dy

The angular velocity w. can be obtained or estimated in real
time by angular position/rate sensors or using high-frequency
injection methods [32]-[34]. Then based on different views
of the time-varying variable w. = w.(t), the mathematical
model of the machine can be formulated into either a linear
parameter varying (LPV) system or a nonlinear system. It can
be observed from (4) that the right-hand-side of the equation
depends affinely on the current variables i4, %4, and the only
nonlinearities come from the bi-linearity of w, and the current
variables. By treating w, as a varying parameter instead of a
time-varying variable, the combination of (4) and (5) gives an
LPV system in the form

& = A(we)r + Bu + AAx + Ed
N(we) :

Y= Cu (6)

where © = (iq,iq,if, 9ds 9q, Cas Cq Cf) € RS are states, u =
(va,vq,vs) € R3 are known inputs and d = (dg, dy, dy) € R?

are unknown disturbances. Denote Ls := MJ% — LqLy, the
system matrices are given by, respectively,
Alwe) =
RSLf 7Lquwe 7Rf1tlf 0 *wae Lff 0 7]\/If
Ls Ls Ls Ls Ls Ls
—wel —R —weMyp  _ -1
Leq d qu s £ Lu;e 0 0 Ty 0
—RSMf ILIquwe Rde 0 Z\/Ifwe —I\/If 0 ﬂ
Ls Ls Ls Ls Ls Ls )
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
—L M
s 0 L oo0000
10000000
B=| 0 £, 0 00000 C=1|01000000],
M ., 00100000
L 0 £2o0o0000
ARgL —AR¢M
=t o —=f"foo0000
000 g AR o
000 0 Ty = 0 00000
000 —ARsMy ARsL
—|000 _ | Z2fsMy fLa
E=|990], AA= T 0 7=t 00000
100 0 0 0 00000
010 0 0 0 00000
001 0 0 0 00000
0 0 0 00000
0 0 0 00000

Remark 1. Generally, the model uncertainties arising from
variations in resistance, AR, and AR, can be viewed as
slow-varying parameters in the system matrix or as external
disturbances. However, here we do not regard them as varying
parameters like w.. This exclusion stems from the challenge
of accurately determining the bounds of these variations,
which are necessary for robust LPV observer design. While
both AR, and AR, are bounded, determining their values
or bounds precisely is difficult. There are two reasons why
these uncertainties are not treated as external disturbances
d. Firstly, an examination of AA and B reveals that the
resistance uncertainties and the known inputs u affect the
system in similar directions. In cases where input voltages
are sufficiently large, they can compensate for any adverse
effects caused by AR; and AR,. Secondly, the primary
objective of the LPV observer design below is to bolster
robust performance against magnetic uncertainties rather than
resistance uncertainties.

In practical systems, the angular velocity of the machine
operates within a limited range due to physical constraints.
Therefore, it is reasonable to assume that the parameter w, is
bounded, meaning it falls within a specified range, i.e.,

We € (W, Wel,

where @, = max(w.) and w, = min(w,) are constants.
System (6) is called a polytopic LPV system [17], [35] because
the system matrix A dependents affinely on the varying
parameter w., i.e.,

A(we) € Co{Alw,), A(we)},

where Co{-} denotes a convex hull of matrices. More specif-
ically, we can write

Afwe) = afwe) Alwe) + (1 — al(we) ) A(@e),

where

a)e — We

0 < a(we) = < 1. @)

‘De - Qe
Remark 2. Although this is not the case for our test bench
(see the experimental results in Section VI), some systems may
exhibit a very large speed range [w,,@.]. To handle widely
varying parameters, the interval can be divided into sub-ranges
[wo,w1], [wi,wal,- .., [Wm—1, Wm], Where wy = w, and wy, =
@,. Then, we express A(w.) as

Awe) = 3 aulwe),
1=0

where 0 < aj(we) < 1 and ;" a;(we) = 1. The observer
design follows a similar approach as in Section V. However, as
the number m of sub-ranges increases, the computational cost
also rises: the explicit expressions for each «;(w.) become
more complex, and the number of LMIs/BMIs (see Corollary
1) to be solved increases accordingly.

Apart from the angular velocity, due to the physical opera-
tion limits and the reasons that the currents of the machine
has already been regulated via a PI controller, we make
the following boundness assumptions on the variables z, the
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resistance uncertainties AR, AR (or, equivalently, AA) and
the acceleration w,.
Assumption 1. There exist positive scalars [1,lo, 7 such that

NAAf < by, 2|l <loy [lwell < 7.

If the angular velocity w, is viewed as a known input variable,
then system (6) can be seen as a nonlinear system

& = f(z,we, ARs, ARy) + Bu+ Ed
®)
y = h(z),
where f(z,we, ARs, ARf) = (A(we) + AA)z, h(z) = Cz.

This nonlinear system model will be used for checking the
state and unknown inputs/disturbance observability. Then a
robust LPV observer will be built on system (6).

III. STATE AND UNKNOWN INPUT OBSERVABILITY

We adopt the classical definition of state observability for
nonlinear systems in e.g., [36], [37]. Denote a solution of
¥ starting from an initial point 2° under some w,,u,d by
x(t, 2% we, u, d).

