Advanced Systems Theory

Lecture 13: Synchronization for heterogenous agents

Prof. Dr. Stephan Trenn & Dr. Yahao Chen Jan C. Willems Center for Systems and Control, University of Groningen

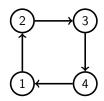
Groningen, Fall 2020-21

Recap synchronization

Question 1

Consider a multi-agent system as shown right. Which of the following agent dynamics are synchronizable by state-coupling?

(i)
$$\dot{x}_i = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x_i + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_i$$
 (ii) $\dot{x}_i = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x_i + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_i$



Question 2

Which feedback matrix F in the diffusive state-coupling leads to synchronization for above example? (Hint: $\lambda_{2/3} = 1 \pm i$, $\lambda_3 = 2$)

(i) F = [1,0] (ii) F = [0,1] (iii) F = [2,0] (iv) F = [0,2] (v) neither

Question 3

Is the above example synchronizable by output-coupling with output $y_i = [1, 0]x_i$?

Question 4

Is the above example synchronizable by output-coupling with output $y_i = [0, 1]x_i$?

Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen

Synchronization for heterogenous agents

Setup

Given

Agent dynamics:

$$\dot{x}_i = A_i x_i + b_i u_i$$

$$y_i = c_i x_i$$

▶ Individual matrices $A_i \in \mathbb{R}^{n_i \times n_i}$, $b_i, c_i^\top \in \mathbb{R}^{n_i}$ for each agent (heterogeneous dynamics)

• Communication graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Objective

Asymptotic output synchronization: $\lim_{t\to\infty} |y_i(t) - y_j(t)| = 0$ for all $i, j \in \mathcal{V}$

Approach: Diffusive output coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (y_i(t) - y_j(t))$$

Feasible synchronization trajectory

$\mathsf{Convergence} \to \mathsf{common} \ \mathsf{output} \ \mathsf{trajectory}$

Because of linearity and time-invariance it follows from convergence $|y_i(t) - y_j(t)| \rightarrow 0$ that

▶
$$\exists y_s : [0,\infty) \to \mathbb{R}$$
 with $\lim_{t\to\infty} y_i(t) = y_s(t)$ and

 $\blacktriangleright y_i(0) = y_s(0) \ \forall i \in \mathcal{V} \implies y_i(t) = y_s(t) \ \forall t \ge 0 \ \forall i \in \mathcal{V}$

Definition (Possible output trajectories)

$$\begin{aligned} \mathcal{Y}_i &:= \{ y_i(\cdot) = c_i x_i(\cdot) \mid \exists x_{i,0} \in \mathbb{R}^{n_i} : \dot{x}_i = A_i x_i + 0, \ x_i(0) = x_{i,0} \} \\ &= \{ t \mapsto c_i e^{A_i t} x_{i,0} \mid x_{i,0} \in \mathbb{R}^{n_i} \} \end{aligned}$$

Definition (Common dynamics)

Two agents *i* and *j* are said to have common dynamics : \iff

 $\mathcal{Y}_i \cap \mathcal{Y}_j \neq \{0\}$

Common dynamics: Necessary conditions

$$\left\{ t \mapsto c_i e^{A_i t} x_{i,0} \mid x_{i,0} \in \mathbb{R}^{n_i} \right\} \cap \left\{ t \mapsto c_j e^{A_j t} x_{j,0} \mid x_{j,0} \in \mathbb{R}^{n_j} \right\} \neq \{0\}$$

Question 5

Which of the following conditions is necessary for agents i and j having common dynamics?

(i)
$$c_i A_i^k = c_j A_i^k$$
 for $k = 0, 1, 2..., n-1$

(ii) A_i and A_j have a common eigenvector

(iii)
$$n_i = n_j$$

- (iv) A_i and A_j have a common eigenvalue
- (v) neither

Fact: Linear independence of exponential functions

Let $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{C}$ pairwise distinct. Then

$$\sum_{j=1}^{p} \alpha_j e^{\lambda_j t} = 0 \ \forall t \in \mathbb{R} \quad \Longleftrightarrow \quad 0 = \alpha_1 = \alpha_2 = \ldots = \alpha_p$$

Advanced Systems Theory, Lecture 13, Slide 4/9

Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen

Common dynamics: Necessary conditions

$$\left\{ t \mapsto c_i e^{A_i t} x_{i,0} \mid x_{i,0} \in \mathbb{R}^{n_i} \right\} \cap \left\{ t \mapsto c_j e^{A_j t} x_{j,0} \mid x_{j,0} \in \mathbb{R}^{n_j} \right\} \neq \{0\}$$

Question 5

Which of the following conditions is necessary for agents i and j having common dynamics?

