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Abstract

Recent advancements in the analysis and stabilization of linear switched differential-algebraic equations (SwDAEs) have yielded
fruitful results, particularly for time-dependent switching signals. However, the state-dependent case, which finds significant
applications in switched ordinary differential equations (SwODEs) [13], has received considerably less attention in the literature
regarding SwDAEs. This paper aims to address this gap by introducing a novel jump rule that resolves the contradiction
between the consistency projector [14, 15] and the state-dependent switching rule. Building upon this new jump rule, we
investigate solutions and various sliding modes that encompass both jump and flow dynamics for state-dependent SwDAEs.
Additionally, we extend well-established stability and stabilization results from state-dependent SwODEs to SwDAEs. These
extensions include stability criteria applicable to arbitrary state-dependent switching signals, stable convex combinations, and
the “min-max-switching rule” for stabilization via state-dependent signal. Both numerical and physical examples are presented
to showcase the application of these state-dependent stabilization rules in SwDAEs.

Key words: Switched systems; differential-algebraic equations; state-dependent switching rule; jump and flow solutions;
arbitrary switching; convex combinations; stability and stabilization

1 Introduction

We consider a linear switched differential-algebraic equa-
tion (SwDAE)

∆σ : Eσẋ = Hσx, (1)

where x ∈ Rn denotes the vector of generalized states,
and σ : Rn → N represents a state-dependent switch-
ing signal with a locally finite number of jumps. Here,
N := {1, . . . , N}, withN ∈ N being the number of DAE
modes. For each p ∈ N , the maps Ep : Rn → Rn and
Hp : Rn → Rn are linear maps. SwDAEs have been
proved to be powerful tools for modeling various physi-
cal systems, including electrical circuits with switching
devices [25, 19], power grids [9], and structure changing
mechanics/robotics [8].

The analysis of linear SwDAEs with time-dependent
switching signals has been a subject of considerable in-
terest among researchers for several decades. Numerous
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topics closely related to the subject matter of this paper
have been explored. For instance, stability analysis un-
der arbitrary (time-dependent) switching has been ex-
tensively investigated [14, 31, 26, 22], as well as stabil-
ity analysis under slow switching rules such as average
dwell time method [14, 34]. Stabilization techniques uti-
lizing fast switching and averaging methods have also
been explored [17, 18]. Some extensions of results for
discrete-time time-dependent SwDAEs can be found in
e.g., [32, 1]. It is worth noting that most of these re-
sults have their counterparts for switched ordinary dif-
ferential equations (ODEs), which can be found in the
comprehensive book by Liberzon [13] and the references
therein.

Despite the frequent occurrence of state-dependent
SwDAEs in physical systems, a general theory on their
solutions and stability is rare to find. Typically, the fo-
cus has been on studying specific systems rather than
establishing a broad theoretical framework. For exam-
ple, in [19], the passivity of a state-dependent SwDAE-
modelled circuit was discussed, providing insights into a
specific application. In [21] and [2], numerical methods
and Modelica tools were utilized, respectively, to sim-
ulate physical examples that involved state-dependent
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SwDAEs. These studies shed light on the behavior of
particular instances of state-dependent SwDAEs but
do not provide a comprehensive theory applicable to a
wide range of systems.

Defining state jumps that connect the continuous solu-
tions of different modes is a primary challenge in solving
state-dependent SwDAEs. In the case of time-dependent
SwDAEs, the jumps of linear SwDAEs were typically
defined using a set-value map known as the consistency
projector (refer to [24, 15]). However, state-dependent
switching laws divide the (generalized) state space into
distinct active regions. Applying the consistency projec-
tor directly to state-dependent SwDAEs may lead to a
consistent point that contradicts the active region. Ad-
ditionally, sliding modes can occur on the switching sur-
face of state-dependent switchedODEs [13]. Similar phe-
nomena can be expected in the case of SwDAEs. Given
that both state jumps and continuous solutions can tra-
verse the switching surface, characterizing the sliding
behavior that combines jumps and continuous solutions
becomes a challenging task. Therefore, the primary ob-
jective of this paper is to propose a suitable definition
of state jumps and to address the sliding mode behavior
for state-dependent linear SwDAEs.

Another significant challenge lies in the stabilization of
linear SwDAEs. It is well-known [13] that for switched
ODEs of the form ẋ = Aσx, stabilization can be achieved
through two approaches: employing fast switching to ap-
proximate the solution of ẋ = Aσx, or using a hysteresis
state-dependent switching strategy [29]. The extension
of the fast switching approach to SwDAEs can be found
in [31, 17, 18, 27]. In these works, assumptions such as
commutativity of flow matrices [16] are often required
to approximate the solution of a SwDAE with that of
a switched ODE perturbed by small terms [17]. Weaker
assumptions, such as the (PA) assumption on the con-
sistency projectors, are made in [18] to derive an aver-
aged ODE model with jumps for SwDAEs. The second
objective of this paper is to explore the application of
convex combinations to SwDAEs in order to establish
hysteresis state-dependent switching rules that facilitate
their stabilization.

It is worth noting that state-dependent DAEs have close
connections to complementarity systems [4, 11]. Com-
plementarity systems are widely used to model various
systems, including circuits with diodes and transistors,
mechanics with unilateral constraints, and optimization
problems [23]. Therefore, the results presented in this
paper regarding the solutions of linear state-dependent
DAEs may also contribute to the understanding and
analysis of linear complementarity systems.