Definition 1 (State observability). The system X is called
locally state observable if there exists an open dense subset
V C R" and a time scalar 7' > 0 such that for any two
states z1 € V and 2% € V, the corresponding outputs with
o' and 22 as initial points satisfies that y(t, 2% we,u,d) #
y(t, 2% we, u, d) implies z(t, 21 we, u, d) # z(t, 2% we, u, d)
for all ¢ € [0,T") and for all admissible u, d, we.

Roughly speaking, the state observability is a property for
the reconstruction of the state variables x via the data from the
measurable outputs y and its time derivatives v, 4,... when
assuming the inputs we, u and d (and their time derivatives)
are known. However, the disturbance d, a priori, is not given,
to know if it is possible to use the available information y to
recover d, we need to check its unknown input observability,
the latter concept is closely related to the left-invertibility of
nonlinear control systems [37]-[39].

Definition 2 (Left-invertibility and unknown input observabil-
ity). The system X is called locally left-invertible with respect
to inputs d and outputs y if there exists an open dense subset
V C R”™ and a time scalar T > 0 such that for any initial
point z° € V and two admissible inputs d'(¢) and d*(t), the
corresponding outputs with d' and d? as inputs satisfies that
y(t, 2% we, u, db) # y(t, 2% we, u, d?) implies d*(t) # d*(t)
for all ¢ € [0,T) and for all admissible u, w. The system ¥ is
called locally unknown input observable for d if it is locally

left-invertible without knowing the initial value z°.

The input-observability characterizes the property of recov-
ering the unknown inputs d by y, 9, ¥, ... (possible need the
help of w,w. and their derivatives) without the knowledge
of z°. The criteria for checking the state or unknown input
observability relies on the calculation of the time derivative
array for the outputs y.

Remark 3. Recall the definition of vector relative degree [37],
[40]: For a system X with dimy = dimd = m, the system

has a (vector) relative degree © = (r1,...,7,,) at a point z°
with respect to the outputs y and inputs d if the following
condltlons hold: 1. Forall 1 <i,57 <m and k < r; — 1, we

have 6'% (a: ol U®) = 0, where O = (w,, ..., w)

and U = (u,...,u®). 2. The m x m decoupling matrix

D(a® QR> oy = 8;] (29,0 UM®), for 1 < i,j <

m, where R = max(r;), is invertible. Thus, if the (vector) rel-

ative degree r is well-defined for X, we have the relationship:
y'") = Fa, oM, UM) 4 D(, 0, )4,

for some vector-valued function F'. It follows that the input d
can be expressed as

d= D—l(y(r) _

F(a, U0, U1)),

around = = 2°. Therefore, the map from d to y is injective
for fixed 2%, w., and u, meaning that ¥ is left-invertible with
respect to y and d, as per Definition 2.

Denote Lsh(z,w.) := %f(z,we). For system X,

given by (8), we have
Y= th(x,we) +Lgh-u+Lgh-d,

where
Lyh(z,we) = C(A(we) + AA)z, Lgh=CB, Lgh=0.
Then
OLsh
Owe
+LgLth-d+Lgh-a+ Lgh-d,

y= L?ch(x, we) + (x)we + LpLsh(we) - u

where

OLsh, .
o, (x)=C

LpL h(we) = C(A(we) + AA)B
LEth = C(A(we) + AA)E

It can be seen that the Jacobian matrix

OA(we)

x
Owe

Lfch(aﬁ,we) = C(A(we) + AA)z,

C
0y, 9,4
Ofwe, i) = 29:9:9) & )_ C(A(w.) + AA
x 2 8A(we)
C(A(we) + AA)? + C=5 2.
Tl 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
Rsz —LfLquE —RL{-J\/If 0 _IwaP iif 0 —I]‘\/If
8 S 5 S5 5 5
—welg Ry  ZweMf —we =1
- Lq Lq Lq Lq 0 0 Lq 0 5
,R;Mf Affqup R{Ld 0 Ml{va 72\/[];‘ 0 %
) S5 5 S5 5 5
* * * A7s Azs Aze A7r Azs
* * * Ass  Ass  Age Asr Ass
L * * * Ags  Ags  Ags Aor Aogs |
5 = L
where Ry = Ry + AR, Ry = Ry + ARy, A7y = L—gwg,
L2R, RyM? Ly . RsL%: = RyM?
A?SZ_ ig We — Lgf e_fgwea A76: L§f+ Lgf —
L R.L;M; RyMsLy R.
Tiwe, A77 =0, A7 = — % L= Lgf , Agy = IEWe —
1 - 1,2 _ _ R, _ _
I-We, Ags = —f-w7, Age = 0, Agy = 75, Ass = 0, Agy =
q - ~ q
) _ R.M;L RyM;Ly M; . _
Jw ) A95 - SL2f fwe + fL; We + wae’ A96 -
RsMsL; RsyL4qM M RM R,L2
— T T T wes Agr = 0, Agg = A+ T

L3
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and the symbol “x” represents irrelevant terms. The following
results concern with the state and unknown input observability
of the system.

Theorem 1. The system Y., given by (8), is state observable
for all x € R™ if and only if

. 2
|wWe| # w?. )
Moreover, X is left-invertible with respect to the unknown input
d but it is not unknown input observable.

