Advanced Systems Theory

Lecture 10: Multiagent systems: Motivation, graph theoretical background

Prof. Dr. Stephan Trenn \& Dr. Yahao Chen
Jan C. Willems Center for Systems and Control, University of Groningen

Groningen, Fall 2020-21

Multi-agent systems: Preliminaries

What are multi-agent systems?

Feedback loop:

Local feedback of connected plants: (with controller communication)

General interconnection between agents:

Motivation for multi-agent systems

Main motivations

- Complexity: Centralized control not feasible
- Privacy: Centralized control not desired
- Spatially distributed: Centralized control not physically possible
- Safety: No single point of failure

Key questions

Local properties	$\xlongequal{?}$ Global properties
Local controller design	\Longrightarrow Global desired behavior

Brain storming (use chat for answers)

What examples of multi-agent systems come to your mind?

Interconnection = graph

Definition (Graph)

A graph is a tuple $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ where

- $\mathcal{V}=\{1,2, \ldots, N\}$ is the set of nodes
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of (directed) edges
- $e=(j, i) \in \mathcal{E}$ is an edge from node j to node i

Example:

Question 1

Have you seen graphs in any other lecture before?

Graph related definitions

Standard assumptions

In the following we will always assume for $\mathcal{G}=(\mathcal{V}, \mathcal{E})$:

- \mathcal{V} is finite
- \mathcal{E} contains each edge at most once
- no self loops, i.e. $\forall i \in \mathcal{V}:(i, i) \notin \mathcal{E}$

Definition (Undirected graphs)

A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is called undirected $: \Leftrightarrow[(j, i) \in \mathcal{E} \Longleftrightarrow(i, j) \in \mathcal{E}]$

Definition (Neighbors)

- $\mathcal{N}_{i}:=\{j \in \mathcal{V} \mid(j, i) \in \mathcal{E}\}$ set of neighbors (predecessors), $\left|\mathcal{N}_{i}\right|$ is (in-)degree of node i
- $\mathcal{S}_{j}:=\{i \in \mathcal{V} \mid(j, i) \in \mathcal{E}\}$ set of successors, $\quad\left|\mathcal{S}_{j}\right|$ is out-degree of node j

Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=\{1, \ldots, N\}$ and $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{M}\right\}$

- adjacency matrix: $\mathbf{A}=\left[a_{i j}\right] \in\{0,1\}^{N \times N}$ with $a_{i j}=1 \Longleftrightarrow(j, i) \in \mathcal{E}$.
- incidence matrix*: $\mathbf{N}=\left[n_{i k}\right] \in\{-1,0,1\}^{N \times M}$ with $n_{i k}= \begin{cases}1, & \text { if } e_{k}=(*, i), \\ -1, & \text { if } e_{k}=(i, *), \\ 0, & \text { otherwise }\end{cases}$
* Convention for undirected graphs: Only one of the two edges (i, j) and (j, i) is considered

Question 2

Consider the following graph:

(i) $\left[\begin{array}{l}1 \\ 1 \\ \end{array}\right.$
$\left.\begin{array}{ll} & 1 \\ & 1 \\ & \\ 1 & \\ & 1\end{array}\right]$
(ii) $\left[\begin{array}{l}1 \\ 1 \\ \end{array}\right.$
$\left.\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=\{1, \ldots, N\}$ and $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{M}\right\}$

- adjacency matrix: $\mathbf{A}=\left[a_{i j}\right] \in\{0,1\}^{N \times N}$ with $a_{i j}=1 \Longleftrightarrow(j, i) \in \mathcal{E}$.
- incidence matrix*: $\mathbf{N}=\left[n_{i k}\right] \in\{-1,0,1\}^{N \times M}$ with $n_{i k}=\left\{\begin{array}{l}1, \\ -1, \\ 0,\end{array}\right.$ if $e_{k}=(*, i)$,
if $e_{k}=(i, *)$,
otherwise
* Convention for undirected graphs: Only one of the two edges (i, j) and (j, i) is considered

Question 3

Consider the following graph:

Which is the incidence matrix of the graph?
(i)

$$
\left[\begin{array}{cccccc}
-1 & & -1 & & & 1 \\
1 & -1 & & & & \\
& 0 & 1 & 1 & & \\
& 1 & & -1 & -1 & -1 \\
& & & & 1 &
\end{array}\right]
$$

$$
\text { (ii) }\left[\begin{array}{cccccc}
-1 & & -1 & & 1 & \\
1 & -1 & & & & \\
& & 1 & 1 & & \\
& 1 & & -1 & -1 & -1 \\
& & & & & 1
\end{array}\right]
$$

