

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Lecture Course: Advanced Systems Theory

Chapter 4: Controlled invariant subspaces

Stephan Trenn, Yahao Chen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

September 2020

A-invariant subspace

Definition

Given a linear map $A : \mathcal{X} \to \mathcal{X}$ and a subspace $\mathcal{V} \subseteq \mathcal{X}$, we say \mathcal{V} is *A*-invariant if $\forall x \in \mathcal{V}$, $Ax \in \mathcal{V}$.

> Consider a differential equation

Question 1

Which one of the following spaces is NOT necessarily *A*-invariant? (i). \mathcal{X} ; (ii). ker *A*; (iii). im *A*; (iv). $\mathcal{V} \subseteq \text{ker } A$; (v). $\mathcal{V} \subseteq \text{im } A$.

$$\dot{x} = Ax. \tag{1}$$

Definition (2.3)

A subspace \mathcal{V} is called an invariant subspace of (1) : $\Leftrightarrow \forall x_0 \in \mathcal{V}, \forall t \ge 0 : x(t, x_0) \in \mathcal{V}.$

A-invariant subspace

Theorem (2.4)

A subspace \mathcal{V} is an invariant subspace of (1) iff \mathcal{V} is A-invariant.

Proof.

 $``\mathit{If'}: \ \mathcal{V} \text{ is } A\text{-inv.} \ \Rightarrow \text{ For any } x_0 \in \mathcal{V}: \ Ax_0 \subseteq \mathcal{V}, \ A^2x_0 \subseteq \mathcal{V}, \ \ldots \ \stackrel{\text{induction}}{\Rightarrow} A^kx_0 \subseteq \mathcal{V}, \ \forall k \geq 0.$

$$\Rightarrow e^{At}x_0 = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!} x_0 \in \mathcal{V}.$$

"Only if": $x(t,x_0) \in \mathcal{V}$, $\forall t \geq 0$ and $\forall x_0 \in \mathcal{V}$

$$\Rightarrow Ax_0 = (e^{At}x_0)'(0) = \lim_{t \to 0} \frac{e^{At}x_0 - x_0}{t} = \lim_{t \to 0} \frac{x(t, x_0) - x_0}{t} \in \mathcal{V}.$$

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

A-invariant subspace

> Given a matrix A and an A-invariant subspace $\mathcal{V} \subseteq \mathcal{X}$, how to construct a basis (coordinates) transformation matrix T (isomorphism) such that

$$\tilde{A} = TAT^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

 $\,\,$ $\,$ Why T is called a coordinates transformation matrix for the ODE

$$\dot{x} = Ax.$$

What T does for the state variables x?

> Can we generalize the notion of A-invariant subspace to the pair (A, B) (or correspondingly, the system $\dot{x} = Ax + Bu$)?

4.1 Controlled invariance

- Controlled and conditioned invariant subspace: Basile and Marro (1969), Wonham and Morse (1970).
- > Consider an LTI control system

$$\Sigma : \dot{x} = Ax + Bu,$$

denoted by $\Sigma = (A, B)$;

- $, \quad x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U}, \ u \in \boldsymbol{U},$
-) in particular, $\mathcal{X} = \mathbb{R}^n$, $\mathcal{U} = \mathbb{R}^m$, $\mathbf{U} = L_{1,\text{loc}}(\mathbb{R}_+, \mathbb{R}^m)$.

Definition (4.1)

A subspace \mathcal{V} is controlled invariant (or (A,B)-invariant): $\Leftrightarrow \forall x_0 \in \mathcal{V}, \exists u \in U: x_u(t, x_0) \in \mathcal{V}, \forall t \geq 0.$

4.1 Controlled invariance

Theorem (4.2)

Consider a system $\Sigma = (A, B)$ and a subspace $\mathcal{V} \subseteq \mathcal{X}$, the following is equivalent (i) \mathcal{V} is controlled invariant, (ii) $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{im} B$, (iii) \exists linear $F : \mathcal{X} \to \mathcal{U} : (A + BF)\mathcal{V} \subseteq \mathcal{V}$.