Proof. We can find two matrix-valued functions P(w.) €
R?*? and Q(w.) € R**®, which are invertible for all w, € R,
such that O(we, we) = P(we)O(we, we ) Q(we) =

1000 0 0 0 0 -
0100 0 0 0 O
00100 0 0 O
0000 0 =L o U
Ls L Ls
0000 0 0 f O
—M
f La
0000 o —t o ¢
000w?w. O 0O O
000wew? 0 0 O
0000 0 0 0 0 -

Recall from Corollary 4.11 of [37] that the system 3 is state-
observable if and only if rank O(w,,w.) = 8. The matrix O

(and thus O) is of rank 8 if and only if the matrix l we w;} is

non-singular. The latter condition is equivalent to 9) Pfence
3 is state observable if and only if (9) holds.

Moreover, it can be seen from the calculations of y and g
that the vector relative degree [37], [40] of X with respect to y
and d is (2,2,2) since Lgh = 0 and LgLyh is invertible. So
the system 3 is left-invertible with respect to y and d because
d = (LpLsh) =} (j — L2h(z, we) — G222 (2)de — LBth(we)
u — Lpgh - ). Thus given the same initial condition z°, any
two different outputs y* (¢, 2%; we, u, d*) # y%(t, 2%; we, u, d?)
must imply d*(t) # d?(t). However, since it is not possible to
express x (and thus 2% and d) as some functions of Yy Yy U,
1, w, w if 20 is unknown, we have that y' (¢, 2°; we, u, d') #
y2(t, 7% we, u, d?) does not necessarily imply d'(t) # d?(t).
Therefore, Y is not unknown input observable for d.

O

Remark 4. (i) The ranks of O(w,,w.) and LgL¢h, and thus
the state observability and unknown input observability of 3,
are not determined by the resistance uncertainties AR and
AR;. However, in order to exactly estimate x(t) or d(t) using
20, y(t), u(t), we(t) and their derivatives, the precise values
of the resistances are necessary. Although the latter data is not
available, we can still design an observer to estimate the state
x(t) with bounded errors if AR, and ARy are assumed to be
bounded.

(ii) Since d(t) are not observable via the outputs y, we will
treat them as unknown disturbances, to minimum its side effect
to a state observer, the robustness of the observer against ex-
ternal disturbances should be addressed during design process.

IV. ROBUST LPV STATE OBSERVER
A. Observer design

Now for the polytopic LPV system X (w.), we seek a
Kalman-like LPV observer in the form

. {fc = A(we)Z + Bu+ K(we)(y — C)

Y(we) : (10)

j= Ci,
where & = (%d,gq,%f,gd,gq,éméq,éf) € R® are the states of
the observer, K (w,) € R8*3 is the observer gain which will
be designed below and

A _ (00010000
C=1[60001000l
which is defined for the robust performance on the estimations

of g4 and g,. Define the error e as the difference between the
real states x and the estimated ones z,

e:=z—2.
Then the dynamics of the error and the performance outputs
ye := Cx — g are given by
é= (Alwe) — K(
= Ce.

we)C)e + Ed+ AAx

In order to minimize the effect of the disturbance for the
estimation, our objective to design a robust LPV observer
defined below, see also similar definitions in [20], [26].

Definition 3. The observer f](we) is called a robust LPV H,
observer for system X(w,) with performance v > 0 if
() e(t) > 0ast— oo when d =0 and AR; = AR; = 0.

(iil) sup  sup “‘f’j“‘lj <.
we€lw,,we] ||d[|7#0

In the above definition, the Lo norm of u is |[ul|3 :=
fooo uTudt and the supremum is taken over all nonzero tra-
jectories of the error dynamics starting from e(0) = 0. The
following theorem states sufficient conditions for the existence
of a robust LPV H, observers for system 3(w,).

Theorem 2. l{nder Assumption 1, there exists a robust LPV
Ho observer Y(w,) for system X(w.) if there exist a matrix-
valued function P(w.) = PT(w.) > 0 and a positive scalar

v > 0 such that Vw, € [w,,®@.] :
S(we)  P(we) Plwe)E CT
Pw) -Q' 0 0
ETP(w.) 0 1o | <0 D
c 0 0 —I
where
P
S’(we):A(we)TP(we)—i—P(we)A(we)—CTR_lCiTw,
We

and Q = QT > 0, R = RT > 0 are constant weighing
matrices to tune. The observer gain is given by K(w.) =
P~Yw.)CTR™Y. Moreover, if the resistances uncertainties
AR, and ARy are not zero but bounded, then the errors e(t)
are also bounded.

Proof. Consider a Lyapunov function candidate:

V(e,t) = el P(we(t))e.
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It follows that

dV (e,t .
# = eTP(we)e + eT P(we)e + e P(we)é

= eT(AT (we)P(we) — CTR™IC)e + dT ET P(w.)e+

OP(w.)
Owe

el AAzx + €T (P(we)A(we) — CTR™10)e

= e’ (AT (we)P(we) + P(we)A(we) — CTRT'C) e+

T (az;g&) e+ dTET P(we)e + eT P(we) Ed-+

2T(AA) e + T AAx — " CTR™'Ce.

