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o Recapitulation-disturbance decoupling with dynamic feedback
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disturbance decoupling with dynamic feedback

by
&= Az + Bu+ Ed

d—y=Cx > 2z
u | z=Hzx Y
w=Kw+ Ly

uw=Mw+ Ny )
r

» Closed loop system:

N i S [T i ERR S0

Ae Ee
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disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7+Theorem 6.4
DDPM is solvable for ¥ = (H,C, A, B, E) iff 3 a (C, A, B)-pair (S, V) s.t.

imECSCVCkerH,

or, equivalently, S*(im E) C V*(ker H). If such (S, V) exists, choose
y N:Y—=Ust. (A+BNC)SCV,
(

y F: X —=>Ust. (A+BF)Y CV,

y G:Y—>Ust (A+GC)SCS,
then T is given by

w=(A+ BF +GC — BNC)w + (BN — Q)y
u=(F - NC)w+ Ny.
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Theorem 6.6
DDPM is solvable for ¥ = (H,C, A, B, E) iff 3 a (C, A, B)-pair (S,V) s.t.

imECSCY CkerH.

Consider a system ¥ = (A, B, E,C, H), where

A= [225] 3= [}] c=fos0) 2= [} =lr00]

Question 1:

For which choices of a, b, ¢, the DDPM is solvable for X ?
()a=0,0#0,c#0. (i)a#0,b=0,¢#0. (iii)a#0,b#0, c=0.
Question 2:

Let a #0, b# 0, ¢ = 0. How can we choose F : (A+ BF)Y CV, G: (A+ GC)S C S and
N:(A+BNC)S CV?
(i)F:[ —a00], G =] afbo] N=—a. (i)F=]o bO] G=[o-b0]", N =—b.

- T
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9.1 The regulator problem
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9.1 The regulator problem

Output regulation
)

T9 = Asxq + Asxo + Bou
y = Crxy + Coxo — 2
u| z=Dix1 4+ Doxo+ Eu |y

2

1

hd

1= A11

w=Kw+ Ly
u=Mw+ Ny

r

Goal: Find T'=(K,L,M,N): & tlim 2(t) =0, Va1(0)

— 00
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9.1 The regulator problem
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9.1 The regulator problem

T = Az + Bu
The open-loop system is X : =C ith A = A 0 B = 0
) pen-loop system i R y=Cx wi =las 4 B= By
z=Dx+ Fu

C=[C1 (o], D=[D1 D]

» The closed loop system
i = Ajxy

T2.e = A2eT2e + A3 et
2= D1iex1 + Doexae
| T2 A — A9+ BoNCy BolM Ao — As + BoNC1
T2e = s AA2e = LCQ K s A3, = LCl
D27e = [ Do+ ENCy EM ] Dl,e =Dy + ENC.

» Regulator Problem: Find T" = (K, L, M, N): the closed-loop system satisfies z(t) — 0 as
t — oo and the closed loop is endostable, i.e. for z1(0) = 0, all variables converge to zero .

!
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9.1 The regulator problem

Questions

Question 3

LetAlz[ }and Ay = [
~)7é0

(i) (A1 = /\2)( 1=
(iii) (A1 = A2)(A1 —
(iv) (A1 = A2) (M1 —

Question 4

In Question 1, let A3 =

(i [xﬂ& S
c d

A1=A1 A2—A2

56 5? } Then 3 a unique 7" such that TA; — AT = As iff
(l) (M = M)(A2 = A2) #0.

A2)(A1 )(/\2—1\2)750-

2)( = A1) (hz — Ae) 7 0.

[‘C‘ Z], if 3 a unique solution T', then T' =

a b _ @ b_
(“) [Alzil XlEAQ]. U”) A1 =21 A2;X1].

C
A2—=A1 A2—A2

A1—X2 Az—X2
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9.1 The regulator problem

9.1 The regulator problem

Open loop:
Lemma (9.1)
Consider ¥ with Ay being Hurwitz and w = 0. Then z(t) — 0 ast — oo if 3T : X1 — A>

{ TA; — AsT = As @

DT + D1 = 0.

If Ay is antistable (i.e., 0(A1) N Creco = D), then the solvability of (1) is also necessary.