The structure of the paper is as follows: Section 2 pro-
vides essential concepts and notions related to linear
DAEs. In Section 3, we introduce novel definitions of
state jumps and jump-flow solutions for SwDAEs, and

we discuss different sliding modes for both the jumps
and the flow solutions. Section 4 presents stability and
stabilization results, including stability analysis under
arbitrary state-dependent switching rules and the hys-
teresis stabilization law for SwDAEs with and without
Hurwitz convex combinations. Finally, in Section 5, we
summarize the conclusions drawn from this work and
discuss potential future research directions.

2 Preliminaries

The following notation is used throughout the paper. N
andR are the natural numbers and real numbers, respec-
tively. For a matrix M ∈ Rn×m, the kernel (null space)
of M is denoted by kerM , the image of M is denoted by
imM , the transpose ofM isM⊤. The image of a set S ⊆
Rn under M is MS := {Mx ∈ Rn | x ∈ S } and the pre-
image of S under M is M−1S := {x ∈ Rn | Mx ∈ S }.
The identity matrix of size n× n is denoted by In.

The non-switching case of (1) is a DAE Eẋ = Hx, de-
noted by ∆ = (E,H). A C1-curve x : [0,∞) → Rn is
called a C1-solution of ∆ if Eẋ(t) = Hx(t) for all t ∈
[0,∞). A point x0 ∈ Rn is called consistent if there exists
a C1-solution x(·) starting from x0, i.e., x(0) = x0. The
set of all consistent points is called consistency space, de-
noted by C, which coincides with the limit V ∗ = Vn of
the sequence of subspace Vk, which, together with Wk,
are called the Wong sequences [30]:{

V0 = Rn, Vk+1 = H−1EVk, k ≥ 1,

W0 = {0}, Wl+1 = E−1HWl, l ≥ 1.
(2)

The DAE ∆ is called regular if det(sE−H) is not iden-
tically zero. The regularity guarantees the existence and
uniqueness of C1-solutions. We assume throughout that
all DAE modes in the present paper are regular. Any
regular DAE can be always transformed, via two con-
stant invertible matrices Q and P , into the Weierstrass
form [28, 3] ∆̃ = (QEP−1, QHP−1):[

In1
0

0 N

][
ẋ1

ẋ2

]
=

[
A1 0

0 In2

][
x1

x2

]
, (3)

where A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a nilpotent
matrix with nilpotency index ν, i.e.Nν−1 ̸= 0 andNν =
0, where n1+n2 = n. The index of ∆ is defined to be the
nilpotency index ν of N , thus we have N = 0 for index-1
DAEs. Note that the Wong sequences the matrices Q, P
can be constructed with the help of V ∗ and W ∗ := Wn

[3], the variables x1 ∈ Rn1 and x2 ∈ Rn2 are coordinates
on V ∗ and W ∗, respectively, and V ∗ ⊕W ∗ = Rn.

Discontinuous solutions are considered for differential-
algebraic equations (DAEs) when the initial point x−

0 /∈
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C is not consistent. One approach to achieve a consistent
initialization is to introduce a jump (an instant change)
from x−

0 to x+
0 , where x+

0 ∈ C is a consistent point that
can be uniquely defined using the consistency projector
ΠE,H [24, 14, 25]. For a regular DAE ∆ = (E,H), the
consistency projector ΠE,H is defined as follows:

ΠE,H := P−1

[
In1

0

0 0

]
P, (4)

where P is from (3). Now we construct two matrices
Adf , which is called the flow matrix [16, 25], and Ajp,
which we introduce in the present paper for the jump
dynamics, given by, respectively,

Adf := P−1

[
A1 0

0 0

]
P and Ajp := P−1

[
0 0

0 −In2

]
P.

(5)

where A1 and P are the matrices from (3).

Remark 2.1. The ODE ẋ = Adfx has the same
C1-solution with ∆ for any consistent initial point
x+
0 , and any solution J : [0,∞) → Rn of the ODE

dJ(τ)
dτ = AjpJ(τ) starting from x−

0 = J(0) is a jump so-
lution/trajectory in the sense of Definition 3.1 below (by
setting Ωp = Rn). It is remarked that the consistency
projector ΠE,H and the matrix Ajp are related by

ΠE,H = ΦAjp

∞ , (6)

where ΦAjp

τ := eA
jpτ is the flow map of Ajp. Moreover,

imAjp = W ∗ and kerAjp = V ∗.

Note that one may replace−In2
ofAjp by any other Hur-

witz matrix, then equation (6) still holds. However, such
a replacement results in a trajectory J(τ) which may not
be the “shortest” path (i.e., straight line) connecting x−

0

and x+
0 .

3 Solutions of state-dependent SwDAEs

3.1 State-dependent jumps and jump sliding modes

Given a SwDAE ∆σ with a state-dependent switching
signal σ(x) = p for x ∈ Ωp ⊆ Rn, consider an inconsis-
tent initial point x−

0 /∈ Cp and x−
0 ∈ Ωp. If we directly

apply the consistency projector Πp to x−
0 , we obtain the

consistent point x+
0 = Πpx

−
0 ∈ Cp. However, in general,

x+
0 /∈ Ωp, which means that the resulting consistent point

violates the switching rule. Therefore, it becomes neces-
sary to introduce a new definition of jumps for state-
dependent SwDAEs to address this issue.

In our recent paper [5], we proposed a generalization
of the notion of jumps for nonlinear DAEs. Instead of
considering a jump as a simple instantaneous change,
we introduce the concept of a parametrized curve that
connects x−

0 with a consistent point x+
0 , while adhering

to specific jump rules. By adopting this approach, we
establish a definition of jumps for SwDAEs with state-
dependent switching as follows.