2T (AA) e+ eTw, e+ el P(w.)Ed+

Now if (11) holds, then, by Schur complement, we have

S(we)+P(we)QP(we) P(we)E A R
[P T [+ [ el <0

That means

el (S(we) + P(we)QP(we))e + dT ET P(w.)e + d* P(w.)Ee
+ y?ye —~%d%d < 0.

As a consequence, we have

f(weawe) =
e” (AT (we)P(we) + P(we)A(we) — CTRIC) e+

o7 (P(we)QP(we) + i 81;5:6)

eTP(we)Ed + yly. —~*d¥d < 0.

) e+ dTETP(w.)e+

(12)
It follows that
dVie,t
% + ygye - '72de + eTP(we)QP(w6)6+
e’ CTR™1Ce — 2T (AA)Te — T AAx = f(we,we) < 0.
(13)
If AR, = ARy =0, then AA =0 and thus
d t
lg}hwﬁfmw%<fJH%mm%p
—el'CTR™1Ce < 0.
Conditions (i) of Definition 3 is satisfied because dvéte’t) is

negative when d = 0. It follows by classical robust control
theory [28] that condition (ii) is also satisfied. Indeed, by
integration, we have that for any 7' > 0:

T
/ (dv(e’t) +yly, — ﬁde) dt < 0.
0 dt

Taking into account e(0) = 0, it follows that

T T
el (T)P(we)e(T) +/ yTy.dt < 72/ dTddt.
0 0
By taking T' = % < .
Therefore, i](we) is a robust LPV observer. Moreover, con-
sider the case that AR, and ARy are nonzero. Recall from
Assumption 1 that ||[AA|| < Il; and ||z|] < 2. Since

oo, we can conclude that

P(we)QP(we) + CTR™1C > 0, there exists A > 0 such that
||P(we)QP(we) + CTR™LC|| > A. Then by (13), we have
dVie,t
AL Nl + abollell — o7ve ++°d"d
Hence e(t) is bounded by /2 because for ||e(t)|| > 12 and
d tends to zero, we have %f’t) < 0. O

Remark 5. The observer ¥(w,) is referred to as a Kalman-
like observer because the gain K (w,) is designed following
principles similar to those of the original Kalman observer
[30], where the gain is determined to minimize the estimation
error covariance in the presence of Gaussian noise. More
explicitly, the stochastic model as & = A(w.)z + Bu + w,
y = Cz 4+ v, where w and v are Gaussian noises for process
and measurement, respectively. Although we do not handle a
fully stochastic model with noise, the observer gain is obtained
by solving Riccati inequalities in a manner reminiscent of the
Kalman framework. As a result, the tuning matrices ) and
R-which represent the covariance of w and v in the standard
Kalman observer-are employed here as weighting matrices.
These matrices enable us to adjust the relative emphasis placed
on the system model and measurement output, respectively.

B. Polytopic LPV synthesis

In order use the above results to find an observer gain
K (w,), we need to render the infinite set of LMIs in (11) to a
finite set of LMIs (or BMIs). There are different approaches for
LPV synthesis as shown in the survey [17] and the references
therein. Since our LPV system Y (w,) is polytopic and only
the system matrix A depends on w,, we will use the polytopic
synthesis [31], [35]. Denote

Al = A(ge) and A2 = A(a)e).

Corollary 1. Under Assumption 1, there exists a robust
LPV H, observer if there exist two positive-definite constant
matrices P, = PlT >0 P, = P2T > 0 and a positive scalar
~v > 0 such that Vi, j = 1,2:

ATP+P,A;—CTR™'C+7(P;—P;) P; PE CT
P; -Q7* 0 o0
ETP; 0 —yI O <0,
¢ 0 0 —vI
(14a)
(A1—A2)T (P1—P2)+(P1—P2)(A1—A2)+(P1—P2)Q(P1—P2)>0,
(14b)

T, Q=Q" >0and R = RT > 0 are tuning
matrices. The observer gain K(w.) = P Y w.)CTR™Y,
where P(w.) = a(we)P1 + (1 — a(w.))Ps and « is given
by (7).

Proof. Observe that f(we,w.) of (12) is a quadratic function
of we. By Lemma 3.1 of [31], Vw, € [w,,®.] and V|w.| <
T(We —w,) & flwe) <0 if

O f(we, ) _ (aawe))Q 0

— >0
Ow? Owe a2 — 7

where T = =
We

(15)
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together with Vw. € {w,,@.} and Vw. € {—7(@. —
Ule)ﬂ:(we - Qe)}:
flwe,we) < 0. (16)
Observe that
82f—TA A)T(P, - P P —P)(A - A
@_e (( 1 2)(1_ 2)“1‘(1- 2)( 1— 2)

+(P1 — P2)Q(P1 — Pr))e,

thus (14b) implies (15). Moreover, by using Schur comple-
ment and 827;:5) = 525 (P — Py), it is seen that (14a)
guarantees (16) holds at the corners of the ranges for w,
and w,. Therefore, with the same arguments in the proof of
Theorem 2, we can conclude that K (w,) = P~ (w.)CTR™!
with P(w.) = aP; + (1 — )P, is the observer gain for a
robust LPV observer. O

Note that the constraint (14b) is not an LMI but a BMI
which depends quadratically on the unknowns and it is a non-
convex optimization problem if one wants to minimize ~. It is
not possible to transform simultaneously both (14a) and (14b)
into LMIs by Schur complement or changing of variables. To
solve this problem, one may use e.g. the methods in [41], [42].
Here we propose a simple solution with possible conservatism
but easy for calculation and realization.