Question 5:

If (1) is uniquely solvable, the map T — [TAl_AQT] is

DT
(i) Injective; (ii) Surjective (iii) Bijective.

!
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9.1 The regulator problem
Closed-loop:
Corollary (9.1a)

The regulator problem for ¥ can be solved with controller T' = (K,L,M,N), if Ay, is
Hurwitz and 3 T, : X1 — Xo x W s.t.

TeAl - AQ,ETe = A3,5
DQ,eTe + Dl,e =0

Lemma (9.1b)
' = (K, L, M, N) : equation (2) is solvable iff 3(T, V') :

3)

TA1 — AT — BoV = Ag
D1+ DT+ EV =0

—
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9.1 The regulator problem

Proof sufficiency of Lemma 9.1 b .
If. Let (T,V) solve (3), choose K = A+ GC + BF, L=—-G, M =F, N =0, ie,

F_{w—(A+GC+BF)w—Gy

u = Fw,

where F = [-F,T +V Fy], Fo be any and T, = [1] U = [ L], then

I
ToA1 — Ao T. :[[T] Ay — [72’4‘0 as géi BF] [?] _|TA1 - AoT - Bo[-RT 4V Fy] [T
. 2 ’ UA; + GCoT — (A+ GC + BF)U
A3 A3 A
= A+ G1CT — A1 — G1C1 — G1C2T = |-G1C1 | = [_ch } = A3,
TA, + GoCoT — Az — AT — G2Cy1 — GoCoT — BV —GoCq 1

T} =Dy + DT+ EV =0

D2,eTe aF Dl,g = D1 a4 [DQ EF] |:L
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1 = Az

to = A A B
y = Ciz1 + Cax2
z = Dix1 + Dax2 + Eu

Theorem (9.2)
Assume: (i) (A2, B2) stabilizable; (ii) (C, A) detectable; (iii) I(T,V) :

TAl = AQT — B2V = A3
Dy + DT + EV = 0.
Then 91" = (K, L, M, N) solves the output regulator problem, i.e. 1tlim z(t) =0 and
—00
tlim x2(t) = 0 for £1(0) = 0 in closed-loop. The converse is true if Ay is anti-stable.
—00
w=(A+GC+ BF)w— Gy
u=Fuw

with G such that A+ GC' is Hurwitz. F = [F1, F5| where F5 is such that Ay + BaF is
Hurwitz and Fy := —F>T +V

If (i), (ii), (iii) hold then T is given by T :

!
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9.1 The regulator problem
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Proof of Thm 9.2.

Due to Corollary 9.1a and Lemma 9.1b, it is sufficient to show that A . is Hurwitz.

Ag e = } is Hurwitz .

As By F
—~GCy A+GC+ BF

. az ap
& all solutions of { u'12 ] =Ao, { u? } converge to zero .
1

x1 A 0 1
S| 22 | = ! xg | converge to zero for z1(0) = 0.
g AS e A2 e
w 0 0 w
& Aq 0 0-F -
=3 { W } = As As By - F { } with 1 = 0 converge to zero .
-GC; —-GCy A+GC+ BF

Define r : w — x, we have

&= (A+ BF)z + BFr
r=w-—%=—Az — BFw—GCz+ (A+ GC + BF)w = (A+ GC)r

It follows that lim 7(¢) = 0, and thus lim z(¢) = 0 and lim w(t) = 0. [
t—o0 t—o0 t—o0 —
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9.2-9.4 Well-posedness of the regulator problem.

» Q: Are conditions (i),(ii),(iii) of Theorem 9.2 robust w.r.t. to small perturbation in matrix
coefficient?

» (A, B) is stabilizable = 3 small enough A’ and B’ such that (A+ A", B+ B') is
stabilizable.

y A+ BF is Hurwitz then A+ BF + (A’ + B'F) is also Herwitz for small enough (A’ + B'F).
y (C,A) is detectable = 3 small enough C” and A’ such that (C'+ C’, A+ A’) is detectable.

y Rewrite
TA1 — AQT - B2V = A3 N —AQ 732 T + I 0 T A _ A2
D1+ DyT + EV = 0. Dy E % 00|V |TtT| -Dy

» Clearly, a linear equation Ax = b is well posed if A is surjective.