Definition 3.1 (state-dependent jumps). Consider a
SwDAE ∆σ with a state-dependent switching signal:
σ(x) = p if x ∈ Ωp ⊆ Rn, for p ∈ N . Given an ini-
tial point x−

0 ∈ Rn, if an absolutely continuous curve
J : [0,∞)→ Rn satisfies J(0) = x−

0 and ∀τ ∈ [0,∞) :
J(τ) ∩

N⋃
p=1

(Cp ∩ Ωp) = ∅,

dJ(τ)

dτ
= Ajp

p J(τ) if J(τ) ∈ Ωp,

(7)

and J(∞) = x+
0 ∈

N⋃
p=1

(Cp ∩ Ωp), then J(τ) is

called a (convergent) jump solution/trajectory. If

J(∞) /∈
N⋃

p=1
(Cp∩Ωp), then it is called a (divergent) jump

solution/trajectory. The change x−
0 → x+

0 associated
with the jump trajectory J(·) is called a (convergent or
divergent) jump of ∆σ.

Remark 3.2. The motivation of the above jump rule is

to keep the jump direction dJ(τ)
dτ in the subspace W ∗

p (re-

call that imAjp
p = W ∗

p ) when J(τ) is in the active region
Ωp. For each sub-mode ∆p, the idea of keeping the jump
direction in W ∗

p can be easily seen via the Weierstrass
form (3). Indeed, any inconsistent initial point (x10, x20)
of (3) jumps into (x10, 0), i.e., only x2-variables are al-
lowed to jump (see e.g. [24] for the distributional argu-
ments about its reason). Recall that x2 are coordinates
on W ∗, which means that the jump direction stays in
W ∗. Moreover, the jump solution J(τ) in each Ωp is the
“shortest” path along W ∗

p towards V ∗
p , see Remark 2.1.

By the above definition, each jump solution of a state-
dependent SwDAE can be seen as a solution of a state-
dependent switched ODE system

dJ(τ)

dτ
= Ajp

σ J(τ), σ(J) = p if J ∈ Ωp, (8)

where, for each p, Ajp
p is the jump matrix of ∆p defined

in (5), the trajectory starts from a given initial point x−
0 ,

then it either reaches a consistent point x+
0 ∈

N⋃
p=1

(Cp ∩

Ωp) and stops or diverges to infinity as τ →∞.
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It is known that sliding behaviors can happen on the
switching surface of a state-dependent switched ODE
[13]. More specifically, let Spq be the switching surface
of the p-th and the q-th mode of (8), if both the vectors
fp(J) = Ajp

p J and fq(J) = Ajp
q J point towards Spq, then

there exists a convex combination F (J) = αfp(J) +
(1 − α)fq(J) for 0 ≤ α ≤ 1 such that F (J) ∈ TJSpq,
where fp(J) = Ajp

p J , fq(J) = Ajp
q J and TJSpq is the

tangent space of Spq at J ∈ Spq, then a solution (in
the sense of Filippov [10]) of the differential inclusion
dJ
dτ ∈ F (J) starting from any point x−

0 ∈ Spq is a solution

of (8) starting from x−
0 . Thus for the SwDAE∆σ, a jump

solution J(τ) can slide on the switching surface before

reaching any consistent point x+
0 ∈

N⋃
p=1

Cp, which we will

call a jump sliding mode of ∆σ.

Example 3.3. Consider a SwDAE ∆σ = (Eσ, Hσ)
defined on R2 with two modes ∆1 :

[
1 −γ
0 0

] [
ẋ1
ẋ2

]
=[

0 −1
1 0

]
[ x1
x2

] and ∆2 :
[−γ 1

0 0

] [
ẋ1
ẋ2

]
=

[−1 0
0 1

]
[ x1
x2

] . The
state-dependent switching signal is

σ =

{
1 if γ(x1 − x2) ≥ 0,

2 if γ(x1 − x2) < 0.

By a direct calculation, we get Ajp
1 = P−1

1

[
0 0
0 −1

]
P1 =[

−1 0
− 1

γ 0

]
and Ajp

2 = P−1
2

[
0 0
0 −1

]
P2 =

[
0 − 1

γ

0 −1

]
, where

P1 =
[
1 −γ
1 0

]
and P2 =

[−γ 1
0 1

]
. It is seen that the

switching surface S12 =
{
J = (x1, x2) ∈ R2

∣∣ x1 = x2

}
and we have αf1(J) + (1 − α)f2(J) ∈ TJS12, where

f1(J) = Ajp
1 J , f2(J) = Ajp

2 J , α = 0.5 and TJS12 =
im [ 11 ]. Moreover, f1(J) and f2(J) point towards Spq

on the first quadrant (not on the third quadrant).

Thus given any inconsistent point x−
0 =

[
x−
10

x−
20

]
∈

S12 ∩ {x ∈ R | x1 ≥ 0, x2 ≥ 0}, i.e., x−
0 ̸= 0 and

x−
10 = x−

20 > 0, we have jump sliding modes. As seen
from Fig 1, the jump sliding mode J(τ) converges to 0
(implying that x+

0 = 0 is the resulting consistent point)
if γ > 1, and J(τ) diverges if γ < −1.

x1

x2

(a) γ > 1

x1

x2

(b) γ < −1

Fig. 1. Red and blue dashed arrows: Jump directions of ∆1

and ∆2, Red and blue lines: C1 and C2, purple dashed line
with arrows: Jump sliding modes.

Now given an initial point x−
0 and a state-dependent

switching signal σ(x) = p for x ∈ Ωp, we assume without
loss of generality that

(A1).
N⋃

p=1
Ωp = Rn.

(A2). σ(x) = 1 if x ∈
l⋂

i=1

Ωi for l ≥ 2.