Step 1: Minimize v > 0 under the LMIs constraints (14a) and
(A1 —A2)T(PL—Pp)+ (P — P2)(A1— Ag)+ Lo > 0, Lo > 0.

Denote the resulting P and P» as Pip and Pso.

If Lo < (P1o — P20)Q(P10 — P20), then stop and return to Pig
and Pyg. Otherwise, set k = 1 and go to Step 3.

Minimize ~ > 0 under the LMIs constraints (14a) and

Step 2:
Step 3:
(A1 — A)T(PL — Po) + (P1 — P2)(A1 — A2) + Ly, > 0,
Li_1—Li >0.

Denote the resulting P; and P as Py and Poy.
If Ly, < (Pig — Por)Q(P1r — Pog). then stop and return to Py
and Psj,. Otherwise, set kK = k + 1 and go to Step 3.

Step 4:

Remark 6. As our system has only one varying parameter we,
it is also convenient to apply the griding-based LPV synthesis
[17], [26], [43]. The idea is to define a grid G for [w,, &¢], then
minimize -y under the LMIs defined by (11) with all w. € G.
Then check if the obtained P; and P» satisfy (11) under a
denser grid. If it fails, increase the density of G and resolve the
LMIs. The girding-based method is easy to be implemented
but such a method does not provide any rigorous guarantees
for global convergence and performance [17].

C. Comparisons with different types of observer gains

In this subsection, we compare the designed parameter-
varying observer gain with other approaches:
Constant Gains: In the observer gain design procedure out-
lined in the previous subsection, one possible choice is a
Lyapunov function V(e) = e” Pe, where P is independent
of w,. This simplification leads to a more straightforward
synthesis of the observer gain, as the quadratic terms in (11)
become affine in w,, and gTZ = 0. As a result, the polytopic

LPV synthesis method from [35] can be applied, yielding only
two LMI constraints for w, = w, and w. = @, as described

in (14a), with P = P; = P». The constant observer gain is
then given by:

K =P 'CTR™ %
Key points regarding this design are as follows:

o The design of a constant gain is more conservative than
the one presented in Corollary 1, as the Lyapunov func-
tion V() is independent of the parameter. Consequently,
the solution to the LMIs in (14a) may not exist, since a
common Lyapunov function for A; and A5 may not exist
in a quadratic form e? Pe with a constant P.

« The robust performance, denoted ~, may degrade with a
constant gain, and at times, one might need to sacrifice
robustness in order to ensure convergence.

o An observer with a constant gain lacks sensitivity to
variations in speed, which can result in a sluggish re-
sponse during rapid speed changes and may even lead to
overshooting when dealing with a wide speed range.

In conclusion, to increase the possibility of obtaining a solu-
tion from (14a) with a constant P, adjustments to the system
or observer may be necessary. These adjustments include
assuming that the magnetic uncertainties are slow-varying (i.e.,
d(t) = 0) or even constant (i.e., ¢(t) = 0), as well as narrowing
the speed range [w.,@.].

Linear Time-Varying (LTV) Gains: Recall the results from
[2], where a linear time-varying (LTV) observer was designed
for torque estimation in PMSMs. In this design, the observer
gain K(t) = P~ '()CTR™! is calculated by solving the
time-varying Riccati equation, similar to the original Kalman
observer [30]:

AP®) _ 471 p(t) — P(H)A() — P(QP(E) + CTR-1C,

dt
an

where A(t) = A(w.(t)) is treated as a time-varying matrix by
incorporating the online estimate of w.. We now compare the
LPV observer proposed in this paper with the LTV observer
from [2]:

o The system model in [2] assumes that magnetic uncer-
tainties satisfy g4 = g4 = 0, which limits its observer
to handling only slow-varying uncertainties. In contrast,
the proposed model ¥, in (6) addresses magnetic uncer-
tainties by treating gq and g, as state variables, with ggq
and g, treated as disturbances. This allows the observer
to accommodate both slow and fast-varying uncertainties.

« A major challenge in LTV observer synthesis is ensuring
the solvability of the time-varying Riccati equation (17).
Even if ¥(w.(t)) is observable at each time instant,
this does not guarantee the solvability of (17), which
requires uniform complete observability [30]. In contrast,
the existence of an LPV observer gain P(w,) can be pre-
verified through the solvability of the LMIs in (14a) and
(14b).

o Another advantage of the LPV observer approach is its
computational efficiency. The LPV observer gain is com-
puted offline, whereas the LTV observer requires online
computation of P(t) by solving the time-varying Riccati
equation (17), which can be computationally intensive.
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V. SIMULATION RESULTS

A WRSM with the parameters shown in Table I is simulated
in the MATLAB/Simulink environment. The model is based
on the formulation presented in (6), where the dynamics of the
magnetic uncertainties gq, g, and gy are taken into account. A
standard PI field-oriented controller is applied to the machine.
Simulations are conducted to verify the effectiveness of the
proposed method under significant tests involving magnetic
uncertainties AMy and AL,. The first test involves a maximal
18% wvariation in M ¢, while the second test examines a
maximal 30% variation in Lg.

