Lecture Course: Advanced Systems Theory

Chapter 6 and 9-Lecture 8: DDP by dynamical feedback and the output regulation problem

Stephan Trenn, Yahao Chen
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands

September-October 2020

$6.1(C, A, B)$-pairs

Definition (6.1)

A pair of subspace $(\mathcal{S}, \mathcal{V})$ of \mathcal{X} is called (C, A, B)-pair if
(i) $\mathcal{S} \subseteq \mathcal{V}$; (ii) \mathcal{S} is a (C, A)-invariant subspace; (iii) \mathcal{V} is an (A, B)-invariant subspace.

Theorem (6.2)

Consider a subspace $\mathcal{V}_{e} \subseteq \mathcal{X} \times \mathcal{W}$ and let

$$
\begin{aligned}
p\left(\mathcal{V}_{e}\right) & :=\left\{x \in \mathcal{X} \mid \exists w \in \mathcal{W}:\left[\begin{array}{l}
x \\
w
\end{array}\right] \in \mathcal{V}_{e}\right\} \text { (projection) } \\
i\left(\mathcal{V}_{e}\right) & :=\left\{x \in \mathcal{X} \left\lvert\,\left[\begin{array}{l}
x \\
0
\end{array}\right] \in \mathcal{V}_{e}\right.\right\} . \text { (intersection) }
\end{aligned}
$$

If \mathcal{V}_{e} is $A_{e}=\left[\begin{array}{cc}A+B N C & B M \\ L C & K\end{array}\right]$-inv. then $\left(i\left(\mathcal{V}_{e}\right), p\left(\mathcal{V}_{e}\right)\right)$ is a (C, A, B)-pair.

Lemma (6.3)

If $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair, then \exists linear $N: \mathcal{Y} \rightarrow \mathcal{U}$ s.t. $(A+B N C) \mathcal{S} \subseteq \mathcal{V}$.

Questions

Consider $\Sigma=(A, B, C)$, where $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, i.e.,

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}_{1}=x_{1}+x_{2}+u_{1} \\
\dot{x}_{2}=-x_{1}+x_{2} \\
\dot{x}_{3}=u_{2}
\end{array} \quad y=x_{1} .\right.
$$

Question 1

Which $(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair? (i) $\mathcal{S}=\mathcal{X}_{1}, \mathcal{V}=\mathcal{X}_{1}$
$\begin{array}{ll}\text { (ii) } \mathcal{S}=\mathcal{X}_{3}, \mathcal{V}=\mathcal{X}_{2} \times \mathcal{X}_{3} & \text { (iii) } \mathcal{S}=\mathcal{X}_{2} \text {, }\end{array}$ $\mathcal{V}=\mathcal{X}_{2} \times \mathcal{X}_{3} \quad$ (iv) $\mathcal{S}=\mathcal{X}_{2}, \mathcal{V}=\mathcal{X}_{2}$.

Question 2

Let $\mathcal{S}=\mathcal{X}_{3}, \mathcal{V}=\mathcal{X}_{2} \times \mathcal{X}_{3}$, then which N does not satisfy that $(A+B N C) \mathcal{S} \subseteq \mathcal{V}$?
(i) $N=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(ii) $N=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(iii) $N=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(iv) none of the above.

Question 3

Let $\mathcal{S}=\mathcal{X}_{3}=i\left(\mathcal{V}_{e}\right), \mathcal{V}=\mathcal{X}_{2} \times \mathcal{X}_{3}=p\left(\mathcal{V}_{e}\right)$, then $\mathcal{V}_{e} \subseteq \mathcal{X} \times \mathbb{R}$ could be?
(i) $\operatorname{im}\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]$
(ii) $\operatorname{im}\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}\right]$
(iii) $\mathrm{im}\left[\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$
(iv) $\operatorname{im}\left[\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.