Some basic properties of adjecency and incidence matrices

Question 4

Which property is wrong in general?
(i) \mathcal{G} is undirected $\Longleftrightarrow \mathbf{A}=\mathbf{A}^{\top}$
(ii) $\operatorname{rank} \mathbf{N} \leq N-1$
(iii) $\operatorname{rank} \mathbf{A} \leq N-1$
(iv) the in-degree $\left|\mathcal{N}_{i}\right|$ is the i-th row-sum of \mathbf{A}
(v) the difference between out- and in-degree of node i is the i-th row sum \mathbf{N}

The Laplacian matrix of a graph

Definition

$\mathbf{L}:=\mathbf{D}-\mathbf{A}$ is called Laplacian matrix of \mathcal{G}, where

$$
\mathbf{D}=\left[\begin{array}{llll}
\left|\mathcal{N}_{1}\right| & & & \\
& \left|\mathcal{N}_{2}\right| & & \\
& & \ddots & \\
& & & \left|\mathcal{N}_{N}\right|
\end{array}\right]
$$

is the (in-)degree matrix of \mathcal{G}.

Laplacian matrix of

Question 5

Which property is NOT true in general?
(i) $\mathbf{L}=\mathbf{L}^{\top} \Longleftrightarrow \mathcal{G}$ is undirected
(ii) 0 is an eigenvalue of \mathbf{L} with eigenvector $(1,1, \ldots, 1)$
(iii) $\operatorname{rank} \mathbf{L} \leq N-1$
(iv) $(1,1, \ldots, 1)$ is in the left-kernel of \mathbf{L}

Some further properties of the Laplacian matrix

Theorem (Spectral properties of Laplacian)

All eigenvalues λ of \mathbf{L} satisfy $\operatorname{Re}(\lambda) \geq 0$.
Proof: ...
It is common to order the eigenvalues of \mathbf{L} as

$$
\begin{aligned}
& 0=\lambda_{1} \leq \operatorname{Re}\left(\lambda_{2}\right) \leq \operatorname{Re}\left(\lambda_{3}\right) \leq \ldots \leq \operatorname{Re}\left(\lambda_{n}\right) \\
& 0=\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots \leq \lambda_{n} \text { (undirected case) }
\end{aligned}
$$

Theorem

If \mathcal{G} is undirected then

$$
\mathbf{L}=\mathbf{N} \mathbf{N}^{\top}
$$

in particular, the product does not depend on the choice of "directions" in \mathbf{N}
Proof: ...

Corollary

For an undirected graph

$$
\operatorname{rank} \mathbf{L}=\operatorname{rank} \mathbf{N}
$$

Paths and connectivity

Definition

Consider a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$

- A path is a sequence of nodes $\left(i_{0}, i_{1}, \ldots, i_{K}\right)$ such that $\left(i_{k-1}, i_{k}\right) \in \mathcal{E}$ for all $k=1,2, \ldots, K$
- A cycle is a path ($i_{0}, i_{1}, \ldots, i_{K}$) with $i_{0}=i_{K}$
- \mathcal{G} is called tree $: \Leftrightarrow \exists$ root $r \in \mathcal{V}: \forall i \in \mathcal{V} \backslash\{r\} \exists$ unique path from r to i
- \mathcal{G} is said to have a spanning tree : $\Leftrightarrow \exists \mathcal{E}_{T} \subseteq \mathcal{E}$ such that $\mathcal{G}_{T}=\left(\mathcal{V}, \mathcal{E}_{T}\right)$ is a tree
- \mathcal{G} is strongly connected $: \Leftrightarrow \forall i, j \in \mathcal{V}$ there is a path connecting i with j

Consider again the graph:

Question 6

Is the graph strongly connected?

Question 7

Does the graph has a spanning tree?

Connectivity properties

Theorem

In general:

$$
\mathcal{G} \text { is strongly connected } \Longrightarrow \mathcal{G} \text { has spanning tree }
$$

For undirected graph:

$$
\mathcal{G} \text { is strongly connected } \Longleftrightarrow \mathcal{G} \text { has spanning tree } \Leftrightarrow: \mathcal{G} \text { is connected }
$$

Theorem (Connectivity and Laplacian matrix)
\mathcal{G} has a spanning tree $\Longleftrightarrow \operatorname{Re}\left(\lambda_{2}(\mathrm{~L})\right)>0$

Proof: ...

Summary

Multi-agent systems

- Many motivations and applications
- Interconnection \leftrightarrow graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$

Basic definitions/properties of graphs

- Adjecancy, incidence, Laplacian matrix
- Connectivity (strongly connected, spanning tree)
- \mathcal{G} has spanning tree $\Longleftrightarrow \operatorname{Re} \lambda_{2}(\mathbf{L})>0$

Attention: No lecture next Monday (5 October 2020, 15:00-17:00)