Value

Maximum Power 65 KW
Number of pole pairs (p) 2

Parameters

Stator winding resistance (Rs) 0.0123 Q
Stator’s d-axis inductance (L) 0.0017 H
Stator’s g-axis inductance (Lg) 0.00065 H
Self inductance of field winding (Ly) 1.35 H
Mutual stator-rotor inductance (M) 0.0283 H
Moment of inertia 0.022 Kg.m?
Coefficient of viscous friction 0.0064 Nm.s

TABLE I: WRSM Parameters of the first ZOE car.

These tests are conducted at low speeds (between 500
rpm and 600 rpm) of the WRSM under different torque
commands. The rationale for selecting this specific speed
range is discussed in Section VI-D. The torque is accurately
estimated during both motor mode (when the torque command
is increasing) and braking mode (when the torque command
is decreasing). We compare three different torque estimation
results with the reference/command torque, Tcommand- The
torque 71 py is the estimation from the proposed LPV observer.
The LPV gain is calculated as follows. The tuning matrices R
and and () are chosen as

R=1I5, Q= diag{0.01,0.1,1,0.01, 10,6000, 1000, 10}.

The values of the constant matrices P; and P, calculated
through inequalities (14) are

[ 0.0051 0.0016 0.1154 0.7951 —0.2419 0.0019 0.0130
0.0016 0.0044 0.0370 1.3026 —0.0336 —0.0011 0.0215 0.0000
0.1154 0.0370 5.0404 19.3714 —0.8417 —0.0496 0.3158 0.7245
0.7951 1.3026 19.3714 682.5846 —34.9667 —1.6622 11.1293 0.0106
—0.2419 —0.0336 —0.8417 —34.9667 36.8094 —0.4223 —0.6589 0.0240
0.0019 —0.0011 —0.0496 —1.6622 —0.4223 0.0214 —0.0260 —0.0004
0.0130 0.0215 0.3158 11.1293 —0.6589 —0.0260 0.1875 0.0002
L 0.0150 0.0000 0.7245 0.0106 0.0240 —0.0004 0.0002 0.1447

0.0150

P =10°

and
[ 0.0000 0.0000 0.0002 0.0032 —0.0005 —0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0013 —0.0001 —0.0000 0.0000 0.0000
0.0002 0.0000 0.0074 0.1010 —0.0067 —0.0002 0.0002 0.0007
P — 103 0.0032 0.0013 0.1010 3.5314 —0.2397 —0.0079 0.0067 0.0002
2 — —0.0005 —0.0001 —0.0067 —0.2397 0.1390 0.0000 —0.0006 0.0000

—0.0000 —0.0000 —0.0002 —0.0079 0.0000 0.0000 —0.0000 —0.0000
0.0000  0.0000
L 0.0000 0.0000

0.0002 0.0067 —0.0006 —0.0000 0.0000
0.0007  0.0002 0.0000 —0.0000 0.0000

0.0000
0.0001

Thus the observer gain according to Corollary 1 is given by
K(we) = P~ we)CTR™, where P(w,.) = a(we) P + (1 —
a(we))Ps.

The torque Tiry is the estimation from an LTV observer
similar to that in [3], thus its gain is calculated online by
solving (17). The torque Tionstant cOomes from a constant
gain (Luenberger-like) observer, where the gain is solved by
equation (14a) with the assumptions tha g4,9, and w. are
constant to ensure a solution from (14a).

A. Results with magnetic uncertainties on mutual inductance

Figure 1 illustrates the torque estimation results over a span
of 50 seconds. This analysis includes both static and dynamic
variations in mutual inductance My. It is evident that the
LPV observer performs excellently in tracking a piecewise
constant torque reference, which is a common scenario in
real-life driving conditions. Figure 2 presents a comparison
of observers during the initial 10 seconds. Notably, during
the dynamic changes occurring between 3 and 6 seconds, the
robust LPV observer precisely estimates the electromagnetic
torque, whereas the LTV method encounters difficulties in
correcting torque estimation errors, particularly at ¢ = 2
seconds. This issue is likely due to challenges in solving the
time-varying Riccati equation, highlighting the reliability of
the LPV approach. Additionally, from 2 to 3 seconds, the
LPV observer consistently outperforms the LTV method. The
LPV method also demonstrates less overshoot compared to the
LTV method when dealing with sudden changes, such as the
step function at 6 seconds, in M. Overall, both the LTV and
LPV techniques deliver accurate estimates of electromagnetic
torque throughout the testing period, whereas the observer with
constant gains experiences significant estimation errors due to
its maladaptation to speed variations

50
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Fig. 1: Torque estimation results for 50s with uncertainties on
My.