Assumption (A1) is to ensure that σ(x) exists for all

x ∈ Rn and that
N⋂

p=1
(Cp∩Ωp) ̸= ∅ (the origin 0 ∈

N⋂
p=1

Cp

so 0 ∈
N⋂

p=1
(Cp ∩ Ωp) if (A1) holds). Assumption (A2) is

to guarantee that σ(x) is uniquely defined by x. Then we
show that it is possible to calculate the jump x−

0 → x+
0

of ∆σ via the following algorithm with the help of the
consistency projectors.

Algorithm 1 State dependent jumps algorithm

Input: x−
0 ∈ Rn

Output: x+
0 ∈

N⋃
p=1

(Cp ∩ Ωp)

1: if x−
0 ∈

N⋃
p=1

(Cp ∩ Ωp) then

2: return x+
0 = x−

0
3: end if
4: Permute the index of the subsystems of ∆σ such that

x−
0 ∈

l⋂
i=1

Ωi and σ(x−
0 ) = 1, for a maximal integer

1 ≤ l ≤ N .
5: Set x̂+

0 ← ΠE1,H1x
−
0 .

6: if ∀0 ≤ α ≤ 1 : (1− α)x−
0 + αx̂+

0 ∈ Ω1 then
7: return x+

0 = x̂+
0

8: else
9: Find the smallest 0 < α∗ ≤ 1 such that (1 −

α∗)x−
0 + α∗x̂+

0 ∈ ∂Ω1, where ∂Ω1 denotes the
boundary of Ω1.

10: Set x−
0 ← (1− α∗)x−

0 + α∗x̂+
0 .

11: Go to Step 1.
12: end if

Proposition 3.4. Given a SwDAE ∆σ. Assume (A1)-
(A3) hold, where

(A3). There are no jump sliding modes.

If Algorithm 1 returns to a point x+
0 ∈ Rn, then the

change x−
0 → x+

0 is a (convergent) jump of ∆σ in the
sense of Definition 3.1.

The proof of Proposition 3.4 is omitted as Algorithm 1
follows exactly the same jump rule as in Definition 3.1
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due to the relation ΠE,H = ΦAjp

∞ . We give the following
remarks for Algorithm 1. For a point x−

0 ∈ S ⊆ ∂Ω1, it
is possible that sliding jump mode exists on the switch-
ing surface S. In that case, (1 − α)x−

0 + αx̂+
0 /∈ Ω1

for all 0 < α ≤ 1, thus α∗ in Algorithm 1 does not
exist, so the cases of sliding jump modes are excluded
in Proposition 3.4. Moreover, it is possible that Algo-
rithm 1 does not return to any point, a simple case is that
N⋃

p=1
(Cp∩Ωp) = ∅, then x+

0 does not exist but the system

can still have a divergent jump. Even
N⋃

p=1
(Cp∩Ωp) is not

empty, Algorithm 1 may still not return to a point x+
0 ,

as we show in the following simple example.

Example 3.5. Consider a SwDAE ∆σ with the states
x = (x1, x2) ∈ R2 and two modes

∆1 :

[
1 1

0 0

][
ẋ1

ẋ2

]
=

[
−1 0

0 1

][
x1

x2

]
,

∆2 :

[
1 γ

0 0

][
ẋ1

ẋ2

]
=

[
−1 0

1 −1

][
x1

x2

]
,

where γ > 0 is a constant. The following switching signal
is chosen:

σ(x) =


1, if x ∈ C2 \ {0},
2, if x ∈ C1 \ {0},

1 or 2, if x ∈ (C1 ∩ C2) ∪ {0},
(9)

where C1 and C2 denote, respectively, the complimen-
tary set of the consistency space C1 =

{
x ∈ R2

∣∣ x2 = 0
}

and C2 =
{
x ∈ R2

∣∣ x1 − x2 = 0
}
. To fix σ(x) when

x ∈ (C1∩C2)∪{0} and to avoid jump sliding modes, we
assume that the change the value of σ(x) may happen
only when x ∈ C1 ∪ C2. So the only possible jumping

point x+
0 is the origin because

2⋃
p=1

(Cp∩Ωp) = {0}. Given

a point x−
0 = [ 0c ] with c > 0, we calculate the jump by

Algorithm 1 and in the 2k-th iteration,

x̂+
0 = (Π2Π1)

k [ c0 ] =

([
1

γ+1
1

γ+1
1

γ+1
1

γ+1

])k

[ c0 ]

=
1

2

(
2

γ + 1

)2k−1

[ cc ] ,

where the consistency projectors Π1 = [ 1 1
0 0 ] and Π2 =[

1
γ+1

γ
γ+1

1
γ+1

γ
γ+1

]
. Clearly, Algorithm 1 returns to x+

0 = [ 00 ]

if and only if γ > 1 because lim
k→∞

1
2

(
2

γ+1

)2k−1

= 0 for

γ > 1. Observe that for γ = 1, we have in the 2k+1-th

x1

x2

(a) γ > 1

x1

x2

(b) γ = 1

x1

x2

(c) 0 < γ < 1

Fig. 2. Red and blue dashed lines with arrows: Jumps of ∆1

and ∆2, Red and blue lines: C1 and C2.

iteration that x̂0 = Π1

[
c
2
c
2

]
= [ c0 ] ̸=

[
c
2
c
2

]
, thus the jump

oscillates between two points
[

c
2
c
2

]
and [ c0 ]; for 0 < γ < 1,

the jump goes to infinity, they are both divergent jumps
in the sense of Definition 3.1.

