

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Lecture Course: Advanced Systems Theory

Chapter 9-Lecture 9: The well-posedness of the output regulation problem

Stephan Trenn, Yahao Chen Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

September-October 2020

disturbance decoupling with dynamic feedback

$$c = Ax + Bu + Ed$$

$$y = Cx$$

$$z = Hx$$

$$y$$

$$w = Kw + Ly$$

$$u = Mw + Ny$$

$$\Gamma$$

> Closed loop system:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \underbrace{\begin{bmatrix} A + BNC & BM \\ LC & K \end{bmatrix}}_{A_e} \begin{bmatrix} x \\ w \end{bmatrix} + \underbrace{\begin{bmatrix} E \\ 0 \\ E_e \end{bmatrix}}_{E_e} d \qquad z = \underbrace{\begin{bmatrix} H & 0 \end{bmatrix}}_{H_e} \begin{bmatrix} x \\ w \end{bmatrix}$$

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

Lecture Course: Advanced Systems Theory (1 / 18)

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7+Theorem 6.4

DDPM is solvable for $\Sigma = (H, C, A, B, E)$ iff \exists a (C, A, B)-pair (S, V) s.t.

 $\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H,$

or, equivalently, $\mathcal{S}^*(\operatorname{im} E) \subseteq \mathcal{V}^*(\operatorname{ker} H)$. If such $(\mathcal{S}, \mathcal{V})$ exists, choose $\mathcal{N}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + BNC)\mathcal{S} \subseteq \mathcal{V}$, $\mathcal{F}: \mathcal{X} \to \mathcal{U}$ s.t. $(A + BF)\mathcal{V} \subseteq \mathcal{V}$, $\mathcal{G}: \mathcal{Y} \to \mathcal{U}$ s.t. $(A + GC)\mathcal{S} \subseteq \mathcal{S}$, then Γ is given by

$$\begin{pmatrix} \dot{w} = (A + BF + GC - BNC)w + (BN - G)y \\ u = (F - NC)w + Ny. \end{pmatrix}$$

Theorem 6.6

 $\mathsf{DDPM} \text{ is solvable for } \Sigma = (H,C,A,B,E) \text{ iff } \exists \text{ a } (C,A,B)\text{-pair } (\mathcal{S},\mathcal{V}) \text{ s.t.}$

$\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \ker H.$

Consider a system $\Sigma = (A, B, E, C, H)$, where

$$A = \begin{bmatrix} a & b & c \\ * & * & * \\ * & * & * \end{bmatrix}, \ B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \ E = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$

Question 1:

For which choices of a, b, c, the DDPM is solvable for Σ ? (i) a = 0, $b \neq 0$, $c \neq 0$. (ii) $a \neq 0$, b = 0, $c \neq 0$. (iii) $a \neq 0$, $b \neq 0$, c = 0.

Question 2:

Let $a \neq 0, b \neq 0, c = 0$. How can we choose $F : (A + BF)\mathcal{V} \subseteq \mathcal{V}, G : (A + GC)\mathcal{S} \subseteq \mathcal{S}$ and $N : (A + BNC)\mathcal{S} \subseteq \mathcal{V}$? (i) $F = \begin{bmatrix} -a & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} -a & -b & 0 \end{bmatrix}^{\top}, N = -a$. (ii) $F = \begin{bmatrix} 0 & -b & 0 \end{bmatrix}, G = \begin{bmatrix} 0 & -b & 0 \end{bmatrix}^{\top}, N = -b$. (iii) $F = \begin{bmatrix} -a & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\top}, N = -a$. (iV) $F = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 0 & -a & 0 \end{bmatrix}^{\top}, N = -a$. (iv) $F = \begin{bmatrix} -a & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\top}, N = -a$. (iv) $F = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 0 & -a & 0 \end{bmatrix}^{\top}, N = -a$.

