Lecture Course: Advanced Systems Theory

Chapter 9-Lecture 9: The well-posedness of the output regulation problem

Stephan Trenn, Yahao Chen
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands

September-October 2020

disturbance decoupling with dynamic feedback

, Closed loop system:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{w}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A+B N C & B M \\
L C & K
\end{array}\right]}_{A_{e}}\left[\begin{array}{c}
x \\
w
\end{array}\right]+\underbrace{\left[\begin{array}{c}
E \\
0
\end{array}\right]}_{E_{e}} d \quad z=\underbrace{\left[\begin{array}{cc}
H & 0
\end{array}\right]}_{H_{e}}\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7+Theorem 6.4

DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff \exists a (C, A, B)-pair $(\mathcal{S}, \mathcal{V})$ s.t.

$$
\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H
$$

or, equivalently, $\mathcal{S}^{*}(\operatorname{im} E) \subseteq \mathcal{V}^{*}(\operatorname{ker} H)$. If such $(\mathcal{S}, \mathcal{V})$ exists, choose
, $N: \mathcal{Y} \rightarrow \mathcal{U}$ s.t. $(A+B N C) \mathcal{S} \subseteq \mathcal{V}$,
, $F: \mathcal{X} \rightarrow \mathcal{U}$ s.t. $(A+B F) \mathcal{V} \subseteq \mathcal{V}$,
, $G: \mathcal{Y} \rightarrow \mathcal{U}$ s.t. $(A+G C) \mathcal{S} \subseteq \mathcal{S}$, then Γ is given by

$$
\left\{\begin{array}{l}
\dot{w}=(A+B F+G C-B N C) w+(B N-G) y \\
u=(F-N C) w+N y .
\end{array}\right.
$$

Theorem 6.6

DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff \exists a (C, A, B)-pair $(\mathcal{S}, \mathcal{V})$ s.t.

$$
\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H
$$

Consider a system $\Sigma=(A, B, E, C, H)$, where

$$
A=\left[\begin{array}{lll}
a & b & c \\
x * & * \\
* * & * & *
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], C=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right], E=\left[\begin{array}{lll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right], H=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .
$$

Question 1:

For which choices of a, b, c, the DDPM is solvable for Σ ?
(i) $a=0, b \neq 0, c \neq 0$.
(ii) $a \neq 0, b=0, c \neq 0$.
(iii) $a \neq 0, b \neq 0, c=0$.

Question 2:

Let $a \neq 0, b \neq 0, c=0$. How can we choose $F:(A+B F) \mathcal{V} \subseteq \mathcal{V}, G:(A+G C) \mathcal{S} \subseteq \mathcal{S}$ and $N:(A+B N C) \mathcal{S} \subseteq \mathcal{V}$?
(i) $F=\left[\begin{array}{lll}-a & 0 & 0\end{array}\right], G=\left[\begin{array}{lll}-a & -b & 0\end{array}\right]^{\top}, N=-a$.
(ii) $F=\left[\begin{array}{lll}0 & -b & 0\end{array}\right], G=\left[\begin{array}{lll}0 & -b & 0\end{array}\right]^{\top}, N=-b$.

(iV) $F=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right], G=\left[\begin{array}{ccc}0 & -a & 0\end{array}\right]^{\top}{ }^{\top}$ 'eture Couse: Advanced Systemis

9.1 The regulator problem

Output regulation

Goal: Find $\Gamma=(K, L, M, N): \Leftrightarrow \lim _{t \rightarrow \infty} z(t)=0, \forall x_{1}(0)$

9.1 The regulator problem

, The open-loop system is $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x \\ z=D x+E u\end{array}\right.$ with $A=\left[\begin{array}{ll}A_{1} & 0 \\ A_{3} & A_{2}\end{array}\right], B=\left[\begin{array}{c}0 \\ B_{2}\end{array}\right]$,
$C=\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right], D=\left[\begin{array}{ll}D_{1} & D_{2}\end{array}\right]$
, The closed loop system

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}_{1}=A_{1} x_{1} \\
\dot{x}_{2, e}=A_{2, e} x_{2, e}+A_{3, e} x_{1} \\
z=D_{1, e} x_{1}+D_{2, e} x_{2, e}
\end{array}\right. \\
x_{2, e}=\left[\begin{array}{c}
x_{2} \\
w
\end{array}\right], A_{2, e}=\left[\begin{array}{cc}
A_{2}+B_{2} N C_{2} & B_{2} M \\
L C_{2} & K
\end{array}\right], A_{3, e}=\left[\begin{array}{c}
A_{3}+B_{2} N C_{1} \\
L C_{1}
\end{array}\right] \\
D_{2, e}=\left[\begin{array}{cc}
D_{2}+E N C_{2} & E M
\end{array}\right] \quad D_{1, e}=D_{1}+E N C_{1} .
\end{gathered}
$$

, Regulator Problem: Find $\Gamma=(K, L, M, N)$: the closed-loop system satisfies $z(t) \rightarrow 0$ as $t \rightarrow \infty$ and the closed loop is endostable, i.e. for $x_{1}(0)=0$, all variables converge to zero .