3.2 Jump-flow solutions and jump-flow sliding modes

With the help of Definition 3.1, we define the impulse-
free jump-flow solutions for state-dependent SwDAEs as
follows:

Definition 3.6 (jump-flow solutions). Consider a
SwDAE ∆σ with a state-dependent switching signal:
σ(x) = p if x ∈ Ωp ⊆ Rn, for p ∈ N . Let t1 . . . , tk+1

be the switching time of σ(t) = σ(x(t)) on an interval
I = [t0, tk+1). A piece-wise C1-curve x : I→ Rn is called
a jump-flow solution of ∆σ if for all 0 ≤ i ≤ k, the
jump x(t−i ) → x(t+i ) is a (convergent) jump of ∆σ and
the jump x(t−k+1) → x(t+k+1) is a (convergent or diver-
gent) jump in the sense of Definition 3.1 and the curve
x(·) is a C1-solution of ∆σ(x(t+

i
)) on [ti, ti+1) such that

x(ti) = x(t+i ).

It has been shown in the previous subsection that on
a switching surface Spq of two modes ∆p and ∆q, a
jump sliding mode can be present for an inconsistent
point x0 /∈ Cp ∪ Cq. While for any consistent point
x ∈ Spq ∩ Cp ∩ Cq, both ẋ = Adf

p x and ẋ = Adf
q x should

be satisfied, thus it is also possible that a (flow) sliding
mode can happen if fdf

p (x) = Adf
p x and fdf

q (x) = Adf
q x

both point towards Spq according to the classical ODE
switched systems theory [13]. A problem arises if x ∈
(Spq ∩Cp) \Cp, i.e., x is consistent for one mode ∆q but
is not for another mode ∆p. In that case, the dynamics

should respect both the rule ẋ(t) = dx(t)
dt = Adf

p x(t) and

the jump rule dx(τ)
dτ = Ajp

q x(τ) simultaneously. Recall
that the parameterization variable τ introduced in Defi-
nition 3.1 is, in general, not a time variable (see also [5]).
It is not clear the flow dynamics and the jump dynam-
ics can be related as they are parametrized by different
variables.

Now if the vector fields fdf
p (x(t)) = Adf

p x(t) and

f jp
q (x(τ)) = Ajp

q x(τ) both point towards Spq at x ∈ Spq,
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i.e., there exists 0 ≤ α ≤ 1 such that

αfdf
p (x) + (1− α)f jp

q (x) ∈ TxSpq (10)

for x ∈ Spq, we define that the system follows a jump-

flow sliding modes dx
dt ∈ αfdf

p (x) + (1 − α)f jp
q (x), α ∈

[0, 1]. An intuition for such a definition comes from the
singular perturbation approximations of DAEs [12, 5],
τ and t are related via a small parameter ϵ by dτ

dt = ϵ,

then the jump rule becomes dx(t)
dt = 1

ϵ f
jp
q (x(t)), there

always exist a convex combination of fdf
p (x) and 1

ϵ f
jp
q (x)

belongs to TxSpq if and only if (10) holds. Indeed, let
β := α

ϵ(1−α)+α (so 0 ≤ β ≤ 1), it is clear that βfdf
p (x) +

(1−β)ϵf jp
q (x) is proportional to αfdf

p (x)+(1−α)f jp
q (x)

and is thus in TxSpq.

Example 3.7. Consider a SwDAE ∆σ on R2 with two
modes

∆1 :

[
1 0

0 1

][
ẋ1

ẋ2

]
=

[
−1 −1
−1 1

][
x1

x2

]
,

∆2 :

[
1 0

0 0

][
ẋ1

ẋ2

]
=

[
1 0

0 1

][
x1

x2

]
.

Clearly, ∆1 is an ODE, i.e., an index-0 DAE and ∆2 is an
index-1 DAE. We show two different switching signals,
the first is chosen as

σ1(x) =

{
1, if x1 > x2,

2, if x1 ≤ x2,
(11)

Thus S1 =
{
(x1, x2) ∈ R2

∣∣ x1 − x2 = 0
}
is a switching

surface. For each x ∈ S1 \ {0}, there exists 0 ≤ α ≤ 1

such that αfdf
1 (x) + (1 − α)f jp

2 (x) ∈ TxS1 = im [ 11 ],
where

fdf
1 (x) =

[
−x1 − x2

−x1 + x2

]
and f jp

2 (x) =

[
0

−x2

]
.

So for any x0 ∈ S1 \ 0, the solution of ∆σ is a jump-
flow sliding modes, i.e., the Filippov solution of ẋ ∈
αfdf

1 (x) + (1 − α)f jp
2 (x), α ∈ [0, 1] as shown in Fig 3a.

The second switching signal is chosen as

σ2(x) =

{
1, if x2 = 0,

2, if x2 ̸= 0.
(12)

The surface S2 =
{
(x1, x2) ∈ R2

∣∣ x2 = 0
}

coincides
with the consistency space C2 of ∆2. For any point
x ∈ S2 \ {0}, the flow dynamics ẋ = fdf

1 (x) = Adf
1 x

should be respected. Because S2 is not Adf
1 -invariant,

once the trajectory reaches any point of S2, it will leave
S2 immediately to Sδ

2 =
{
(x1, x2) ∈ R2

∣∣ x2 = δ
}
with

x1

x2

(a) σ = σ1(x)

-|δ|
|δ| x1

x2

(b) σ = σ2(x)

Fig. 3. Red and blue dashed arrows: Flow directions of
∆1 and jump direction of ∆2, blue lines: C2, purple line:
Jump-flow sliding modes, magenta line: Jump-flow solutions.

an arbitrarily small parameter δ > 0. Then for x ∈ Sδ
2 ,

the flow dynamic ẋ = fdf
1 (x) and the jump dynamic ẋ =

f jp
2 (x) should be respected, and there exists 0 ≤ α ≤ 1

such that αfdf
1 (x) + (1 − α)f jp

2 (x) ∈ TxS
δ
2 = im [ 10 ],

thus there exists a jump-flow sliding modes on Sδ
2 . For

any point (x10, δ) ∈ Sδ
2 , the trajectory slides to (0, δ)

and eventually heading towards (0, 0) by the rule (12).