$6.1(C, A, B)$-pairs

Theorem 6.4 (using (C, A, B) pairs to construct Γ)

Let $(\mathcal{S}, \mathcal{V})$ be a (C, A, B)-pair. Then there exists controller Γ and an A_{e}-invariant subspace $\mathcal{V}_{e} \subseteq \mathcal{X} \times \mathcal{W}$ s.t. $\mathcal{S}=i\left(\mathcal{V}_{e}\right)$ and $\mathcal{V}=p\left(\mathcal{V}_{e}\right)$.
In fact, choose
, $N: \mathcal{Y} \rightarrow \mathcal{U}$ s.t. $(A+B N C) \mathcal{S} \subseteq \mathcal{V}$,
, $F: \mathcal{X} \rightarrow \mathcal{U}$ s.t. $(A+B F) \mathcal{V} \subseteq \mathcal{V}$,
, $G: \mathcal{Y} \rightarrow \mathcal{U}$ s.t. $(A+G C) \mathcal{S} \subseteq \mathcal{S}$.
Then Γ is given by

$$
\left\{\begin{array}{l}
\dot{w}=(A+B F+G C-B N C) w+(B N-G) y \\
u=(F-N C) w+N y,
\end{array}\right.
$$

where $\mathcal{W}=\mathcal{X}$ and $\mathcal{V}_{e}=\left\{\left.\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]+\left[\begin{array}{c}x_{2} \\ x_{2}\end{array}\right] \right\rvert\, x_{1} \in \mathcal{S}, x_{2} \in \mathcal{V}\right\}$

disturbance decoupling with dynamic feedback

Problem (DDP with dynamic measurement feedback (DDPM))

Given the system $\Sigma=(H, C, A, B, E)$

$$
\begin{aligned}
& \dot{x}=A x+B u+E d \\
& y=C x \\
& z=H x
\end{aligned}
$$

find K, L, M, N such that the dynamic controller $\Gamma(M, K, L, N)$

$$
\begin{aligned}
& \dot{w}=K w+L y \\
& u=M w+N y
\end{aligned}
$$

renders the closed loop system disturbance decoupled:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{w}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A+B N C & B M \\
L C & K
\end{array}\right]}_{A^{\prime}}\left[\begin{array}{c}
x \\
w
\end{array}\right]+\underbrace{\left[\begin{array}{c}
E \\
0
\end{array}\right]}_{F_{0}} d \quad z=\underbrace{\left[\begin{array}{cc}
H & 0
\end{array}\right]}_{H_{e}}\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

disturbance decoupling with dynamic feedback

, Closed loop system:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{w}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A+B N C & B M \\
L C & K
\end{array}\right]}_{A_{e}}\left[\begin{array}{c}
x \\
w
\end{array}\right]+\underbrace{\left[\begin{array}{c}
E \\
0
\end{array}\right]}_{E_{e}} d \quad z=\underbrace{\left[\begin{array}{cc}
H & 0
\end{array}\right]}_{H_{e}}\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

disturbance decoupling with dynamic feedback

Definition 6.5 DDPM

Find $\Gamma=(K, L, M, N)$ s.t.

$$
T_{\Gamma(t)}:=H_{e} e^{A_{e} t} E_{e}=0, \forall t \geq 0
$$

or, equivalently, $G_{\Gamma}(s)=H_{e}\left(s I-A_{e}\right)^{-1} E_{e}=0$.
Corollary of the result of (DDP): Thm.4.8
DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff there exists an A_{e} invariant subspace \mathcal{V}_{e} such that $\operatorname{im} E_{e} \subseteq \mathcal{V}_{e} \subseteq \operatorname{ker} H_{e}$

Theorem 6.6+Corollary6.7
DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff \exists a (C, A, B)-pair s.t.

$$
\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H
$$

or, eguivalent

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7

DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff \exists a (C, A, B)-pair s.t.

$$
\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H
$$

or, equivalently, $\mathcal{S}^{*}(\operatorname{im} E) \subseteq \mathcal{V}^{*}(\operatorname{ker} H)$.

Proof.

"Only if': Assume the closed loop system

$$
\Sigma_{e}:\left[\begin{array}{c}
\dot{x} \\
\dot{w}
\end{array}\right]=A_{e}\left[\begin{array}{c}
x \\
w
\end{array}\right]+E_{e} d, \quad y_{e}=H_{e}\left[\begin{array}{c}
x \\
w
\end{array}\right]
$$

