Advanced Systems Theory

Lecture 10: Multiagent systems: Motivation, graph theoretical background

Prof. Dr. Stephan Trenn & Dr. Yahao Chen Jan C. Willems Center for Systems and Control, University of Groningen

Groningen, Fall 2020-21

Multi-agent systems: Preliminaries

What are multi-agent systems?

Feedback loop:

Local feedback of connected plants: (with controller communication)

General interconnection between agents:

Motivation for multi-agent systems

Main motivations

- Complexity: Centralized control not feasible
- Privacy: Centralized control not desired
- Spatially distributed: Centralized control not physically possible
- Safety: No single point of failure

Key questions

Local properties $\stackrel{?}{\Longrightarrow}$ Global properties

Local controller design \implies Global desired behavior

Brain storming (use chat for answers)

What examples of multi-agent systems come to your mind?

Interconnection = graph

Definition (Graph)

A graph is a tuple $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where

- $\mathcal{V} = \{1, 2, \dots, N\}$ is the set of nodes
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of (directed) edges

•
$$e = (j, i) \in \mathcal{E}$$
 is an edge from node j to node i

$$(j) \xrightarrow{e} (i) j \text{ and } i a$$

j and *i* are adjacent

agents

influence

Question 1

Have you seen graphs in any other lecture before?

Graph related definitions

Standard assumptions

In the following we will always assume for $\mathcal{G} = (\mathcal{V}, \mathcal{E})$:

- \blacktriangleright \mathcal{V} is finite
- \blacktriangleright ${\mathcal E}$ contains each edge at most once
- ▶ no self loops, i.e. $\forall i \in \mathcal{V}$: $(i, i) \notin \mathcal{E}$

Definition (Undirected graphs)
A graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 is called undirected $:\Leftrightarrow [(j, i) \in \mathcal{E} \iff (i, j) \in \mathcal{E}]$
 $(j \leftarrow i) =: (j \leftarrow i)$

Definition (Neighbors)

 $\begin{array}{l} \blacktriangleright \ \mathcal{N}_i := \{ \ j \in \mathcal{V} \ | \ (j,i) \in \mathcal{E} \ \} \text{ set of neighbors (predecessors),} & |\mathcal{N}_i| \text{ is (in-)degree of node } i \\ \hline \mathcal{S}_j := \{ \ i \in \mathcal{V} \ | \ (j,i) \in \mathcal{E} \ \} \text{ set of successors,} & |\mathcal{S}_j| \text{ is out-degree of node } j \\ \end{array}$

Advanced Systems Theory, Lecture 10, Slide 4/11

Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \{1, \dots, N\}$ and $\mathcal{E} = \{e_1, e_2, \dots, e_M\}$ • adjacency matrix: $\mathbf{A} = [a_{ij}] \in \{0, 1\}^{N \times N}$ with $a_{ij} = 1 \iff (j, i) \in \mathcal{E}$. • incidence matrix*: $\mathbf{N} = [n_{ik}] \in \{-1, 0, 1\}^{N \times M}$ with $n_{ik} = \begin{cases} 1, & \text{if } e_k = (*, i), \\ -1, & \text{if } e_k = (i, *), \\ 0, & \text{otherwise} \end{cases}$

* Convention for undirected graphs: Only one of the two edges (i, j) and (j, i) is considered

Consider the following graph:

Question 2

Which is the adjecency matrix of the graph?

Advanced Systems Theory, Lecture 10, Slide 5/11

Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $\mathcal{V} = \{1, \dots, N\}$ and $\mathcal{E} = \{e_1, e_2, \dots, e_M\}$ • adjacency matrix: $\mathbf{A} = [a_{ij}] \in \{0, 1\}^{N \times N}$ with $a_{ij} = 1 \iff (j, i) \in \mathcal{E}$. • incidence matrix*: $\mathbf{N} = [n_{ik}] \in \{-1, 0, 1\}^{N \times M}$ with $n_{ik} = \begin{cases} 1, & \text{if } e_k = (*, i), \\ -1, & \text{if } e_k = (i, *), \\ 0, & \text{otherwise} \end{cases}$

* Convention for undirected graphs: Only one of the two edges (i, j) and (j, i) is considered

Consider the following graph:

Question 3

Which is the incidence matrix of the graph?

Advanced Systems Theory, Lecture 10, Slide 5/11

Some basic properties of adjecency and incidence matrices

Question 4

Which property is wrong in general?

- (i) \mathcal{G} is undirected $\iff \mathbf{A} = \mathbf{A}^{\top}$
- (ii) rank $\mathbf{N} \leq N-1$
- (iii) rank $\mathbf{A} \leq N 1$
- (iv) the in-degree $|\mathcal{N}_i|$ is the *i*-th row-sum of **A**
- (v) the difference between out- and in-degree of node i is the i-th row sum N

The Laplacian matrix of a graph

Advanced Systems Theory, Lecture 10, Slide 7/11

Some further properties of the Laplacian matrix

Theorem (Spectral properties of Laplacian)

All eigenvalues λ of **L** satisfy $\operatorname{Re}(\lambda) \geq 0$.

Proof: ...

It is common to order the eigenvalues of $\boldsymbol{\mathsf{L}}$ as

$$0 = \lambda_1 \leq \operatorname{Re}(\lambda_2) \leq \operatorname{Re}(\lambda_3) \leq \ldots \leq \operatorname{Re}(\lambda_n)$$

$$0 = \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_n \text{ (undirected case)}$$

Theorem

If ${\mathcal{G}}$ is undirected then

 $\mathbf{L} = \mathbf{N}\mathbf{N}^\top$

in particular, the product does not depend on the choice of "directions" in ${\bf N}$

Proof: ...

Corollary

For an undirected graph

Advanced Systems Theory, Lecture 10, Slide 8/11

Paths and connectivity

Definition

Consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- A path is a sequence of nodes (i_0, i_1, \ldots, i_K) such that $(i_{k-1}, i_k) \in \mathcal{E}$ for all $k = 1, 2, \ldots, K$
- A cycle is a path (i_0, i_1, \ldots, i_K) with $i_0 = i_K$
- ▶ G is called tree :⇔ \exists root $r \in V$: $\forall i \in V \setminus \{r\} \exists$ unique path from r to i
- \mathcal{G} is said to have a spanning tree : $\Leftrightarrow \exists \mathcal{E}_T \subseteq \mathcal{E}$ such that $\mathcal{G}_T = (\mathcal{V}, \mathcal{E}_T)$ is a tree
- ▶ G is strongly connected : $\Leftrightarrow \forall i, j \in V$ there is a path connecting *i* with *j*

Consider again the graph:

Question 6

Is the graph strongly connected?

Question 7

Does the graph has a spanning tree?

Connectivity properties

Theorem (Connectivity and Laplacian matrix)

 \mathcal{G} has a spanning tree $\iff \operatorname{Re}(\lambda_2(\mathsf{L})) > 0$

Proof: ...

Summary

Multi-agent systems

- Many motivations and applications
- ▶ Interconnection \leftrightarrow graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

Basic definitions/properties of graphs

- Adjecancy, incidence, Laplacian matrix
- Connectivity (strongly connected, spanning tree)
- ▶ G has spanning tree \iff Re $\lambda_2(L) > 0$

Attention: No lecture next Monday (5 October 2020, 15:00-17:00)

Advanced Systems Theory, Lecture 10, Slide 11/11