Proof.

(Handwriting proof)
(i)
$$\Rightarrow$$
 (ii): $\exists u \in U$: $x_u(t, x_0) \in \mathcal{V}, \forall t \ge 0, \forall x_0 \in \mathcal{V} \Rightarrow$
 $Ax_0 + Bu(0) = \lim_{t \to 0} \frac{e^{At}x_0 + \int_0^t Be^{t-\tau}u(\tau)d\tau - x_0 - Bu(0)}{t-0} = \lim_{t \to 0} \frac{x_u(t, x_0) - x_0 - Bu(0)}{t-0}$
 $\in \mathcal{V} + \operatorname{im} B \Rightarrow Ax_0 \in \mathcal{V} + \operatorname{im} B.$

4.1 Controlled invariance

Theorem (4.2)

Consider a system $\Sigma = (A, B)$ and a subspace $\mathcal{V} \subseteq \mathcal{X}$, the following is equivalent (i) \mathcal{V} is controlled invariant, (ii) $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{im} B$, (iii) \exists linear $F : \mathcal{X} \to \mathcal{U} : (A + BF)\mathcal{V} \subseteq V$.

Proof.

(ii) \Rightarrow (iii): Let q_1, \ldots, q_k $(k \le n)$ be a basis of \mathcal{V} . Then

 $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{im} \mathcal{V} \Rightarrow \exists v_i \in \mathcal{V}, u_i \in \mathcal{U} : Aq_i = v_i + Bu_i, \ \forall 1 \le i \le k.$

Define $F: \mathcal{X} \to \mathcal{U}$ s.t. $Fq_i = -u_i, \forall 1 \leq i \leq k$ (why such an F always exists?). $\Rightarrow (A + BF)q_i = v_i \in \mathcal{V}$. (iii) \Rightarrow (i): $(A + BF)\mathcal{V} \subseteq \mathcal{V} \Rightarrow \mathcal{V}$ is (A + BF)-inv. $\Rightarrow x(t, x_0) \in \mathcal{V}$, where $x(t, x_0)$ solves $\dot{x} = (A + BF)x \Rightarrow \exists u \text{ s.t. } x_u(t, x_0) \in \mathcal{V}$, where $x_u(t, x_0)$ solves $\dot{x} = Ax + Bu$ (take u = Fx(t)).

4.1 Controlled invariance (Questions Page)

Theorem (4.2)

Consider a system $\Sigma = (A, B)$ and a subspace $\mathcal{V} \subseteq \mathcal{X}$, the following is equivalent (i) \mathcal{V} is controlled invariant, (ii) $A\mathcal{V} \subseteq \mathcal{V} + \operatorname{im} B$, (iii) \exists linear $F : \mathcal{X} \to \mathcal{U} : (A + BF)\mathcal{V} \subseteq V$.

Question 2

Which style of presenting the proves of theorems do you like better? (i) Typing proof.

- (ii) Handwriting proof.
- (iii) Both.
- (iv) I do not care!

Question 3

Which one of the following subspaces may not be (A, B)-inv.? (i) any A-inv. (ii) $A \operatorname{im} B$. (iii) $A^{-1} \operatorname{im} B$.