!
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9.2-9.4 Well-posedness of the regulator problem.

Corollary

The regulator problem is well-posed < the linear map

TA| — AT — BV

(V) = [ DyT + EV

] is surjective

(Note that decetability and stabilizability are well-posed properties)
& Linear matrix equation

[ 2] [F] [ S][V e

is universally solvable (i.e. for any C)
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» More general question: when is Zle L; X R; = C solvable for all C?

» Special case: LXT 4+ IXR = C (Sylvester equation).

» For square L, R, the matrix X is solvable for all C' < o(L)No(R) = D.
» Unfortunately, there seem to be no such simple test for general L; and R;.

» However, for R; = ¢;(R), where R is square and qi(s),...,qx(s) are given polynomials, there
is a nice test.

Theorem (9.6)
Let Ly, Lo,...,Lpe R™"™ R € R?*Y and q1(s), q2(s),...,qr(s) be given. Then

k
> LiXq(R)=C
=1

is universally solvable (i.e. for all C there is a matrix X solve the equation above)

k
< rank Z Ligi(A) =n VYAeoa(R)
=1
—
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Theorem (9.6)

Let Ly, Lo,...,Le R"™ R € R?*Y and qi1(s), q2(8),...,q1(s) be given. Then
Zi-“:l L;Xq;(R) = C is universally solvable iff rank Zle Lig;(A\) =n, V) € o(R).

Proof of Thm 9.6.

“Only if." Assume rank Zle L;qg;(A)<n for some A € o(R).
=>Fw:Rv=Xvand Jw:w' Z;C:l L;g;(A\) = 0.
= w! Y LiXg(Rv=w' YF LiXg(\v =w" (X5 Ligi(}) Xv = 0.
Hence for any C with w' Cv # 0 (e.g. C' = wv') the system is not solvable.
“If." By the right invertibility of (Zle L;q;(s)), choose M (s) such that
(Zf‘zl L;qi(s)) - M(s) = m(s) - I for some scalar polynomial m(s)
= m(R) is invertible(because m(\) # 0, VA € o(R))
and let X (s) := M(s)-C-m~Y(R)
= S0 LiX(s)qi(s) = Yby Ligi(s)X (s) = m(s)C - m~(R)
= X := X, (R) (right substitution) now solve (Recall Theorem 7.6: if Q(s) commutes with
A, then VP(s) : P.(A)Q,(A) = (PQ),(A))
Thm7.6 _
i LiXr(R)g;(R) 2 C-mT (R)m(R) = C O

—
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9.2-9.4 Well-posedness of the regulator problem.

» Theorem 7.6: if Q(s) commutes with A, then VP(s) : P.(A)Q.(A) = (PQ),(A).

» Remark: Thm 7.6 is quite powerful, because it allows to plug in matrices also in products
of matrix polynomial, e.g., with Thm 7.6, the proof of Cayley-Hamilton Theorem becomes
trivial.

773(5) et(sl — = B(s)(sl —
= Joer = @4 t(PfA) A)I = B(s)(sI — A)

Plugging in s = A: P(A) = B(A)(AI — A) = 0.

(sI — A)~1

!
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9.2-9.4 Well-posedness of the regulator problem.

Theorem (9.6)

Let Ly, Lo,...,.Lye R"™™ R € R7*7 and q1(s), q2(5),...,qr(s) be given. Then
S | LiXqi(R) = C is universally solvable iff rank >>% | Lig;(\) = n, VA € o(R).

For the regulator problem we have

[ 2] (V] S][V e

Corollary: The regulator problem is well-posed

M—Ay, —By ]
(:)rank[ Dy I }—ng—l—r Vz € o(Ar).

(full row rank)
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9.2-9.4 Well-posedness of the regulator problem.
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Summary

y The regulator problem: Lemma 9.1 (open-loop: T'), Corollary 9.1 a, Lemma 9.1 b
(closed-loop: T, V).

» The main result of the regulator problem Theorem 9.2: (assumptions(i),(ii),(iii), how to
choose (K,L,M,N) )

» Well-posedness for assumptions(i), (ii), (iii).

» Well-posedness for general matrix equation, Theorem 9.6. (Theorem 7.6 in the proof)

!
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