Questions

Question 3

Let $A_{1}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ and $A_{2}=\left[\begin{array}{cc}\tilde{\lambda}_{1} & 0 \\ 0 & \tilde{\lambda}_{2}\end{array}\right]$. Then \exists a unique T such that $T A_{1}-A_{2} T=A_{3}$ iff
(i) $\left(\lambda_{1}-\lambda_{2}\right)\left(\tilde{\lambda}_{1}-\tilde{\lambda}_{2}\right) \neq 0$. (ii) $\left(\lambda_{1}-\tilde{\lambda}_{1}\right)\left(\lambda_{2}-\tilde{\lambda}_{2}\right) \neq 0$.
(iii) $\left(\lambda_{1}-\lambda_{2}\right)\left(\tilde{\lambda}_{1}-\tilde{\lambda}_{2}\right)\left(\lambda_{1}-\tilde{\lambda}_{1}\right)\left(\lambda_{2}-\tilde{\lambda}_{2}\right) \neq 0$.
(iv) $\left(\lambda_{1}-\tilde{\lambda}_{2}\right)\left(\tilde{\lambda}_{1}-\lambda_{2}\right)\left(\lambda_{1}-\tilde{\lambda}_{1}\right)\left(\lambda_{2}-\tilde{\lambda}_{2}\right) \neq 0$.

Question 4

In Question 1, let $A_{3}=\left[\begin{array}{ll}a & b \\ c & b\end{array}\right]$, if \exists a unique solution T, then $T=$
(i) $\left[\begin{array}{ll}\frac{a}{\lambda_{1}-\lambda_{2}} & \frac{b}{\lambda_{1}-\lambda_{2}} \\ \frac{c}{\lambda_{1}-\lambda_{1}} & \frac{d}{\lambda_{2}-\lambda_{2}}\end{array}\right]$.
(ii) $\left[\begin{array}{ll}\frac{a}{\lambda_{1}-\lambda_{1}} & \frac{b}{\lambda_{1}-\bar{\lambda}_{2}} \\ \frac{c}{\lambda_{2}-\lambda_{1}} & \frac{d}{\lambda_{2}-\lambda_{2}}\end{array}\right]$.
(iii) $\left[\begin{array}{cc}\frac{a}{\lambda_{1}-\lambda_{1}} & \frac{b}{\lambda_{2}-\lambda_{1}} \\ \frac{c}{\lambda_{1}-\lambda_{2}} & \frac{d}{\lambda_{2}-\lambda_{2}}\end{array}\right]$.

9.1 The regulator problem

Open loop:

Lemma (9.1)

Consider Σ with A_{2} being Hurwitz and $u=0$. Then $z(t) \rightarrow 0$ as $t \rightarrow \infty$ if $\exists T: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T=A_{3} \tag{1}\\
D_{2} T+D_{1}=0
\end{array}\right.
$$

If A_{1} is antistable (i.e., $\sigma\left(A_{1}\right) \cap \mathbb{C}_{R e<0}=\varnothing$), then the solvability of (1) is also necessary.

Question 5:

If (1) is uniquely solvable, the map $T \mapsto\left[\begin{array}{c}T A_{1}-A_{2} T \\ D_{2} T\end{array}\right]$ is
(i) Injective;
(ii) Surjective
(iii) Bijective.

9.1 The regulator problem

Closed-loop:

Corollary (9.1a)
The regulator problem for Σ can be solved with controller $\Gamma=(K, L, M, N)$, if $A_{2, e}$ is Hurwitz and $\exists T_{e}: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2} \times \mathcal{W}$ s.t.

$$
\left\{\begin{array}{l}
T_{e} A_{1}-A_{2, e} T_{e}=A_{3, e} \tag{2}\\
D_{2, e} T_{e}+D_{1, e}=0
\end{array}\right.
$$

Lemma (9.1b)
$\exists \Gamma=(K, L, M, N)$: equation (2) is solvable iff $\exists(T, V)$:

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T-B_{2} V=A_{3} \tag{3}\\
D_{1}+D_{2} T+E V=0
\end{array}\right.
$$

Proof sufficiency of Lemma 9.1 b .

