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4.1 Controlled invariance 4.2 Disturbance decoupling

A-invariant subspace

Definition
Given a linear map A : X → X and a subspace
V ⊆ X , we say V is A-invariant if ∀x ∈ V,
Ax ∈ V.

Question 1
Which one of the following spaces is NOT
necessarily A-invariant?
(i). X ; (ii). kerA; (iii). imA;
(iv). V ⊆ kerA; (v). V ⊆ imA.

› Consider a differential equation

ẋ = Ax. (1)

Definition (2.3)
A subspace V is called an invariant subspace of (1) :⇔ ∀x0 ∈ V, ∀t ≥ 0 : x(t, x0) ∈ V.
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A-invariant subspace
Theorem (2.4)
A subspace V is an invariant subspace of (1) iff V is A-invariant.

Proof.
“If”: V is A-inv. ⇒ For any x0 ∈ V: Ax0 ⊆ V, A2x0 ⊆ V, . . . induction⇒ Akx0 ⊆ V, ∀k ≥ 0.

⇒ eAtx0 =
∞∑
k=0

tkAk

k! x0 ∈ V.

“Only if”: x(t, x0) ∈ V, ∀t ≥ 0 and ∀x0 ∈ V

⇒ Ax0 = (eAtx0)′(0) = lim
t→0

eAtx0 − x0
t

= lim
t→0

x(t, x0)− x0
t

∈ V.
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A-invariant subspace

› Given a matrix A and an A-invariant subspace V ⊆ X , how to construct a basis
(coordinates) transformation matrix T (isomorphism) such that

Ã = TAT−1 =
[
A11 A12
0 A22

]
.

› Why T is called a coordinates transformation matrix for the ODE

ẋ = Ax.

What T does for the state variables x?
› Can we generalize the notion of A-invariant subspace to the pair (A,B) (or

correspondingly, the system ẋ = Ax+Bu)?
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4.1 Controlled invariance

› Controlled and conditioned invariant subspace: Basile and Marro (1969), Wonham and
Morse (1970).

› Consider an LTI control system
Σ : ẋ = Ax+Bu,

denoted by Σ = (A,B);
› x(t) ∈ X , u(t) ∈ U , u ∈ U ,
› in particular, X = Rn, U = Rm, U = L1,loc(R+,Rm).

Definition (4.1)
A subspace V is controlled invariant (or (A,B)-invariant):⇔ ∀x0 ∈ V, ∃u ∈ U : xu(t, x0) ∈ V,
∀t ≥ 0.
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4.1 Controlled invariance
Theorem (4.2)
Consider a system Σ = (A,B) and a subspace V ⊆ X , the following is equivalent
(i)V is controlled invariant,
(ii)AV ⊆ V + imB,
(iii)∃ linear F : X → U : (A+BF )V ⊆ V.

Proof.
(Handwriting proof)
(i)⇒ (ii): ∃u ∈ U : xu(t, x0) ∈ V, ∀t ≥ 0, ∀x0 ∈ V ⇒

Ax0 +Bu(0) = lim
t→0

eAtx0 +
∫ t

0 Be
t−τu(τ)dτ − x0 −Bu(0)
t− 0 = lim

t→0

xu(t, x0)− x0 −Bu(0)
t− 0

∈ V + imB ⇒ Ax0 ∈ V + imB.
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4.1 Controlled invariance
Theorem (4.2)
Consider a system Σ = (A,B) and a subspace V ⊆ X , the following is equivalent
(i)V is controlled invariant,
(ii)AV ⊆ V + imB,
(iii)∃ linear F : X → U : (A+BF )V ⊆ V .

Proof.
(ii)⇒ (iii): Let q1, . . . , qk (k ≤ n) be a basis of V. Then

AV ⊆ V + imV ⇒ ∃vi ∈ V, ui ∈ U : Aqi = vi +Bui, ∀1 ≤ i ≤ k.

Define F : X → U s.t. Fqi = −ui, ∀1 ≤ i ≤ k (why such an F always exists?). ⇒
(A+BF )qi = vi ∈ V.
(iii)⇒ (i): (A+BF )V ⊆ V ⇒ V is (A+BF )-inv. ⇒ x(t, x0) ∈ V, where x(t, x0) solves
ẋ = (A+BF )x ⇒ ∃u s.t. xu(t, x0) ∈ V, where xu(t, x0) solves ẋ = Ax+Bu (take
u = Fx(t)).
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4.1 Controlled invariance (Questions Page)

Theorem (4.2)
Consider a system Σ = (A,B) and a subspace V ⊆ X , the following is equivalent (i) V is
controlled invariant, (ii) AV ⊆ V + imB, (iii) ∃ linear F : X → U : (A+BF )V ⊆ V .

Question 2
Which style of presenting the
proves of theorems do you like
better?
(i) Typing proof.
(ii) Handwriting proof.
(iii) Both.
(iv) I do not care!

Question 3
Which one of the following
subspaces may not be
(A,B)-inv.?
(i) any A-inv.
(ii) A imB.
(iii) A−1 imB.