Time (s)

Fig. 2: Torque estimation results for 10s with uncertainties on
My,

B. Results with magnetic uncertainties on stator inductance

Figs. 3 and 4 focus on variations in the stator’s d-axis
inductance L,. This test is designed to highlight the effects
of high-order derivatives of inductance variations. To simulate
these effects, a sine function is used to modulate the d-axis
inductance uncertainty. During the first phase of the simulation
(from O to 4 seconds), the LTV observer displays significant
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oscillations. This occurs because the LTV observer’s design in
[2] does not account for the presence of high-order derivatives
of uncertainties, and the sine function introduces non-trivial
high-order time derivatives that contradict this assumption.
In contrast, the LPV method shows robustness against such
high-order derivatives, providing a relatively accurate torque
estimation during this period. Furthermore, the LPV method
benefits from a simpler structure and lower computational
costs for gain calculation, resulting in faster tracking perfor-
mance. After the initial phase, both LTV and LPV methods
deliver satisfactory torque estimations. In contrast, the constant
gain observer exhibits a slow response and relatively large
estimation errors throughout the entire simulation process..

ot

Time (s)

Fig. 3: Torque estimation results for 50s with uncertainties on
Lg.
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Fig. 4: Torque estimation results for 10s with uncertainties on
Lg.

Remark 7 (Resistances uncertainties). The simulations with
uncertainties in the resistances R, and Ry have also been con-
ducted. The estimation results show no significant differences
when considering AR, and ARy to be zero or small values.
The possible reasons for this have been explained in Remark 1
above. Specifically, the PI controller may compensate for the
side effects caused by AR, and ARy, and the torque 7, of
(2) has no direct connections with the resistances.

VI. EXPERIMENTAL RESULTS
A. Experiment setup

To assess the simulation results of the proposed observer
based LPV approach, experiments tests are realized on the BE-
MEVE test bench (https://renault-chair.ec-nantes.fr/bemeve),
which is dedicated to test EV motors at 1-scale power level.
The tested motor is a WRSM, which is used in the first
generation of ZOE cars with the same parameters used in

simulation (Table I). As it can be seen in Fig. 5, the observers
are developed in Matlab-Simulink environment. The control-
Simulink file in which the observer is developed is compiled,
and the generated code is loaded into the DSPACE real-time
card. This generates the PWM signals that are sent to the in-
verter switches, which in turn generate the voltages V,, V3, V.
to be applied to the WRSM to impose the required command
torque. Current sensors are integrated into the inverter and are
the only measurements used by observers. The road profile is
imposed by the DC Motor, whose speed is regulated by the
associated speed controller via a chopper.

Position Sensor

PWM-Inverter
Vab
DC-Bus -[ @. ﬁl
Reducer r —_

I
| .
| pc
| Conv
T

e ol

Adaptation
Card

i

PWM labc DC-Bus

PC+Software

Fig. 5: Experimental setup details

B. Low speed (between 500 and 600 rpm) with different torque
commands:

As in the simulation, this test corresponds to the driver’s
demand when pressing the car’s acceleration pedal under a
constant speed profile (road profile). The obtained results,
shown in Figs. 6 and 7, are quite similar to those obtained
in the simulation (Figs. 1 and 3). They reveal well-estimated
torque when the torque command is increasing (motor mode)
and decreasing (braking mode), despite the torque measure-
ment being very noisy.

Remark 8. The simulation and experimental results are quite
similar, though minor discrepancies remain. One possible
reason is a mismatch between the current references and
the voltage command required to generate the same torque.
On the test bench, the current references are automatically
generated from the torque command via a predefined table-
matching algorithm. However, this is not the case in the
simulations, where for a given desired torque 7, the current
references 74 and ¢, are not uniquely determined, as indicated
by (2). Another contributing factor is the absence of certain
dynamic components in the simulation model, such as the
PWM converter, which may influence the actual value of the
commanded voltage.

We also notice the excellent performance of the torque
estimation during dynamic phases of driving, such as rapid
acceleration and deceleration. As expected, this performance
is achieved by considering the higher-order time derivatives of
the magnetic uncertainties g4, g4, Which are managed by the
proposed observer (9). The currents in the d — ¢ frame also
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perform well. As shown in Fig. 7, they are estimated with high
precision, contributing to the accurate torque estimation.

50

0 10 20 30 40
Time (s)

Fig. 6: Torque estimation results with the consideration of
gd,glr

In Table II, the experimental result of the estimated torque
in Fig. 6 is compared to the simulation result in Fig. 1
in terms of MAE (Mean Absolute Error) and RMSE (Root
Mean Square Error). It can be seen that the estimated torque
(Fig. 1) obtained in simulation, has extremely low MAE
and RMSE (0.001 N-m)). This is because the simulation
conditions do not consider the dynamics of converters and
reducer, the sensor inaccuracies, the measurement noise, the
electromagnetic interference and the mechanical losses. How-
ever, in experimental conditions, the estimated torque (Fig. 6)
shows significantly higher errors (MAE =~ 1.236 N-m, RMSE
~ 1.244 N-m). This is mainly due to the presence of real
conditions that are neglected in simulation.

Metric  Simulation  Experimentation
MAE 0.001 1.236
RMSE 0.001 1.244

TABLE II: Comparison of Estimation Errors in Simulation and
Experimentation
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Fig. 7: The currents with the consideration of §q, §q.

