
Advanced Systems Theory

Lecture 10: Multiagent systems: Motivation, graph theoretical
background

Prof. Dr. Stephan Trenn & Dr. Yahao Chen
Jan C. Willems Center for Systems and Control, University of Groningen

Groningen, Fall 2020-21



Multi-agent systems: Preliminaries



What are multi-agent systems?

Feedback loop:

P

C

Local feedback of connected plants:
(with controller communication)

P1 P2 P3 P4

C1 C2 C3 C4

General interconnection between agents: 1

2

3

4 5
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Motivation for multi-agent systems

Main motivations

I Complexity: Centralized control not feasible

I Privacy: Centralized control not desired

I Spatially distributed: Centralized control not physically possible

I Safety: No single point of failure

Key questions

Local properties
?

=⇒ Global properties

Local controller design =⇒ Global desired behavior

Brain storming (use chat for answers)

What examples of multi-agent systems come to your mind?
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Interconnection = graph

Definition (Graph)

A graph is a tuple G = (V, E) where

I V = {1, 2, . . . ,N} is the set of nodes agents

I E ⊆ V × V is the set of (directed) edges influence

I e = (j , i) ∈ E is an edge from node j to node i j i
e

j and i are adjacent

Example:

1

2

3

4 5
V = {1, 2, 3, 4, 5}

E = {(1, 2), (1, 3), (2, 4), (4, 1), (4, 3), (4, 5)}

Question 1

Have you seen graphs in any other lecture before?
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Graph related definitions

Standard assumptions

In the following we will always assume for G = (V, E):

I V is finite

I E contains each edge at most once

I no self loops, i.e. ∀i ∈ V : (i , i) /∈ E

Definition (Undirected graphs)

A graph G = (V, E) is called undirected :⇔
[

(j , i) ∈ E ⇐⇒ (i , j) ∈ E
]

j i =: j i

Definition (Neighbors)

I Ni := { j ∈ V | (j , i) ∈ E } set of neighbors (predecessors), |Ni | is (in-)degree of node i

I Sj := { i ∈ V | (j , i) ∈ E } set of successors, |Sj | is out-degree of node j
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Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph G = (V, E) with V = {1, . . . ,N} and E = {e1, e2, . . . , eM}
I adjacency matrix: A = [aij ] ∈ {0, 1}N×N with aij = 1 ⇐⇒ (j , i) ∈ E .

I incidence matrix∗: N = [nik ] ∈ {−1, 0, 1}N×M with nik =


1, if ek = (∗, i),
−1, if ek = (i , ∗),
0, otherwise

∗ Convention for undirected graphs: Only one of the two edges (i , j) and (j , i) is considered

Consider the following graph:

1

2

3

4 5

e1 e2

e3 e4

e5 e6

Question 2

Which is the adjecency matrix of the graph?

(i)


0 0 0 1 0
1 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 (ii)


0 0 0 1 0
1 0 0 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 1 0


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Matrix representations of graphs

Definition (Adjacency and incidence matrix)

Consider graph G = (V, E) with V = {1, . . . ,N} and E = {e1, e2, . . . , eM}
I adjacency matrix: A = [aij ] ∈ {0, 1}N×N with aij = 1 ⇐⇒ (j , i) ∈ E .

I incidence matrix∗: N = [nik ] ∈ {−1, 0, 1}N×M with nik =


1, if ek = (∗, i),
−1, if ek = (i , ∗),
0, otherwise

∗ Convention for undirected graphs: Only one of the two edges (i , j) and (j , i) is considered

Consider the following graph:

1

2

3

4 5

e1 e2

e3 e4

e5 e6

Question 3

Which is the incidence matrix of the graph?

(i)


-1 0 -1 0 0 1
1 -1 0 0 0 0
0 0 1 1 0 0
0 1 0 -1 -1 -1
0 0 0 0 1 0

 (ii)


-1 0 -1 0 1 0
1 -1 0 0 0 0
0 0 1 1 0 0
0 1 0 -1 -1 -1
0 0 0 0 0 1


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Some basic properties of adjecency and incidence matrices

1

2

3

4 5

e1 e2

e3 e4

e5 e6
A =


0 0 0 1 0
1 0 0 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 1 0

 N =


-1 0 -1 0 1 0
1 -1 0 0 0 0
0 0 1 1 0 0
0 1 0 -1 -1 -1
0 0 0 0 0 1



Question 4

Which property is wrong in general?

(i) G is undirected ⇐⇒ A = A>

(ii) rankN ≤ N − 1

(iii) rankA ≤ N − 1

(iv) the in-degree |Ni | is the i-th row-sum of A

(v) the difference between out- and in-degree of node i is the i-th row sum N

Advanced Systems Theory, Lecture 10, Slide 6/11 Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen



The Laplacian matrix of a graph

Definition

L := D− A is called Laplacian matrix of G, where

D =


|N1|

|N2|
. . .

|NN |


is the (in-)degree matrix of G.

Laplacian matrix of 1

2

3

4 5 is ... L =


1 0 0 -1 0
-1 1 0 0 0
-1 0 2 -1 0
0 -1 0 1 0
0 0 0 -1 1


Question 5

Which property is NOT true in general?
(i) L = L> ⇐⇒ G is undirected (ii) 0 is an eigenvalue of L with eigenvector (1, 1, . . . , 1)
(iii) rankL ≤ N − 1 (iv) (1, 1, . . . , 1) is in the left-kernel of L
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Some further properties of the Laplacian matrix

Theorem (Spectral properties of Laplacian)

All eigenvalues λ of L satisfy Re(λ) ≥ 0.

Proof: ...
It is common to order the eigenvalues of L as

0 = λ1 ≤ Re(λ2) ≤ Re(λ3) ≤ . . . ≤ Re(λn)

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn (undirected case)

Theorem

If G is undirected then
L = NN>

in particular, the product does not depend on the choice of “directions” in N

Proof: ...

Corollary

For an undirected graph
rankL = rankN
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Paths and connectivity

Definition

Consider a graph G = (V, E)

I A path is a sequence of nodes (i0, i1, . . . , iK ) such that (ik−1, ik) ∈ E for all k = 1, 2, . . . ,K

I A cycle is a path (i0, i1, . . . , iK ) with i0 = iK
I G is called tree :⇔ ∃ root r ∈ V: ∀i ∈ V \ {r} ∃ unique path from r to i

I G is said to have a spanning tree :⇔ ∃ET ⊆ E such that GT = (V, ET ) is a tree

I G is strongly connected :⇔ ∀i , j ∈ V there is a path connecting i with j

Consider again the graph: 1

2

3

4 5

1

2

4

Question 6

Is the graph strongly connected?

Question 7

Does the graph has a spanning tree?
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Connectivity properties

Theorem

In general:
G is strongly connected =⇒ G has spanning tree

For undirected graph:

G is strongly connected ⇐⇒ G has spanning tree ⇔: G is connected

Theorem (Connectivity and Laplacian matrix)

G has a spanning tree ⇐⇒ Re(λ2(L)) > 0

Proof: ...
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Summary

Multi-agent systems

I Many motivations and applications

I Interconnection ↔ graph G = (V, E)

Basic definitions/properties of graphs

I Adjecancy, incidence, Laplacian matrix

I Connectivity (strongly connected, spanning tree)

I G has spanning tree ⇐⇒ Reλ2(L) > 0

Attention: No lecture next Monday (5 October 2020, 15:00-17:00)
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