is disturbance decoupled $\Rightarrow \exists A_{e}$-inv. \mathcal{V}_{e} s.t. im $E_{e} \subseteq \mathcal{V}_{e} \subseteq \operatorname{ker} H_{e}$,
Let $\mathcal{S}:=i\left(\mathcal{V}_{e}\right), \mathcal{V}:=p\left(\mathcal{V}_{e}\right) \stackrel{T h m .6 .2}{\Rightarrow}(\mathcal{S}, \mathcal{V})$ is a (C, A, B)-pair.
Let $x \in \operatorname{im} E \Rightarrow\left[\begin{array}{l}x \\ 0\end{array}\right] \in \operatorname{im} E_{e} \subseteq \mathcal{V}_{e} \Rightarrow x \in i\left(\mathcal{V}_{e}\right)=\mathcal{S} \Rightarrow \operatorname{im} E \subseteq \mathcal{S}$.
Let $x \in \mathcal{V}=p\left(\mathcal{V}_{e}\right) \Rightarrow \exists w \in \mathcal{W}:\left[\begin{array}{l}x \\ w\end{array}\right] \in \mathcal{V}_{e} \subseteq \operatorname{ker} H_{e} \Rightarrow H x=H_{e}\left[\begin{array}{c}x \\ w\end{array}\right]=0 \Rightarrow x \in \operatorname{ker} H$.

disturbance decoupling with dynamic feedback

Theorem 6.6+Corollary6.7

DDPM is solvable for $\Sigma=(H, C, A, B, E)$ iff \exists a (C, A, B)-pair s.t.

$$
\operatorname{im} E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H
$$

or, equivalently, $\mathcal{S}^{*}(\operatorname{im} E) \subseteq \mathcal{V}^{*}(\operatorname{ker} H)$.

Proof.

" If': \exists a (C, A, B)-pair s.t. im $E \subseteq \mathcal{S} \subseteq \mathcal{V} \subseteq \operatorname{ker} H, \stackrel{T h m 6.4}{\Rightarrow} \exists \Gamma=(K, L, M, N)$ and A_{e}-inv.
\mathcal{V}_{e} with $\mathcal{S}=i\left(\mathcal{V}_{e}\right)$ and $\mathcal{V}=p\left(\mathcal{V}_{e}\right)$.
We claim that $\operatorname{im} E_{e} \subseteq \mathcal{V}_{e} \subseteq \operatorname{ker} H_{e}$.
Let $\left[\begin{array}{l}x \\ w\end{array}\right] \in \operatorname{im} E_{e} \Rightarrow w=0$ and $x \in \operatorname{im} E \subseteq \mathcal{S}=i\left(\mathcal{V}_{e}\right) \Rightarrow\left[\begin{array}{c}x \\ w\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right] \in \mathcal{V}_{e}$.
Let $\left[\begin{array}{l}x \\ w\end{array}\right] \in \mathcal{V}_{e} \Rightarrow x \in \mathcal{V} \subseteq \operatorname{ker} H \Rightarrow H_{e}\left[\begin{array}{l}x \\ w\end{array}\right]=H x=0 \Rightarrow\left[\begin{array}{l}x \\ w\end{array}\right] \in \operatorname{ker} H_{e}$.
Thus the claim is true and by Thm 4.6, Σ_{e} is disturbance decoupled.

9.1 The regulator problem

Tracking Problem:

Goal: Find $\Gamma=(K, L, M, N): \lim _{t \rightarrow \infty} y(t)-\lim _{t \rightarrow \infty} y_{r}(t)=0\left(\Leftrightarrow \lim _{t \rightarrow \infty} z(t)=0\right)$

9.1 The regulator problem

Output regulation

Goal: Find $\Gamma=(K, L, M, N): \Leftrightarrow \lim _{t \rightarrow \infty} z(t)=0, \forall x_{1}(0)$

9.1 The regulator problem

, Consider the cascade system:

$$
\Sigma_{1}: \dot{x}_{1}=A_{1} x_{1}, \quad \Sigma_{2}:\left\{\begin{aligned}
\dot{x}_{2} & =A_{3} x_{1}+A_{2} x_{2}+B_{2} u \\
y & =C_{1} x_{1}+C_{2} x_{2} \\
z & =D_{1} x_{1}+D_{2} x_{2}+E u
\end{aligned}\right.
$$

, The overall system is $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=C x \\ z=D x+E u\end{array}\right.$ with $A=\left[\begin{array}{cc}A_{1} & 0 \\ A_{3} & A_{2}\end{array}\right], B=\left[\begin{array}{c}0 \\ B_{2}\end{array}\right]$, $C=\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right], D=\left[\begin{array}{ll}D_{1} & D_{2}\end{array}\right]$

Definition (Regulator Problem)

Find $\Gamma=(K, L, M, N)$ such that closed loop system satisfies
(i) $z(t) \rightarrow 0$ as $t \rightarrow \infty$
(ii)closed loop is endostable, i.e. for $x_{1}(0)=0$, all variables converge to zero (Σ_{2} is internally stable).