4 Stability and stabilization of state-dependent
SwDAEs

4.1 Stability analysis under arbitrary state-dependent
switching signal

Consider a SwDAE∆σ and fix a state-dependent switch-
ing signal σ(x), suppose that for any initial point x0 ∈
Rn, the jump-flow solution x : [0,+∞) → Rn of ∆σ

is well-defined. The SwDAE ∆σ is called stable if for
any ϵ > 0, there exists δ > 0 such that ||x(0)|| < δ ⇒
||x(t)|| < ϵ, ∀t > 0 holds for all jump-flow solutions; ∆σ

is called asymptotically stable if it is stable and and all
jump-flow solutions converge to zero.

Remark 4.1. Impulsive behaviors caused by state
jumps can be present for SwDAEs and they are usu-
ally viewed as unstable phenomena. Stability results for
time-dependent SwDAEs, such as those in [14, 15, 7],
typically exclude these impulsive behaviors from so-
lutions using what’s known as impulse-free conditions
formed via the consistency projector. Exploring the
impulse-freeness of state-dependent switched DAEs
could indeed be an interesting research topic. How-
ever, in this paper, our primary focus revolves around
state-dependent stabilization strategies, we will not
dive into the discussion of the impulse-free conditions
for stat-dependent SwDAEs. Additionally, to simply
eliminate impulses, one might assume that all modes of
the SwDAE have an index-1.

It has been proved in [14, 15, 7] that a switching DAE
is asymptotically stable under arbitrary time-dependent
switching signals if there exists a common Lyapunov-
function V (x) for all the flow dynamics ẋ = Adf

p x on

6



their own consistency spaces Cp, and that

∀p, q ∈ N ∀x ∈ Cq : V (Πpx) ≤ V (x),

which is equivalent to (see [6, 7])

∀p, q ∈ N ∀x ∈ Cq :
∂V (x)

∂x
f jp
p (x) ≤ 0, (13)

where f jp
p (x) = Ajp

p x. However, the above results are no
longer true for state-dependent SwDAEs. Take λ = 1
for Example 3.5, we have Adf

1 =
[−1 −1

0 0

]
, Ajp

1 =
[
0 1
0 −1

]
and Adf

2 =
[
− 1

4 − 1
4

− 1
4 − 1

4

]
, Ajp

2 =
[
− 1

2
1
2

1
2 − 1

2

]
. Clearly, V (x) =

(x1+x2)
2 is a common Lyapunov function for ẋ = Adf

1 x
on C1 =

{
(x1, x2) ∈ R2

∣∣ x2 = 0
}
and for ẋ = Adf

2 x on

C2 =
{
(x1, x2) ∈ R2

∣∣ x1 − x2 = 0
}
, and ∂V (x)

∂x Ajp
1 x =

∂V (x)
∂x Ajp

2 x ≡ 0 implies that (13) holds (for all (x1, x2) ∈
R2). However, ∆σ has divergent jumps and thus is not
asymptotically stable. Observe that V (x) = (x1−x2)

2+
x2
2 is another common Lyapunov function for the two

flow dynamics (on their own consistency space), and
∂V (x)
∂x Ajp

1 x = 4(x1−x2)x2−2x2
2 < 0 for all (x1, x2) ∈ C2\

{0} and ∂V (x)
∂x Ajp

2 x = −2(x1−x2)
2+x2(x1−2) < 0 for all

(x1, x2) ∈ C1\{0}. The reasons that (13) can not guaran-
tee a convergent jump in the state-dependent switching
case are two-folds: for one thing, V (x) should be strictly
decreasing along each f jp

p (x) as a state-dependent jump
can be stable but not asymptotically stable; for another,
the jumps governed by f jp

p (x) may start from any point
outside Cp while in the time-dependent case, it can only
start from Cq for q ̸∈ p. In fact, we have the following
results in the state-dependent case.

Theorem 4.2 (common Lyapunov function). Consider
a SwDAE ∆σ under arbitrary state-dependent switch-
ing signal σ(x) = p for x ∈ Ωp. Assume that the jump-
flow solutions are well-defined, then ∆σ is asymptoti-
cally stable if there exists a positive-definite (Lyapunov)
function V : Rn → [0,∞) such that the level set La :=
{x ∈ Rn |V (x) ≤ a} is compact for a ≥ 0 and

∀p ∈ N ∀x ∈ Cp \ {0} :
∂V (x)

∂x
fdf
p (x) < 0, (14)

∀p ∈ N ∀x /∈ Cp :
∂V (x)

∂x
f jp
p (x) < 0, (15)

where fdf
p (x) = Adf

p x and f jp
p (x) = Ajp

p x.

Proof. The proof follows a similar line as that in [7, 15].
The only differences is the possible presence of jump
sliding modes and jump-flow sliding modes, but their
asymptotical stability are also guaranteed by (14) and
(15) because by definitions, the solutions of the differ-
ential inclusion ẋ ∈ F (x), where F (x) are convex com-
binations of f jp

p (x)’s and/or fdf
p (x)’s, are always asymp-

totical stable by (14) and (15).