9.1 The regulator problem

Output regulation

$$\Sigma_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1}$$

$$y = C_{1}x_{1} + C_{2}x_{2}$$

$$z = D_{1}x_{1} + D_{2}x_{2} + Eu$$

$$y$$

$$w = Kw + Ly$$

$$u = Mw + Ny$$

$$\Gamma$$

Goal: Find $\Gamma = (K, L, M, N)$: $\Leftrightarrow \lim_{t \to \infty} \mathbf{z}(t) = 0, \forall x_1(0)$

9.1 The regulator problem

- The open-loop system is Σ : $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \\ z = Dx + Eu \end{cases}$ with $A = \begin{bmatrix} A_1 & 0 \\ A_3 & A_2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}$, $C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}$, $D = \begin{bmatrix} D_1 & D_2 \end{bmatrix}$
- > The closed loop system

$$\begin{cases} \dot{x}_1 = A_1 x_1 \\ \dot{x}_{2,e} = A_{2,e} x_{2,e} + A_{3,e} x_1 \\ z = D_{1,e} x_1 + D_{2,e} x_{2,e} \end{cases}$$
$$x_{2,e} = \begin{bmatrix} x_2 \\ w \end{bmatrix}, A_{2,e} = \begin{bmatrix} A_2 + B_2 N C_2 & B_2 M \\ L C_2 & K \end{bmatrix}, A_{3,e} = \begin{bmatrix} A_3 + B_2 N C_1 \\ L C_1 \end{bmatrix}$$
$$D_{2,e} = \begin{bmatrix} D_2 + E N C_2 & EM \end{bmatrix} \quad D_{1,e} = D_1 + E N C_1.$$

> Regulator Problem: Find $\Gamma = (K, L, M, N)$: the closed-loop system satisfies $z(t) \to 0$ as $t \to \infty$ and the closed loop is endostable, i.e. for $x_1(0) = 0$, all variables converge to zero.

Questions

Question 3

Let
$$A_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} \tilde{\lambda}_1 & 0 \\ 0 & \tilde{\lambda}_2 \end{bmatrix}$. Then \exists a unique T such that $TA_1 - A_2T = A_3$ iff
(i) $(\lambda_1 - \lambda_2)(\tilde{\lambda}_1 - \tilde{\lambda}_2) \neq 0$. (ii) $(\lambda_1 - \tilde{\lambda}_1)(\lambda_2 - \tilde{\lambda}_2) \neq 0$.
(iii) $(\lambda_1 - \lambda_2)(\tilde{\lambda}_1 - \tilde{\lambda}_2)(\lambda_1 - \tilde{\lambda}_1)(\lambda_2 - \tilde{\lambda}_2) \neq 0$.
(iv) $(\lambda_1 - \tilde{\lambda}_2)(\tilde{\lambda}_1 - \lambda_2)(\lambda_1 - \tilde{\lambda}_1)(\lambda_2 - \tilde{\lambda}_2) \neq 0$.

Question 4

In Question 1, let
$$A_3 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, if \exists a unique solution T , then $T =$
(i) $\begin{bmatrix} \frac{a}{\lambda_1 - \tilde{\lambda}_2} & \frac{b}{\lambda_1 - \lambda_2} \\ \frac{c}{\lambda_1 - \tilde{\lambda}_1} & \frac{d}{\lambda_2 - \tilde{\lambda}_2} \end{bmatrix}$. (ii) $\begin{bmatrix} \frac{a}{\lambda_1 - \tilde{\lambda}_1} & \frac{b}{\lambda_1 - \tilde{\lambda}_2} \\ \frac{c}{\lambda_2 - \tilde{\lambda}_1} & \frac{d}{\lambda_2 - \tilde{\lambda}_2} \end{bmatrix}$. (iii) $\begin{bmatrix} \frac{a}{\lambda_1 - \tilde{\lambda}_1} & \frac{b}{\lambda_2 - \tilde{\lambda}_1} \\ \frac{c}{\lambda_1 - \tilde{\lambda}_2} & \frac{d}{\lambda_2 - \tilde{\lambda}_2} \end{bmatrix}$.

9.1 The regulator problem

Open loop:

Lemma (9.1)

Consider Σ with A_2 being Hurwitz and u = 0. Then $z(t) \to 0$ as $t \to \infty$ if $\exists T : \mathcal{X}_1 \to \mathcal{X}_2$

$$TA_1 - A_2T = A_3 D_2T + D_1 = 0.$$
(1)

If A_1 is antistable (i.e., $\sigma(A_1) \cap \mathbb{C}_{Re<0} = \emptyset$), then the solvability of (1) is also necessary.

Question 5:

If (1) is uniquely solvable, the map
$$T \mapsto \begin{bmatrix} TA_1 - A_2T \\ D_2T \end{bmatrix}$$
 is
(i) Injective; (ii) Surjective (iii) Bijective.