Question 4
Let A =

[ 0 −1
1 2

]
, B =

[ 1
1
]
,

V = im
[ 1

0
]
, which F satisfies

(A+BF )V ⊂ V?
(i) F = [0 0].
(ii) F = [−1 0].
(iii) F = [0 − 2].
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Example-finding F (a friend feedback) such that (A + BF )V ⊆ V
Consider a system Σ = (A,B) and a subspace V ⊂ X , where

A =

1 −1 1
0 0 2
1 1 2

 , B =

1
0
0

 , V = span


0

0
1

 ,
1

1
0


Solution
Let q1 = [0 0 1]T and q2 = [1 1 0]T , then

Aq1 = v1 +Bu1 ⇔

1
2
2

 =

2
2
2

+

1
0
0

 · −1, Aq2 = v2 +Bu2 ⇔

0
0
2

 =

0
0
2

+

1
0
0

 · 0
Then F is any such that

F ·

0 1
0 1
1 0

 =
[
1 0

]
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Controlled invariance within a given subspace
› Consider the system Σ : ẋ = Ax+Bu.

Definition (4.1 controlled invariant subspace)

A subspace V is controlled invariant (or (A,B)-invariant):⇔ ∀x0 ∈ V, ∃u ∈ U : xu(t, x0) ∈ V,
∀t ≥ 0.

› What is the largest controlled invariance in X ?: X itself.
› For any subspace K ⊆ X , what is the largest c.i.s. in K ?

Definition (4.4 controlled invariant subspace within K)

Given a subspace K ⊆ X , define

V∗(K) := {x0 | ∃u ∈ U : xu(t, x0) ∈ K, ∀t ≥ 0}

Remark: (i) V∗(K) is a subspace itself. (ii) V∗(K) ⊆ K.
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The largest controlled invariant subspace in K
Definition (4.4)
For a subspace K ⊆ X , define

V∗(K) := {x0 | ∃u ∈ U : xu(t, x0) ∈ K, ∀t ≥ 0}

Theorem ((4.5))
V∗(K) is the largest (A,B)-invariant subspace contained in K, i.e.,
(i)V∗(K) is (A,B)-invariant;
(ii)V∗(K) ⊆ K;
(iii)V ⊆ K is (A,B)-invariant ⇒ V ⊆ V∗.

Proof.
(Handwriting proof), see also page 78 of the book.
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The largest controlled invariant subspace in K

Theorem ((4.5))
V∗(K) is the largest (A,B)-invariant subspace contained in K, i.e., (i) V∗(K) is
(A,B)-invariant; (ii) V∗(K) ⊆ K; (iii) V ⊆ K is (A,B)-invariant ⇒ V ⊆ V∗.

Proof.
(i) Take any x0 ∈ V∗(K), then by definition, ∃u = u(t) : xu(t, x0) ∈ K, ∀t ≥ 0. We will show
by contradictions that such u(t) renders xu(t, x0) ∈ V∗(K),∀t ≥ 0 as well. Suppose that for
some T ≥ 0 : x1 = xu(T, x0) ∈ K/V∗(K). However, by definition, x1 ∈ V∗(K) since
xu(t, x1) ∈ K, ∀t ≥ 0. Thus x1 6∈ V∗(K). Since T is any, we have that
xu(t, x0) ∈ V∗(K),∀t ≥ 0, which implies that V∗(K) is (A,B)-invariant;
(ii) Clear;
(iii) Take any x0 ∈ V, then ∃u : xu(t, x0) ∈ V ⊆ K, ∀t ≥ 0, which by definition, implies that
x0 ∈ V∗(K).
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4.2 Disturbance decoupling
› Consider a control system

Σd,z :
{
ẋ= Ax+ Ed
z = Hx,

› d ∈ D denotes an unknown disturbance, and in particular, D = L1,loc(R+,Rm),
› The output z(t) = HeAtx0 +

∫ t
0 T (t− τ)d(τ)dτ , where T (t− τ) = HeA(t−τ)E.

› Σd,z is called disturbance decoupled if T (t) = HeAtE = 0,∀t ≥ 0, i.e., z(t) does not
depend on d(t), or if G(s) = H(sI −A)−1E = 0.

Question 5
Let A =

[
A1 A2
0 A4

]
, which system with E,H below is disturbance decoupled?

(i) : E =
[
B1
0
]
, H = [H1 0 ] , (ii)E =

[ 0
B2

]
, H = [H1 0 ] ,

(iii) : E =
[
B1
0
]
, H = [ 0 H2 ] , (iv) : E =

[ 0
B2

]
, H = [ 0 H2 ] .
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Theorem (4.6)
Σd,z is disturbance decoupled iff ∃ an A-invariant subspace V s.t.

imE ⊆ V ⊆ kerH.

Proof.
“If”: T (t) = HeAtE = 0, ∀t ≥ 0.⇒ T k(t) = HAkeAtE = 0, ∀t ≥ 0, ∀k ≥ 0.

t=0⇒ HAkE = 0, ∀k ≥ 0.
Let V = im[E,AE, . . . , An−1E], then V is A-invariant subspace with imE ⊆ V ⊆ kerH.
“Only if”: V is an A-invariant subspace with imE ⊆ V ⊆ kerH.

⇒ imAkE ⊆ V ⊆ kerH, ∀k ≥ 0.
⇒ HAkE = 0, ∀k ≥ 0.
⇒ T (t) =

∑∞
k=0

tk

k!HA
kE = 0, ∀k ≥ 0.
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Summary

Recapitulation
› A-invariant subspace
› Controlled invariant (or (A,B)-invariant) subspace
› Controlled invariant subspace within a given subspace K
› The largest controlled invariant subspace in K
› Disturbance decoupled system

Section 2.2, Section 2.6, Section 4.1 and Section 4.2 of the book
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