Corollary 4.3. The system ∆σ of Theorem 4.2 is
asymptotically stable under arbitrary state-dependent
switching signal if there exists a positive-definite ma-
trix L = L⊤ > 0 and positive scalars κp > 0 such that
∀p ∈ N :

C⊤
p ((Adf

p )⊤L+ LAdf
p )Cp < 0, (16)

(Ajp
p )⊤L+ LAjp

p + κpB
⊤
p Bp ≤ 0, (17)

where Cp is any full column rank matrix such that
imCp = Cp and Bp is any full row rank matrix such that
kerBp = Cp.

Proof. By choosing a quadratic Lyapunov function
V (x) = x⊤Lx, the inequality (14) is equivalent to
x⊤((Adf

p )⊤L+LAdf
p )x < 0 for all x ∈ imCp\{0}, then by

Finsler’s lemma, that is equivalent to (16). Moreover, the
inequality (15) is equivalent to x⊤((Ajp

p )⊤L+LAjp
p )x < 0

for all x ∈ Rn such that x⊤B⊤
p Bpx ̸= 0, the latter is

equivalent to x⊤B⊤
p Bpx > 0 because x⊤B⊤

p Bpx is al-
ways non-negative as Bp is of full row rank. The inequal-
ity (17) is actually equivalent to (15) with a quadratic
Lyapunov function, the conclusion is although slightly
different but is close to the (lossless) S-lemma. If (17)
holds, then x⊤((Ajp

p )⊤P+PAjp
p )x ≤ −κpx

⊤B⊤
p Bpx < 0

for all x /∈ Cp. The proof of the converse is much harder,
which can be done following the same line as proving
the (lossless) S-lemma, see e.g., [20].

4.2 Stable convex combinations

Now we generalise the stable convex combinations re-
sults of switched ODEs via state-dependent switches [13]
to the DAE cases. Consider a SwDAE ∆σ, given by (1),
we define two linear subspaces C∩ and C̄∩ by

C∩ := C1 ∩ . . . ∩ CN and C∩ ⊕ C̄∩ = Rn.

Then define, respectively, two convex combinations:Adf

of the flow matrices Adf
p and Ajp of the jump matrices

Ajp
p :

Adf :=

N∑
p=1

αpA
df
p and Ajp :=

N∑
p=1

βpA
jp
p ,

where αp, βp ∈ [0, 1],
N∑

p=1
αp = 1 and

N∑
p=1

βp = 1. Choose

two full column rank matrices C and C̄ such that imC =
C∩ and im C̄ = C̄∩, define a coordinates transformation
matrix

T = [C, C̄]−1,
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then the linear map Ajp has the following form in the
new coordinates

TAjpT−1 =

[
0 Ajp

2

0 Ajp
4

]
.

The first columns of the above matrix are zeros. Indeed,

we have that AjpC =
N∑

p=1
βpA

jp
p C = 0 as kerAjp

p = Cp,

hence TAjpT−1TC = TAjpT−1 [ I0 ] = 0.

Lemma4.4. (i) A different choice of C̄ such that im C̄ =

C̄∩ does not change the eigenvalues ofAjp
4 (when βp’s are

fixed).

(ii) IfAjp
4 has no zero eigenvalues, i.e.,Ajp

4 is invertible,

then there exists a choice of C̄ such that Ajp
2 ≡ 0, i.e.,

TAjpT−1 =

[
0 0

0 Ajp
4

]
. (18)

Proof. (i) Let C̄ ′ be another full columnmatrix such that
C⊕ im C̄ ′ = Rn. Then C̄ ′ = C̄M +CN for an invertible
matrix M and a matrix N . Thus the coordinates trans-

formation becomes T ′ = [C C̄′ ]
−1

=
[
I −NM−1

0 M−1

]
T .

It follows that Ajp
4 under T ′x-coordinates becomes

M−1Ajp
4 M , so the eigenvalues of Ajp

4 are preserved.

(ii) If Ajp
4 of TAjpT−1 =

[
0 Ajp

2

0 Ajp
4

]
is invertible, then

choose C̄ such that the basis of im C̄ consists of the in-

dependent eigenvectors of
[
0 Ajp

2

0 Ajp
4

]
corresponding to its

non-zero eigenvalues (i.e., the eigenvalues of Ajp
4 ), then

im C̄ becomesAjp-invariant. Now it is clear thatAjp has
the form (18) in Tx-coordinates by the Ajp-invariance
of im C̄.

Fix the matrix T such that (18) holds, then denote

TAdfT−1 =

[
Adf

1 Adf
2

Adf
3 Adf

4

]
(19)

Theorem 4.5. Consider a SwDAE ∆σ, given by (1). If
there exist, respectively, two convex combinations of Ajp

p

and Adf
p such that both Ajp

4 of (18) and Adf
1 of (19) are

Hurwitz 1 then there exists a state-dependent switching

1 In the case that one of the matrices Adf
1 and Ajp

4 is empty,
only the other one is required to be Hurwitz. In particular,
if Ajp

4 is empty, the results reduce to the case of switched
ODEs [13].

signal σ = σ(x) such that ∆σ is asymptotically stable
with possible jump-flow sliding modes being present in
the jump-flow solutions.

Moreover, if the following condition is additionally sat-
isfied,

(IN) : ∀p ∈ N : C∩ is Adf
p -invariant, i.e., Adf

p C∩ ⊆ C∩,

then there exists a state-dependent signal σ = σ(x)
asymptotically stabilize ∆σ without any sliding-mode
being present in the jump-flow solutions.