If. Let (T, V) solve (3), choose $K=A+G C+B F, L=-G, M=F, N=0$, i,e,

$$
\Gamma:\left\{\begin{array}{l}
\dot{w}=(A+G C+B F) w-G y \\
u=F w,
\end{array}\right.
$$

where $F=\left[\begin{array}{ll}-F_{2} T+V & F_{2}\end{array}\right], F_{2}$ be any and $T_{e}=\left[\begin{array}{c}T \\ U\end{array}\right] U=\left[\begin{array}{c}I \\ T\end{array}\right]$, then

$$
\begin{gathered}
T_{e} A_{1}-A_{2, e} T_{e}=\left[\begin{array}{l}
T \\
U
\end{array}\right] A_{1}-\left[\begin{array}{cc}
A_{2} & B_{2} F \\
-G C_{2} & A+G C+B F
\end{array}\right]\left[\begin{array}{l}
T \\
U
\end{array}\right]=\left[\begin{array}{c}
T A_{1}-A_{2} T-B_{2}\left[-F_{2} T+V F_{2}\right]\left[\begin{array}{l}
I \\
T
\end{array}\right] \\
U A_{1}+G C_{2} T-(A+G C+B F) U
\end{array}\right] \\
=\left[\begin{array}{c}
A_{3} \\
A_{1}+G_{1} C_{2} T-A_{1}-G_{1} C_{1}-G_{1} C_{2} T \\
T A_{1}+G_{2} C_{2} T-A_{3}-A_{2} T-G_{2} C_{1}-G_{2} C_{2} T-B_{2} V
\end{array}\right]=\left[\begin{array}{c}
A_{3} \\
-G_{1} C_{1} \\
-G_{2} C_{1}
\end{array}\right]=\left[\begin{array}{c}
A_{3} \\
-G C_{1}
\end{array}\right]=A_{3, e}, \\
D_{2, e} T_{e}+D_{1, e}=D_{1}+\left[\begin{array}{ll}
D_{2} & E F
\end{array}\right]\left[\begin{array}{l}
T \\
U
\end{array}\right]=D_{1}+D_{2} T+E V=0
\end{gathered}
$$

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=A_{1} x_{1} \\
\dot{x}_{2}=A_{2} x_{2}+A_{3} x_{1}+B_{2} u \\
y=C_{1} x_{1}+C_{2} x_{2} \\
z=D_{1} x_{1}+D_{2} x_{2}+E u
\end{array} \quad A=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{3} & A_{2}
\end{array}\right], C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] .\right.
$$

Theorem (9.2)

Assume: (i) $\left(A_{2}, B_{2}\right)$ stabilizable; (ii) (C, A) detectable; (iii) $\exists(T, V)$:

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T-B_{2} V=A_{3} \\
D_{1}+D_{2} T+E V=0 .
\end{array}\right.
$$

Then $\exists \Gamma=(K, L, M, N)$ solves the output regulator problem, i.e. $\lim _{t \rightarrow \infty} z(t)=0$ and $\lim _{t \rightarrow \infty} x_{2}(t)=0$ for $x_{1}(0)=0$ in closed-loop. The converse is true if A_{1} is anti-stable. If (i), (ii), (iii) hold then Γ is given by $\Gamma:\left\{\begin{array}{l}\dot{w}=(A+G C+B F) w-G y \\ u=F w\end{array}\right.$
with G such that $A+G C$ is Hurwitz. $F=\left[F_{1}, F_{2}\right]$ where F_{2} is such that $A_{2}+B_{2} F_{2}$ is Hurwitz and $F_{1}:=-F_{2} T+V$

Proof of Thm 9.2.

Due to Corollary 9.1a and Lemma 9.1b, it is sufficient to show that $A_{2, e}$ is Hurwitz.

$$
\begin{aligned}
& A_{2, e}=\left[\begin{array}{cc}
A_{2} & B_{2} F \\
-G C_{2} & A+G C+B F
\end{array}\right] \text { is Hurwitz . } \\
& \Leftrightarrow \text { all solutions of }\left[\begin{array}{c}
\dot{x}_{2} \\
\dot{w}_{1}
\end{array}\right]=A_{2, e}\left[\begin{array}{c}
x_{2} \\
w
\end{array}\right] \text { converge to zero . } \\
& \Leftrightarrow\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{w}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{3, e} & A_{2, e}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
w
\end{array}\right] \text { converge to zero for } x_{1}(0)=0 . \\
& \Leftrightarrow\left[\begin{array}{c}
\dot{x} \\
\dot{w}
\end{array}\right]=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \cdot F \\
A_{3} & A_{2} & B_{2} \cdot F \\
-G C_{1} & -G C_{2} & A+G C+B F
\end{array}\right]\left[\begin{array}{c}
x \\
w
\end{array}\right] \text { with } x_{1}=0 \text { converge to zero . }
\end{aligned}
$$