Question 4

```
Let A = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix},

\mathcal{V} = \operatorname{im} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, which F satisfies

(A + BF)\mathcal{V} \subset \mathcal{V}?

(i) F = \begin{bmatrix} 0 & 0 \end{bmatrix}.

(ii) F = \begin{bmatrix} -1 & 0 \end{bmatrix}.

(iii) F = \begin{bmatrix} 0 & -2 \end{bmatrix}.
```


Example-finding F (a friend feedback) such that $(A + BF)V \subseteq V$

Consider a system $\Sigma = (A, B)$ and a subspace $\mathcal{V} \subset \mathcal{X}$, where

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathcal{V} = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Solution

Let
$$q_1 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$
 and $q_2 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, then

$$Aq_1 = v_1 + Bu_1 \Leftrightarrow \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} 2\\2\\2 \end{bmatrix} + \begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot -1, \quad Aq_2 = v_2 + Bu_2 \Leftrightarrow \begin{bmatrix} 0\\0\\2 \end{bmatrix} = \begin{bmatrix} 0\\0\\2 \end{bmatrix} + \begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot 0$$

Then F is any such that

$$F \cdot \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Stephan Trenn, Yahao Chen (Jan C. Willems Center, U Groningen)

Controlled invariance within a given subspace

> Consider the system $\Sigma : \dot{x} = Ax + Bu$.

Definition (4.1 controlled invariant subspace)

A subspace \mathcal{V} is controlled invariant (or (A,B)-invariant): $\Leftrightarrow \forall x_0 \in \mathcal{V}, \exists u \in U: x_u(t, x_0) \in \mathcal{V}, \forall t \ge 0.$

- > What is the largest controlled invariance in \mathcal{X} ?: \mathcal{X} itself.
-) For any subspace $\mathcal{K}\subseteq\mathcal{X},$ what is the largest c.i.s. in \mathcal{K} ?

Definition (4.4 controlled invariant subspace within \mathcal{K})

Given a subspace $\mathcal{K} \subseteq \mathcal{X}$, define

$$\mathcal{V}^*(\mathcal{K}) := \{ x_0 \mid \exists u \in \boldsymbol{U} : x_u(t, x_0) \in \mathcal{K}, \forall t \ge 0 \}$$

Remark: (i) $\mathcal{V}^*(\mathcal{K})$ is a subspace itself. (ii) $\mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{K}$.

The largest controlled invariant subspace in ${\cal K}$

Definition (4.4)

For a subspace $\mathcal{K} \subseteq \mathcal{X}$, define

$$\mathcal{V}^*(\mathcal{K}) := \{ x_0 \, | \, \exists \, u \in \boldsymbol{U} : x_u(t, x_0) \in \mathcal{K}, \, \forall t \ge 0 \}$$

Theorem ((4.5))

 $\mathcal{V}^*(\mathcal{K})$ is the largest (A, B)-invariant subspace contained in \mathcal{K} , i.e., (i) $\mathcal{V}^*(\mathcal{K})$ is (A, B)-invariant; (ii) $\mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{K}$; (iii) $\mathcal{V} \subseteq \mathcal{K}$ is (A, B)-invariant $\Rightarrow \mathcal{V} \subseteq \mathcal{V}^*$.

Proof.

(Handwriting proof), see also page 78 of the book.

The largest controlled invariant subspace in $\ensuremath{\mathcal{K}}$

Theorem ((4.5))

 $\mathcal{V}^*(\mathcal{K})$ is the largest (A, B)-invariant subspace contained in \mathcal{K} , i.e., (i) $\mathcal{V}^*(\mathcal{K})$ is (A, B)-invariant; (ii) $\mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{K}$; (iii) $\mathcal{V} \subseteq \mathcal{K}$ is (A, B)-invariant $\Rightarrow \mathcal{V} \subseteq \mathcal{V}^*$.

Proof.