9.1 The regulator problem Closed-loop:

Corollary (9.1a)

The regulator problem for Σ can be solved with controller $\Gamma = (K, L, M, N)$, if $A_{2,e}$ is Hurwitz and $\exists T_e : \mathcal{X}_1 \to \mathcal{X}_2 \times \mathcal{W}$ s.t.

$$\begin{cases} T_e A_1 - A_{2,e} T_e = A_{3,e} \\ D_{2,e} T_e + D_{1,e} = 0 \end{cases}$$
(2)

Lemma (9.1b)

 $\exists \Gamma = (K, L, M, N)$: equation (2) is solvable iff $\exists (\mathbf{T}, \mathbf{V})$:

$$\begin{cases} \mathbf{T}A_1 - A_2\mathbf{T} - B_2\mathbf{V} = A_3\\ D_1 + D_2\mathbf{T} + E\mathbf{V} = 0 \end{cases}$$

(3)

Proof sufficiency of Lemma 9.1 b .

If. Let (T, V) solve (3), choose K = A + GC + BF, L = -G, M = F, N = 0, i.e.

$$\Gamma: \begin{cases} \dot{w} = (A + GC + BF)w - Gy\\ u = Fw, \end{cases}$$

where $F = \begin{bmatrix} -F_2T + V & F_2 \end{bmatrix}$, F_2 be any and $T_e = \begin{bmatrix} T \\ U \end{bmatrix} U = \begin{bmatrix} I \\ T \end{bmatrix}$, then

$$\begin{split} T_e A_1 - A_{2,e} T_e &= \begin{bmatrix} T \\ U \end{bmatrix} A_1 - \begin{bmatrix} A_2 & B_2 F \\ -GC_2 & A + GC + BF \end{bmatrix} \begin{bmatrix} T \\ U \end{bmatrix} = \begin{bmatrix} TA_1 - A_2 T - B_2 [-F_2 T + V F_2] \begin{bmatrix} T \\ T \end{bmatrix} \\ UA_1 + GC_2 T - (A + GC + BF) U \end{bmatrix} \\ &= \begin{bmatrix} A_3 \\ A_1 + G_1 C_2 T - A_1 - G_1 C_1 - G_1 C_2 T \\ TA_1 + G_2 C_2 T - A_3 - A_2 T - G_2 C_1 - G_2 C_2 T - B_2 V \end{bmatrix} = \begin{bmatrix} A_3 \\ -G_1 C_1 \\ -G_2 C_1 \end{bmatrix} = \begin{bmatrix} A_3 \\ -GC_1 \end{bmatrix} = A_{3,e}, \\ D_{2,e} T_e + D_{1,e} = D_1 + \begin{bmatrix} D_2 & EF \end{bmatrix} \begin{bmatrix} T \\ U \end{bmatrix} = D_1 + D_2 T + EV = 0 \end{split}$$

)

$$\Sigma: \begin{cases} \dot{x}_1 = A_1 x_1 \\ \dot{x}_2 = A_2 x_2 + A_3 x_1 + B_2 u \\ y = C_1 x_1 + C_2 x_2 \\ z = D_1 x_1 + D_2 x_2 + E u \end{cases} A = \begin{bmatrix} A_1 & 0 \\ A_3 & A_2 \end{bmatrix}, C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}$$

Theorem (9.2)

Assume: (i) (A_2, B_2) stabilizable; (ii) (C, A) detectable; (iii) $\exists (T, V)$:

$$\begin{cases} \mathbf{T}A_1 - A_2\mathbf{T} - B_2\mathbf{V} = A_3\\ D_1 + D_2\mathbf{T} + E\mathbf{V} = 0. \end{cases}$$

Then $\exists \Gamma = (K, L, M, N)$ solves the output regulator problem, i.e. $\lim_{t \to \infty} z(t) = 0$ and $\lim_{t \to \infty} x_2(t) = 0$ for $x_1(0) = 0$ in closed-loop. The converse is true if A_1 is anti-stable. If (i), (ii), (iii) hold then Γ is given by Γ : $\begin{cases} \dot{w} = (A + GC + BF)w - Gy\\ u = Fw \end{cases}$ with G such that A + GC is Hurwitz. $F = [F_1, F_2]$ where F_2 is such that $A_2 + B_2F_2$ is Hurwitz and $F_1 := -F_2T + V$

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

Proof of Thm 9.2.