Define $r: w-x$, we have

$$
\begin{aligned}
\dot{x} & =(A+B F) x+B F r \\
\dot{r} & =\dot{w}-\dot{x}=-A x-B F w-G C x+(A+G C+B F) w=(A+G C) r
\end{aligned}
$$

It follows that $\lim _{t \rightarrow \infty} r(t)=0$, and thus $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty} w(t)=0$.

9.2-9.4 Well-posedness of the regulator problem.

, Q: Are conditions (i),(ii),(iii) of Theorem 9.2 robust w.r.t. to small perturbation in matrix coefficient?
, (A, B) is stabilizable $\Rightarrow \exists$ small enough A^{\prime} and B^{\prime} such that $\left(A+A^{\prime}, B+B^{\prime}\right)$ is stabilizable.
, $A+B F$ is Hurwitz then $A+B F+\left(A^{\prime}+B^{\prime} F\right)$ is also Herwitz for small enough $\left(A^{\prime}+B^{\prime} F\right)$.
, (C, A) is detectable $\Rightarrow \exists$ small enough C^{\prime} and A^{\prime} such that $\left(C+C^{\prime}, A+A^{\prime}\right)$ is detectable.
, Rewrite

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T-B_{2} V=A_{3} \\
D_{1}+D_{2} T+E V=0 .
\end{array} \Rightarrow\left[\begin{array}{cc}
-A_{2} & -B_{2} \\
D_{2} & E
\end{array}\right]\left[\begin{array}{l}
T \\
V
\end{array}\right]+\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
T \\
V
\end{array}\right] A_{1}=\left[\begin{array}{c}
A_{2} \\
-D_{1}
\end{array}\right]\right.
$$

, Clearly, a linear equation $A x=b$ is well posed if A is surjective.

Corollary

The regulator problem is well-posed \Leftrightarrow the linear map

$$
(T, V) \mapsto\left[\begin{array}{c}
T A_{1}-A_{2} T-B_{2} V \\
D_{2} T+E V
\end{array}\right] \text { is surjective }
$$

(Note that decetability and stabilizability are well-posed properties)
\Leftrightarrow Linear matrix equation

$$
\left[\begin{array}{cc}
-A_{2} & -B_{2} \\
D_{2} & E
\end{array}\right]\left[\begin{array}{l}
T \\
V
\end{array}\right]+\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
T \\
V
\end{array}\right] A_{1}=C
$$

is universally solvable (i.e. for any C)
, More general question: when is $\sum_{i=1}^{k} L_{i} X R_{i}=C$ solvable for all C ?
, Special case: $L X I+I X R=C$ (Sylvester equation).
, For square L, R, the matrix X is solvable for all $C \Leftrightarrow \sigma(L) \cap \sigma(R)=\varnothing$.
, Unfortunately, there seem to be no such simple test for general L_{i} and R_{i}.
, However, for $R_{i}=q_{i}(R)$, where R is square and $q_{1}(s), \ldots, q_{k}(s)$ are given polynomials, there is a nice test.

Theorem (9.6)

Let $L_{1}, L_{2}, \ldots, L_{k} \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{q \times q}$ and $q_{1}(s), q_{2}(s), \ldots, q_{k}(s)$ be given. Then

$$
\sum_{i=1}^{k} L_{i} X q_{i}(R)=C
$$

is universally solvable (i.e. for all C there is a matrix X solve the equation above)

$$
\Leftrightarrow \operatorname{rank} \sum_{i=1}^{k} L_{i} q_{i}(\lambda)=n \quad \forall \lambda \in \sigma(R)
$$

Theorem (9.6)

Let $L_{1}, L_{2}, \ldots, L_{k} \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{q \times q}$ and $q_{1}(s), q_{2}(s), \ldots, q_{k}(s)$ be given. Then $\sum_{i=1}^{k} L_{i} X q_{i}(R)=C$ is universally solvable iff $\operatorname{rank} \sum_{i=1}^{k} L_{i} q_{i}(\lambda)=n, \forall \lambda \in \sigma(R)$.