C. Torque observer without uncertainties estimation:

To highlight the interest of the proposed observer, a test
is conducted with constant speed and torque commands. In
this test, the estimated values of uncertainties g4 and g, are
not included in the torque estimation (Fig. 8) during intervals
of time [0,4s] and [10,14s]. As can be seen, the torque
estimation, during these intervals of time, does not performs
well, a significant static error estimation appeared. Concerning
the currents in the d — ¢ frame, they are well estimated (Fig.
9) since they do not depend on uncertainties estimation.
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Fig. 8: Torque estimation without using g4, §, when ¢ € [0, 4s]
and [10, 14s].
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Fig. 9: The currents without considering g4, q-

D. High speed validation:

In order to validate the proposed LPV-based torque observer
at higher speeds, an additional experimental test was carried
out close to the nominal speed range. As it can be observed
in the low-speed region of Figs. 10a and 10b, the inductances
identified in the d — ¢ axes (Lq and L,) show significant
deviations from their nominal values. These variations require
the use of correction terms gg and g, within the observer to
compensate for these deviations (see subsection VI-B). How-
ever, as rotor speed increases, the value of these inductances
identified converge towards their nominal values, as shown
in Figs. 10a and 10b To further validate this behavior, an
additional test was carried out close to the nominal speed
range. In this test, the correction terms gg and g, are not
used by the torque observer as it uses nominal inductance
values. In fact, when the speed reaches the nominal regime,
the correction terms gg and g, converge to zero, as illustrated
in Fig. 12. The results, shown in Fig. 11, demonstrate that
despite the absence of the correction terms gg and g4, the
estimated torque (Fig. 11, green curve) closely aligns with the
command torque (Fig. 11, blue curve). This indicates that at
high speeds, the observer achieves an accurate torque estimate
without the need to use g4 and g, as the inductances identified
are sufficiently close to their nominal values. At nominal
speeds, the system’s behavior closely aligns with conventional
estimation techniques based on constant nominal inductance
values, reducing the computational load associated with real-
time estimation of g4 and g,.

It can be observed that in the low-speed operating mode,
the inductances L, and L, exhibit significant deviations from
their nominal values, behaving as uncertain or time-varying
parameters. This is primarily due to the fact that low-speed
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Fig. 10: Identified inductances L4 and L, versus speed

operation typically demands high torque, which corresponds
to high stator current. The resulting high current leads to
magnetic core saturation, causing the inductance to vary
nonlinearly with current. Consequently, magnetic parameter
uncertainties in low-speed mode become non-negligible. In
contrast, during high-speed operation, the inductances remain

nearly constant, and their variations can often be neglected.
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Fig. 12: Correction gains g and g, of LPV observer
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E. Results comparison with different types of observers:

Experimental tests were conducted to support the compari-
son explanation given in Section IV-C and provide the readers
with a direct understanding of the advantages of the proposed
observer. The results obtained, with the same test conditions
(low speed, parameters of Table I), are shown in Fig. 13. It
can be seen that the proposed LPV observer performs well
compared to the other two observers (LTV and constant gain
observers) since the estimated torque of the proposed method
(Fig. 13, green) follows closely the command torque (Figure
13, red). The constant gain observer estimates the torque
with an important static error. This is because the gains are
not adapted to the variation of the inductances and speed.

However, this observer is less consuming in terms of CPU
since the gains are considered constants. For the LTV observer,
a less static error (with respect to the case of constant gain)
appears in the estimated torque (Fig. 13, black) compared
to the torque command (Fig. 13, blue). This is because the
observer considers the derivatives of the magnetic uncertainties
constant. This LTV observer consumes much more in terms
of CPU, since the matrix P(t) used in its observer gain
is computed online by solving a dynamic equation while
it is computed offline in our proposed LPV observer. In
addition, we tried to associate our modeling proposal with
LTV observer, which should give a more close result to our
proposed approach. However, we could not test it because it
was overrun in real time due to the complex computation of
the matrix P(t) in real-time. A table of metrics for comparison

of the performance of different observers is given in Table III.
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Fig. 13: Measured torque (red), LPV estimated torque (green),
constant gains estimated torque (magenta), LTV estimated
torque (black).

Criteria / Observer Constant gain LPV LTV
Sampling time (u.s) 100 100 100

Computation time (ps) 12.6 19.3 54.7
CPU load (%) 12.6 19.3 54.7

Mean square error (N.m) 5.50 0.008 2.82
Implementation complexity Low Medium  High
Risk of real-time overrun Very Low Low High

TABLE III: Comparison of torque observers

VII. CONCLUSION

This article proposes a new technique for estimating the
torque of wound rotor synchronous machines (WRSM) used in
electric vehicles, particularly the Renault ZOE. This technique
utilizes a sensorless approach to reduce costs and the conges-
tion, while accounting for magnetic uncertainties and resis-
tance variations. The innovation of this technique, compared
to existing methods, lies in the design of a robust LPV state
observer, ensuring precise torque estimation in both dynamic
and static regimes despite the presence of uncertainties. An
observability study of the WRSM and a rigorous proof of the
observer’s stability and robust performance are provided. The
performance of the proposed LPV observer has been validated
through simulation and experimental tests, and compared to
two other observers of the type of constant gain and LTV. In
contrast to the constant gain and LTV approaches, the LPV
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observer offers a compromise between robustness to dynamic
inductance variations and implementation cost, and ensures
better accuracy. Hence, this technique demonstrates increased
efficiency and robustness under real conditions, offering a
solution to enhance the safety and control of electric vehicles.
These results pave the way for future applications in various
types of electric machines used in EVs.
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