(i)
$$c_i A_i^k = c_j A_i^k$$
 for $k = 0, 1, 2..., n-1$

(ii) A_i and A_j have a common eigenvector

(iii)
$$n_i = n_j$$

- (iv) A_i and A_j have a common eigenvalue
- (v) neither

Fact: Linear independence of exponential functions

Let $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{C}$ pairwise distinct. Then

$$\sum_{j=1}^{p}\sum_{k=0}^{\kappa_{j}}\beta_{jk}t^{k}e^{\lambda_{j}t} = 0 \ \forall t \in \mathbb{R} \quad \Longleftrightarrow \quad \beta_{jk} = 0 \ \forall j, k$$

Advanced Systems Theory, Lecture 13, Slide 4/9

Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen

Common dynamics: When and what?

Assumption: (c_i, A_i) observable

Theorem

The multi-agent system has common dynamics, i.e. $\bigcap_{i \in \mathcal{V}} \mathcal{Y}_i \neq \{0\}$ \iff all A_i have at least one common eigenvalue, i.e. $\bigcap_{i \in \mathcal{V}} \sigma(A_i) \neq \emptyset$

Proof ...

Remaining question

How to find A_s , c_s such that

$$\bigcap_{i \in \mathcal{V}} \mathcal{Y}_i =: \mathcal{Y}_s = \begin{cases} y_s(\cdot) & \dot{x}_s = A_s x_s, \ x_s(0) = x_{s,0} \\ y_s = c_s x_s \end{cases}$$

The internal model principle

Lemma

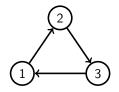
 $\bigcap_{i \in \mathcal{V}} \sigma(A_i) =: \sigma_s \neq \emptyset \iff \exists \text{ coordinate transformations } T_i \in \mathbb{R}^{n_i \times n_i} \text{ such that}$ $T_i^{-1} A_i T_i = \begin{bmatrix} A_s & * \\ 0 & * \end{bmatrix}, \quad c_i T_i = \begin{bmatrix} c_s, * \end{bmatrix}$

and $\sigma(A_s) = \sigma_s$

Corollary

Heterogenous multi-agent systems with diffusive coupling can synchronize nontrivially \implies all agents share common dynamics (internal model principle)

Example



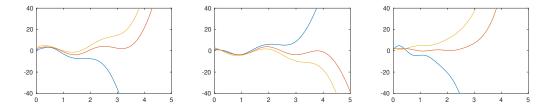
$$(A_i, b_i, c_i) = \left(\begin{bmatrix} 0 & 3 & 1 \\ -3 & 0 & 1 \\ 0 & 0 & -\gamma_i \end{bmatrix}, \begin{pmatrix} 0 \\ 0 \\ \gamma_i \end{pmatrix}, \begin{pmatrix} 1 & 10 & 0 \end{pmatrix} \right)$$

with $\gamma_i := 1/i$ and $\sigma(A_i) = \{\pm 3\mathbf{i}, \gamma_i\}$

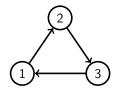
$$\dot{x}_i = A_i x_i + b_i u_i$$

 $y_i = c_i x_i$
 $u_i = -k \sum_{i \in \mathcal{N}_i} (y_i - y_j)$

Simulations for k = 1



Example



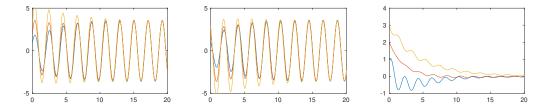
$$(A_i, b_i, c_i) = \left(\begin{bmatrix} 0 & 3 & 1 \\ -3 & 0 & 1 \\ 0 & 0 & -\gamma_i \end{bmatrix}, \begin{pmatrix} 0 \\ 0 \\ \gamma_i \end{pmatrix}, \begin{pmatrix} 1 & 10 & 0 \end{pmatrix} \right)$$

with $\gamma_i := 1/i$ and $\sigma(A_i) = \{\pm 3\mathbf{i}, \gamma_i\}$

$$\dot{x}_i = A_i x_i + b_i u_i$$

 $y_i = c_i x_i$
 $u_i = -k \sum_{j \in \mathcal{N}_i} (y_i - y_j)$

Simulations for k = 0.05



Error dynamics

$$\dot{x}_i = A_i x_i + b_i u_i$$

 $y_i = c_i x_i$
 $u_i = -k \sum_{j \in \mathcal{N}_i} (y_i - y_j)$
 $e_i := y_i - y_i$