(i) Take any $x_0 \in \mathcal{V}^*(\mathcal{K})$, then by definition, $\exists u = u(t) : x_u(t, x_0) \in \mathcal{K}, \forall t \ge 0$. We will show by contradictions that such u(t) renders $x_u(t, x_0) \in \mathcal{V}^*(\mathcal{K}), \forall t \ge 0$ as well. Suppose that for some $T \ge 0 : x_1 = x_u(T, x_0) \in \mathcal{K}/\mathcal{V}^*(\mathcal{K})$. However, by definition, $x_1 \in \mathcal{V}^*(\mathcal{K})$ since $x_u(t, x_1) \in \mathcal{K}, \forall t \ge 0$. Thus $x_1 \notin \mathcal{V}^*(\mathcal{K})$. Since T is any, we have that $x_u(t, x_0) \in \mathcal{V}^*(\mathcal{K}), \forall t \ge 0$, which implies that $\mathcal{V}^*(\mathcal{K})$ is (A, B)-invariant; (ii) Clear; (iii) Take any $x_0 \in \mathcal{V}$, then $\exists u : x_u(t, x_0) \in \mathcal{V} \subseteq \mathcal{K}, \forall t \ge 0$, which by definition, implies that $x_0 \in \mathcal{V}^*(\mathcal{K})$.

4.2 Disturbance decoupling

> Consider a control system

$$\Sigma_{d,z}: \begin{cases} \dot{x} = Ax + Ed \\ z = Hx, \end{cases}$$

-) $d \in \mathbb{D}$ denotes an unknown disturbance, and in particular, $\mathbb{D} = L_{1,\text{loc}}(\mathbb{R}_+,\mathbb{R}^m)$,
- > The output $z(t) = He^{At}x_0 + \int_0^t T(t-\tau)d(\tau)d\tau$, where $T(t-\tau) = He^{A(t-\tau)}E$.
- > $\Sigma_{d,z}$ is called disturbance decoupled if $T(t) = He^{At}E = 0, \forall t \ge 0$, i.e., z(t) does not depend on d(t), or if $G(s) = H(sI A)^{-1}E = 0$.

Question 5

Let $A = \begin{bmatrix} A_1 & A_2 \\ 0 & A_4 \end{bmatrix}$, which system with E, H below is disturbance decoupled? (i) : $E = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$, $H = \begin{bmatrix} H_1 & 0 \end{bmatrix}$, (ii) $E = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}$, $H = \begin{bmatrix} H_1 & 0 \end{bmatrix}$, (iii) : $E = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$, $H = \begin{bmatrix} 0 & H_2 \end{bmatrix}$, (iv) : $E = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}$, $H = \begin{bmatrix} 0 & H_2 \end{bmatrix}$.

Theorem (4.6)

 $\Sigma_{d,z}$ is disturbance decoupled iff \exists an *A*-invariant subspace \mathcal{V} s.t.

 $\operatorname{im} E \subseteq \mathcal{V} \subseteq \ker H.$

Proof.

"If": $T(t) = He^{At}E = 0, \ \forall t \ge 0. \Rightarrow T^k(t) = HA^k e^{At}E = 0, \ \forall t \ge 0, \ \forall k \ge 0.$ $\stackrel{t=0}{\Rightarrow} HA^k E = 0, \ \forall k \ge 0.$ Let $\mathcal{V} = \operatorname{im}[E, AE, \dots, A^{n-1}E]$, then \mathcal{V} is A-invariant subspace with $\operatorname{im} E \subseteq \mathcal{V} \subseteq \ker H.$ "Only if": \mathcal{V} is an A-invariant subspace with $\operatorname{im} E \subseteq \mathcal{V} \subseteq \ker H.$ $\Rightarrow \operatorname{im} A^k E \subseteq \mathcal{V} \subseteq \ker H, \ \forall k \ge 0.$ $\Rightarrow HA^k E = 0, \ \forall k \ge 0.$ $\Rightarrow T(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} HA^k E = 0, \ \forall k \ge 0.$

Summary

Recapitulation

- > A-invariant subspace
- > Controlled invariant (or (A, B)-invariant) subspace
- $\,\,$ Controlled invariant subspace within a given subspace ${\cal K}$
- $\,\,$ $\,$ The largest controlled invariant subspace in ${\cal K}$
- > Disturbance decoupled system

Section 2.2, Section 2.6, Section 4.1 and Section 4.2 of the book