Proof of Thm 9.6.

"Only if." Assume rank $\sum_{i=1}^{k} L_{i} q_{i}(\lambda)<n$ for some $\lambda \in \sigma(R)$.
$\Rightarrow \exists v: R v=\lambda v$ and $\exists w: w^{\top} \sum_{i=1}^{k} L_{i} q_{i}(\lambda)=0$.
$\Rightarrow w^{\top} \sum_{i=1}^{k} L_{i} X q_{i}(R) v=w^{\top} \sum_{i=1}^{k} L_{i} X q_{i}(\lambda) v=w^{\top}\left(\sum_{i=1}^{k} L_{i} q_{i}(\lambda)\right) X v=0$.
Hence for any C with $w^{\top} C v \neq 0$ (e.g. $C=w v^{\top}$) the system is not solvable.
"If." By the right invertibility of $\left(\sum_{i=1}^{k} L_{i} q_{i}(s)\right)$, choose $M(s)$ such that
$\left(\sum_{i=1}^{k} L_{i} q_{i}(s)\right) \cdot M(s)=m(s) \cdot I$ for some scalar polynomial $m(s)$
$\Rightarrow m(R)$ is invertible(because $m(\lambda) \neq 0, \forall \lambda \in \sigma(R))$
and let $X(s):=M(s) \cdot C \cdot m^{-1}(R)$
$\Rightarrow \sum_{i=1}^{k} L_{i} X(s) q_{i}(s)=\sum_{i=1}^{k} L_{i} q_{i}(s) X(s)=m(s) C \cdot m^{-1}(R)$
$\Rightarrow X:=X_{r}(R)$ (right substitution) now solve (Recall Theorem 7.6: if $Q(s)$ commutes with
A, then $\left.\forall P(s): P_{r}(A) Q_{r}(A)=(P Q)_{r}(A)\right)$
$\sum_{i=1}^{k} L_{i} X_{r}(R) q_{i}(R) \stackrel{T h m}{=} 7.6 C \cdot m^{-1}(R) m(R)=C$
, Theorem 7.6: if $Q(s)$ commutes with A, then $\forall P(s): P_{r}(A) Q_{r}(A)=(P Q)_{r}(A)$.
, Remark: Thm 7.6 is quite powerful, because it allows to plug in matrices also in products of matrix polynomial, e.g., with Thm 7.6, the proof of Cayley-Hamilton Theorem becomes trivial.

$$
(s I-A)^{-1}=\frac{B(s)}{\operatorname{det}(s I-A)} \Leftrightarrow \underbrace{\operatorname{det}(s I-A)}_{P(A)} I=B(s)(s I-A)
$$

Plugging in $s=A: P(A)=B(A)(A I-A)=0$.

Theorem (9.6)

Let $L_{1}, L_{2}, \ldots, L_{k} \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{q \times q}$ and $q_{1}(s), q_{2}(s), \ldots, q_{k}(s)$ be given. Then $\sum_{i=1}^{k} L_{i} X q_{i}(R)=C$ is universally solvable iff $\operatorname{rank} \sum_{i=1}^{k} L_{i} q_{i}(\lambda)=n, \forall \lambda \in \sigma(R)$.

For the regulator problem we have

$$
\begin{gathered}
{\left[\begin{array}{cc}
-A_{2} & -B_{2} \\
D_{2} & E
\end{array}\right]\left[\begin{array}{c}
T \\
V
\end{array}\right]+\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
T \\
V
\end{array}\right] A_{1}=C} \\
L_{1}=\left[\begin{array}{cc}
-A_{2} & -B_{2} \\
D_{2} & E
\end{array}\right], \quad q_{1}(s)=1, \quad R=A_{1} \\
L_{2}=\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right], \quad q_{2}(s)=s
\end{gathered}
$$

Corollary: The regulator problem is well-posed

$$
\Leftrightarrow \operatorname{rank}\left[\begin{array}{cc}
\lambda I-A_{2} & -B_{2} \\
D_{2} & E
\end{array}\right]=n_{2}+r \quad \forall z \in \sigma\left(A_{1}\right) .
$$

(full row rank)

Summary

, The regulator problem: Lemma 9.1 (open-loop: T), Corollary 9.1 a, Lemma 9.1 b (closed-loop: T, V).
) The main result of the regulator problem Theorem 9.2: (assumptions(i),(ii),(iii), how to choose ($K, L, M, N)$)
, Well-posedness for assumptions(i),(ii),(iii).
, Well-posedness for general matrix equation, Theorem 9.6. (Theorem 7.6 in the proof)