Due to Corollary 9.1a and Lemma 9.1b, it is sufficient to show that $A_{2,e}$ is Hurwitz.

$$\begin{split} A_{2,e} &= \begin{bmatrix} A_2 & B_2F \\ -GC_2 & A + GC + BF \end{bmatrix} \text{ is Hurwitz } . \\ \Leftrightarrow \text{ all solutions of } \begin{bmatrix} \dot{x}_2 \\ \dot{w}_1 \end{bmatrix} = A_{2,e} \begin{bmatrix} x_2 \\ w \end{bmatrix} \text{ converge to zero } . \\ \Leftrightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ A_{3,e} & A_{2,e} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ w \end{bmatrix} \text{ converge to zero for } x_1(0) = 0. \\ \Leftrightarrow \begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A_1 & 0 & 0 \cdot F \\ A_3 & A_2 & B_2 \cdot F \\ -GC_1 & -GC_2 & A + GC + BF \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} \text{ with } x_1 = 0 \text{ converge to zero } . \end{split}$$

Define r: w - x, we have

$$\dot{x} = (A + BF)x + BFr$$

$$\dot{r} = \dot{w} - \dot{x} = -Ax - BFw - GCx + (A + GC + BF)w = (A + GC)r$$

It follows that $\lim_{t \to \infty} r(t) = 0$, and thus $\lim_{t \to \infty} x(t) = 0$ and $\lim_{t \to \infty} w(t) = 0$. Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

9.2-9.4 Well-posedness of the regulator problem.

- Q: Are conditions (i),(ii),(iii) of Theorem 9.2 robust w.r.t. to small perturbation in matrix coefficient?
- $(A,B) \text{ is stabilizable} \Rightarrow \exists \text{ small enough } A' \text{ and } B' \text{ such that } (A+A',B+B') \text{ is stabilizable.}$
- $\rightarrow A + BF$ is Hurwitz then A + BF + (A' + B'F) is also Herwitz for small enough (A' + B'F).
- $\ \ \, (C,A) \text{ is detectable} \Rightarrow \exists \text{ small enough } C' \text{ and } A' \text{ such that } (C+C',A+A') \text{ is detectable}.$
- > Rewrite

$$\begin{cases} \mathbf{T}A_1 - A_2\mathbf{T} - B_2\mathbf{V} = A_3\\ D_1 + D_2\mathbf{T} + E\mathbf{V} = 0. \end{cases} \Rightarrow \begin{bmatrix} -A_2 & -B_2\\ D_2 & E \end{bmatrix} \begin{bmatrix} \mathbf{T}\\ \mathbf{V} \end{bmatrix} + \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T}\\ \mathbf{V} \end{bmatrix} A_1 = \begin{bmatrix} A_2\\ -D_1 \end{bmatrix}$$

> Clearly, a linear equation Ax = b is well posed if A is surjective.

Corollary

The regulator problem is well-posed \Leftrightarrow the linear map

$$(T,V) \mapsto \left[\begin{array}{c} TA_1 - A_2T - B_2V \\ D_2T + EV \end{array} \right]$$
 is surjective

(Note that decetability and stabilizability are well-posed properties) \Leftrightarrow Linear matrix equation

$$\begin{bmatrix} -A_2 & -B_2 \\ D_2 & E \end{bmatrix} \begin{bmatrix} T \\ V \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T \\ V \end{bmatrix} A_1 = C$$

is universally solvable (i.e. for any C)

- > More general question: when is $\sum_{i=1}^{k} L_i X R_i = C$ solvable for all C?
- > Special case: LXI + IXR = C (Sylvester equation).
- $\ \ \, \text{For square }L\text{, }R\text{, the matrix }X\text{ is solvable for all }C\Leftrightarrow\sigma(L)\cap\sigma(R)=\pmb{\varnothing}.$
- > Unfortunately, there seem to be no such simple test for general L_i and R_i .
- However, for $R_i = q_i(R)$, where R is square and $q_1(s), ..., q_k(s)$ are given polynomials, there is a nice test.

Theorem (9.6)

Let L_1 , L_2 ,..., $L_k \in \mathbb{R}^{n \times m}$, $R \in \mathbb{R}^{q \times q}$ and $q_1(s)$, $q_2(s)$,..., $q_k(s)$ be given. Then

$$\sum_{i=1}^{k} L_i X q_i(R) = C$$

is universally solvable (i.e. for all C there is a matrix X solve the equation above)

$$\Leftrightarrow \operatorname{rank} \sum_{i=1}^{k} L_{i} q_{i}(\lambda) = n \quad \forall \lambda \in \sigma(R)$$

Theorem (9.6)

Let $L_1, L_2, ..., L_k \in \mathbb{R}^{n \times m}$, $R \in \mathbb{R}^{q \times q}$ and $q_1(s), q_2(s), ..., q_k(s)$ be given. Then $\sum_{i=1}^k L_i X q_i(R) = C$ is universally solvable iff rank $\sum_{i=1}^k L_i q_i(\lambda) = n, \forall \lambda \in \sigma(R)$.