9.1 The regulator problem

Lemma (9.1)

Consider Σ with A_{2} being Hurwitz and $u=0$. Then $z(t) \rightarrow 0$ as $t \rightarrow \infty$ if $\exists T: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T=A_{3} \tag{1}\\
D_{2} T+D_{1}=0
\end{array}\right.
$$

If A_{1} is antistable (i.e., $\sigma\left(A_{1}\right) \cap \mathbb{C}_{R e<0}=\varnothing$), then the solvability of (1) is also necessary.

Proof.

Necessity: assume A_{1} is antistable $\Rightarrow \sigma\left(A_{1}\right) \cap \sigma\left(A_{2}\right)=\varnothing$.
Hence Sylvester's Theorem ensures the existence of (an unique) T such that $T A_{1}-A_{2} T=A_{3}$.
Let $v=x_{2}-T x_{1}$, then

$$
z=D_{1} x_{1}+D_{2} x_{2} \Rightarrow z=D_{2} v+\left(D_{1}+D_{2} T\right) x_{1}
$$

Proof of Lemma 9.1

Proof of Lemma 9.1 continue.

Observe that

$$
\dot{v}=A_{2} v+\overbrace{\left(A_{2} T-T A_{1}+A_{3}\right) x_{1}}^{=0} \Rightarrow \lim _{t \rightarrow \infty} v(t)=0
$$

Thus

$$
\lim _{t \rightarrow \infty} z(t)=0 \Rightarrow \lim _{t \rightarrow \infty}\left(D_{1}+D_{2} T\right) x_{1}(t)=z(t)-D_{2} v(t)=0 \Rightarrow D_{1}+D_{2} T=0 .
$$

" \Rightarrow " because $\lim _{t \rightarrow \infty} x_{1}(t) \neq 0$ by A_{1} is antistable.
Sufficiency: Assume (1) holds. Let $v=x_{2}-T x_{1}$, then

$$
z=D_{2} v+\left(D_{1}+D_{2} T\right) x_{1}=D_{2} v+0
$$

Thus $\dot{v}=A_{2} v+\underbrace{\left(A_{2} T-T A_{2}+A_{3}\right)}_{=0} x_{1} \Rightarrow \lim _{t \rightarrow \infty} v(t)=0 \Rightarrow \lim _{t \rightarrow \infty} z(t)=0$.

9.1 The regulator problem

, Next goal: Find $\Gamma=(K, L, M, N)$ such that conditions of Lemma 9.1 satisfied for closed loop:

$$
\Sigma_{c e}:\left\{\begin{array}{l}
\dot{x}_{1}=A_{1} x_{1} \\
\dot{x}_{2}=\left(A_{2}+B_{2} N C_{2}\right) x_{2}+\left(A_{3}+B_{2} N C\right) x_{1}+B_{2} M w \\
\dot{w}=K w+L C_{1} x_{1}+L C_{2} x_{2} \\
z=\left(D_{1}+E N C_{1}\right) x_{1}+\left(D_{2}+E N C_{2}\right) x_{2}+E M w
\end{array}\right.
$$

, or equivalently

$$
\left\{\begin{array}{l}
\dot{x}_{1}=A_{1} x_{1} \\
\dot{x}_{2, e}=A_{2, e} x_{2, e}+A_{3, e} x_{1} \\
z=D_{1, e} x_{1}+D_{2, e} x_{2, e}
\end{array}\right.
$$

, with

$$
\begin{gathered}
x_{2, e}=\left[\begin{array}{c}
x_{2} \\
w
\end{array}\right], A_{2, e}=\left[\begin{array}{cc}
A_{2}+B_{2} N C_{2} & B_{2} M \\
L C_{2} & K
\end{array}\right], A_{3, e}=\left[\begin{array}{c}
A_{3}+B_{2} N C_{1} \\
L C_{1}
\end{array}\right] \\
D_{2, e}=\left[\begin{array}{ll}
D_{2}+E N C_{2} & E M
\end{array}\right] \quad D_{1, e}=D_{1}+E N C_{1} .
\end{gathered}
$$