Assumption: Common internal model

$$\exists T_i \in \mathbb{R}^{n_i \times n_i}: \qquad (T_i^{-1}A_i T_i, T_i^{-1}b_i, c_i T_i) = \left(\begin{bmatrix} A_s & A_{q_i} \\ 0 & A_{p_i} \end{bmatrix}, \begin{pmatrix} b_{q_i} \\ b_{p_i} \end{pmatrix}, \begin{pmatrix} c_s & c_{p_i} \end{pmatrix} \right)$$

Lemma (Error dynamics)

The error
$$\mathbf{e} := (e_2, e_2, \dots, e_N)^{\top}$$
 satisfies $\mathbf{e} = \begin{bmatrix} -c_{p_1} & c_2 \\ \vdots & \ddots \\ -c_{p_1} & & c_N \end{bmatrix} \mathbf{x}_e$ where $\dot{\mathbf{x}}_e = \mathbf{A}_e(k)\mathbf{x}_e$ with
$$\mathbf{A}_e(k) = \begin{bmatrix} A_{p_1} & 0 & \dots & 0 \\ -T_2 \begin{bmatrix} A_{q_1} \\ 0 \end{bmatrix} & A_2 & 0 \\ \vdots & \ddots \\ -T_N \begin{bmatrix} A_{q_1} \\ 0 \end{bmatrix} & 0 & A_N \end{bmatrix} - \begin{bmatrix} b_{p_1} & 0 & \dots & 0 \\ -T_2 \begin{bmatrix} b_{q_1} \\ 0 \end{bmatrix} & b_2 & 0 \\ \vdots & \ddots \\ -T_N \begin{bmatrix} b_{q_1} \\ 0 \end{bmatrix} & 0 & b_N \end{bmatrix} k \mathbf{L} \begin{bmatrix} c_{p_1} & c_2 \\ \vdots & \ddots \\ c_N \end{bmatrix}$$

Synchronization characterization

$$\dot{x}_i = A_i x_i + b_i u_i$$

 $y_i = c_i x_i$
 $u_i = -k \sum_{j \in \mathcal{N}_i} (y_i - y_j)$
 $e_i := y_i - y_1$

Theorem

Synchronization to a nontrivial trajectory occurs \iff

- 1. All agents have a common internal model (i.e. $\bigcap_{i \in \mathcal{V}} \sigma(A_i) \neq \emptyset$)
- 2. $\mathbf{A}_{e}(k)$ is Hurwitz

Example: $\mathbf{A}_{e}(k)$ for k = 1 and k = 0.05 are

$$\mathbf{A}_{e}(1) = \begin{bmatrix} -1 & 1 & 10 & 0 & 1 & 10 & 0 \\ -1 & 0 & 3 & 1 & 0 & 0 & 0 \\ -1 & -3 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & -10 & -\frac{1}{2} & \frac{1}{2} & 5 & 0 \\ -1 & 0 & 0 & 0 & 0 & 3 & 1 \\ -1 & 0 & 0 & 0 & -3 & 0 & 1 \\ 0 & \frac{1}{3} & \frac{10}{3} & 0 & -\frac{2}{3} & -\frac{20}{3} & -\frac{1}{3} \end{bmatrix} \quad \mathbf{A}_{e}(0.05) = \begin{bmatrix} -1 & \frac{1}{20} & \frac{1}{2} & 0 & \frac{1}{20} & \frac{1}{2} & 0 \\ -1 & 0 & 3 & 1 & 0 & 0 & 0 \\ -1 & -3 & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{20} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{40} & \frac{1}{4} & 0 \\ -1 & 0 & 0 & 0 & 0 & 3 & 1 \\ -1 & 0 & 0 & 0 & -3 & 0 & 1 \\ 0 & \frac{1}{60} & \frac{1}{6} & 0 & -\frac{1}{30} & -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$