Proof of Thm 9.6.

"Only if." Assume rank $\sum_{i=1}^{k} L_i q_i(\lambda) < n$ for some $\lambda \in \sigma(R)$. $\Rightarrow \exists v : Rv = \lambda v \text{ and } \exists w : w^{\top} \sum_{i=1}^{k} L_i q_i(\lambda) = 0.$ $\Rightarrow w^{\top} \sum_{i=1}^{k} L_i X q_i(\mathbf{R}) v = w^{\top} \sum_{i=1}^{k} L_i X q_i(\boldsymbol{\lambda}) v = w^{\top} (\sum_{i=1}^{k} L_i q_i(\boldsymbol{\lambda})) X v = 0.$ Hence for any C with $w^{\top}Cv \neq 0$ (e.g. $C = wv^{\top}$) the system is not solvable. "If." By the right invertibility of $(\sum_{i=1}^{k} L_i q_i(s))$, choose M(s) such that $(\sum_{i=1}^{k} L_i q_i(s)) \cdot M(s) = m(s) \cdot I$ for some scalar polynomial m(s) $\Rightarrow m(R)$ is invertible(because $m(\lambda) \neq 0, \forall \lambda \in \sigma(R)$) and let $X(s) := M(s) \cdot C \cdot m^{-1}(R)$ $\Rightarrow \sum_{i=1}^{k} L_i X(s) q_i(s) = \sum_{i=1}^{k} L_i q_i(s) X(s) = m(s) C \cdot m^{-1}(R)$ $\Rightarrow X := X_r(R)$ (right substitution) now solve (Recall Theorem 7.6: if Q(s) commutes with A, then $\forall P(s) : P_r(A)Q_r(A) = (PQ)_r(A)$ $\sum_{i=1}^{k} L_i X_r(R) q_i(R) \stackrel{Thm7.6}{=} C \cdot m^{-1}(R) m(R) = C$

)

- > Theorem 7.6: if Q(s) commutes with A, then $\forall P(s) : P_r(A)Q_r(A) = (PQ)_r(A)$.
- Remark: Thm 7.6 is quite powerful, because it allows to plug in matrices also in products of matrix polynomial, e.g., with Thm 7.6, the proof of Cayley-Hamilton Theorem becomes trivial.

$$(sI - A)^{-1} = \frac{B(s)}{\det(sI - A)} \Leftrightarrow \underbrace{\det(sI - A)}_{P(A)} I = B(s)(sI - A)$$

Plugging in s = A: P(A) = B(A)(AI - A) = 0.

Theorem (9.6)

Let $L_1, L_2, ..., L_k \in \mathbb{R}^{n \times m}$, $R \in \mathbb{R}^{q \times q}$ and $q_1(s), q_2(s), ..., q_k(s)$ be given. Then $\sum_{i=1}^k L_i X q_i(R) = C$ is universally solvable iff rank $\sum_{i=1}^k L_i q_i(\lambda) = n, \forall \lambda \in \sigma(R)$.

For the regulator problem we have

$$\begin{bmatrix} -A_2 & -B_2 \\ D_2 & E \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ V \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ V \end{bmatrix} A_1 = C$$
$$L_1 = \begin{bmatrix} -A_2 & -B_2 \\ D_2 & E \end{bmatrix}, \quad q_1(s) = 1, \quad R = A_1.$$
$$L_2 = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \quad q_2(s) = s.$$

Corollary: The regulator problem is well-posed

$$\Leftrightarrow \operatorname{rank} \left[\begin{array}{cc} \lambda I - A_2 & -B_2 \\ D_2 & E \end{array} \right] = n_2 + r \quad \forall z \in \sigma(A_1).$$

(full row rank)

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

Summary

- > The regulator problem: Lemma 9.1 (open-loop: T), Corollary 9.1 a, Lemma 9.1 b (closed-loop: T, V).
- > The main result of the regulator problem Theorem 9.2: (assumptions(i),(ii),(iii), how to choose (K,L,M,N))
- > Well-posedness for assumptions(i),(ii),(iii).
- > Well-posedness for general matrix equation, Theorem 9.6. (Theorem 7.6 in the proof)