9.1 The regulator problem

Corollary (9.1a)

The regulator problem for Σ can be solved with controller $\Gamma=(K, L, M, N)$, if $A_{2, e}$ is Hurwitz and $\exists T_{e}: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2} \times \mathcal{W}$ s.t.

$$
\left\{\begin{array}{l}
T_{e} A_{1}-A_{2, e} T_{e}=A_{3, e} \tag{2}\\
D_{2, e} T_{e}+D_{1, e}=0
\end{array}\right.
$$

Lemma (9.1b)

$\exists \Gamma=(W, K, M, N)$: equation (2) is solvable iff $\exists(T, V)$:

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T-B_{2} V=A_{3} \\
D_{1}+D_{2} T+E V=0
\end{array}\right.
$$

Lemma (9.1b)

$\exists \Gamma=(K, L, M, N)$: equation (2) is solvable iff $\exists(T, V)$:

$$
\left\{\begin{array}{l}
T A_{1}-A_{2} T-B_{2} V=A_{3} \tag{3}\\
D_{1}+D_{2} T+E V=0
\end{array}\right.
$$

Proof.

Only if. Let $T_{e}=\left[\begin{array}{c}T \\ U\end{array}\right]$ be a solution of (2). Then $T_{e} A_{1}-A_{2, e} T_{e}=A_{3}, e \Rightarrow$

$$
\begin{aligned}
& T A_{1}-\left(A_{2}+B_{2} N C_{2}\right) T-B_{2} M U=A_{3}+B_{2} N C_{1} \\
& \Leftrightarrow T A_{1}-A_{2} T-B_{2} \underbrace{\left(N C_{2} T+M U+N C_{1}\right)}_{=: V}=A_{3} \\
& 0=D_{2, e} T_{e}+D_{1, e}=\left(D_{2}+E N C_{2}\right) T+E M U+D_{1}+E N C_{1} \\
& \quad=D_{1}+D_{2} T+E \underbrace{\left(N C_{2} T+M U+N C_{1}\right)}_{=V}
\end{aligned}
$$

Proof of Lemma 9.1 b continue.

If. Let (T, V) solve (3), choose $K=A+G C+B F, L=-G, M=F, N=0$, i, e,

$$
\Gamma:\left\{\begin{array}{l}
\dot{w}=(A+G C+B F) w-G y \\
u=F w,
\end{array}\right.
$$

where $F=\left[\begin{array}{ll}-F_{2} T+V & F_{2}\end{array}\right], F_{2}$ be any and $T_{e}=\left[\begin{array}{c}T \\ U\end{array}\right] U=\left[\begin{array}{c}I \\ T\end{array}\right]$, then

$$
\begin{gathered}
T_{e} A_{1}-A_{2, e} T_{e}=\left[\begin{array}{c}
T \\
U
\end{array}\right] A_{1}-\left[\begin{array}{cc}
A_{2} & B_{2} F \\
-G C_{2} & A+G C+B F
\end{array}\right]\left[\begin{array}{l}
T \\
U
\end{array}\right]=\left[\begin{array}{c}
T A_{1}-A_{2} T-B_{2}\left[-F_{2} T+V F_{2}\right]\left[\begin{array}{c}
I \\
T
\end{array}\right] \\
U A_{1}+G C_{2} T-(A+G C+B F) U
\end{array}\right] \\
=\left[\begin{array}{c}
A_{3} \\
A_{1}+G_{1} C_{2} T-A_{1}-G_{1} C_{1}-G_{1} C_{2} T \\
T A_{1}+G_{2} C_{2} T-A_{3}-A_{2} T-G_{2} C_{1}-G_{2} C_{2} T-B_{2} V
\end{array}\right]=\left[\begin{array}{c}
A_{3} \\
-G_{1} C_{1} \\
-G_{2} C_{1}
\end{array}\right]=\left[\begin{array}{c}
A_{3} \\
-G C_{1}
\end{array}\right]=A_{3, e}, \\
D_{2, e} T_{e}+D_{1, e}=D_{1}+\left[\begin{array}{ll}
D_{2} & E F
\end{array}\right]\left[\begin{array}{c}
T \\
U
\end{array}\right]=D_{1}+D_{2} T+E V=0
\end{gathered}
$$