Proof. Since Ajp
4 is Hurwitz and thus it is invertible,

there always exists an invertible matrix T such that (18)

holds. If both Adf
1 and Ajp

4 are Hurwitz, then there exist

two positive-definite matrices L̂ = L̂⊤ and L̄ = L̄⊤ such
that

(Adf
1 )⊤L̂+ L̂Adf

1 < 0 and (Ajp
4 )⊤L̄+ L̄Ajp

4 < 0

Define a positive-definite matrix L := T⊤
[
L̂ 0
0 L̄

]
T . De-

note the coordinates [ x1
x2

] = Tx, then the subspace C∩ =
{Cx1 | x1 ∈ Rn1 } = {(x1, x2) ∈ Rn | x2 = 0}. It follows
that

(Cx1)
⊤(Adf)⊤L+ LAdf)Cx1

= x⊤
1 (TC)⊤((TAdfT−1)⊤T−⊤LT−1+

T−⊤LT−1TAdfT−1)TCx1

= [ x1 0 ]

([
Adf

1 Adf
2

Adf
3 Adf

4

]⊤ [
L̂ 0
0 L̄

]
+
[
L̂ 0
0 L̄

] [
Adf

1 Adf
2

Adf
3 Adf

4

])
[ x1
0 ]

= x⊤
1

(
(Adf

1 )⊤L̂+ L̂Adf
1

)
x1 < 0, ∀x1 ̸= 0,

and

x⊤ (
(Ajp)⊤L+ LAjp

)
x

= (Tx)⊤
(
(TAjpT−1)⊤T−⊤LT−1 + T−⊤LT−1TAjpT−1

)
Tx

= [ x⊤
1 x⊤

2 ]

([
0 0
0 Ajp

4

]⊤ [
L̂ 0
0 L̄

]
+

[
L̂ 0
0 L̄

] [
0 0
0 Ajp

4

])
[ x1
x2

]

= x⊤
2

(
(Ajp

4 )⊤L̄+ L̄Ajp
4

)
x2 < 0, ∀x2 ̸= 0.

The above two inequalities are, respectively, equivalent
to

N∑
p=1

αp

(
x⊤((Adf

p )⊤L+ LAdf
p )x

)
< 0, ∀x ∈ C∩ \ {0},

N∑
p=1

βp

(
x⊤((Ajp

p )⊤L+ LAjp
p )x

)
< 0, ∀x /∈ C∩.

(20)
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Then we define the sets

Ωdf
p :=

{
x ∈ C∩

∣∣ x⊤((Adf
p )⊤L+ LAdf

p )x < 0
}
, p ∈ N ,

Ωjp
p :=

{
x /∈ C∩

∣∣ x⊤((Ajp
p )⊤L+ LAjp

p )x < 0
}
, p ∈ N .

It is seen that all Ωdf
p ’s and all Ωjp

p ’s are open and conic,

and we have
N⋃

p=1
Ωdf

p = C∩ \ {0} and
N⋃

p=1
Ωjp

p = Rn \ C∩

by (20). Moreover, ∀x ∈ Ωdf
p : ∂V (x)

∂x Adf
p x < 0 and ∀x ∈

Ωjp
p : ∂V (x)

∂x Ajp
p x < 0, where V (x) := x⊤Lx is defined for

all x ∈ Rn.

In order to make V (x) decrease along the jump-flow so-
lutions of ∆σ, it is reasonable to active the mode ∆p in
the sets Ωdf

p and Ωjp
p . Given an initial point x−

0 /∈ C∩, the
first step is to use only state-dependent jumps to drive
x−
0 to any point x+

0 ∈ C∩. To that end and to avoid jump
sliding modes, we use a hysteresis switching strategy as
in [29, 13] but for the jump dynamics. Namely, σ(x) can
be taken as:

(R1): Let σ(x−
0 ) = p if x−

0 ∈ Ωjp
p . For τ ≥ 0, keep

σ(x(τ)) = p and change σ(x(τ)) = q once x(τ+) ∈
Ωjp

q \ Ωjp
p for some q ∈ N . Repeat the latter switching

rule unless x(τ) ∈ C∩.

The Lyapunov function V (x) = x⊤Lx decreases along

the jump solutions of ∆σ under (R1), i.e., dV (x)
dτ < 0,

∀x ∈ Rn \ C∩, which indicates that the jump solutions
will eventually reach some point x+

0 ∈ C∩ (because in
the fixed coordinates, [ x1

x2
] = Px = [C, C̄]−1x, the jump

solution x2(τ) → 0 under (R1) by standard Lyapunov
arguments). Then there are two possible cases depending
on whether the condition (IN) is satisfied.

If (IN) is satisfied, then any (flow) solution of ∆σ start-
ing from x+

0 ∈ C∩ stays in C∩. To drive x+
0 to the origin,

we take the hysteresis rule:

(R2): Let σ(x+
0 ) = p if x+

0 ∈ Ωdf
p . For t ≥ 0, keep

σ(x(t)) = p and change σ(x(t)) = q once x(t+) ∈ Ωdf
q \

Ωdf
p for some q ∈ N . Repeat the procedure.

If (IN) is not satisfied, then it is possible that x(t)
tends to leave C∩ when taking the rule (R2). In that
case, we show that there must exist a (stable) jump-
flow sliding mode near C∩. We only illustrate the case
that dimC∩ = n − 1, the general case can be proved
by extending the proof below with the help of the Jor-
dan forms of Hurwitz matrices. Suppose without loss
of generality that for a certain p ∈ N , Adf

p C∩ ̸⊆ C∩.

Then we have Adf
p3 ∈ R1×(n−1) is not zero, where

T−1Adf
p T =

[
Adf

p1 Adf
p2

Adf
p3 Adf

p4

]
. Recall that in [ x1

x2
] = Tx-

coordinates, C∩ =
{
(x1, x2) ∈ R2

∣∣ x2 = 0
}
. Starting

from a point (x1, 0) ∈ Ωdf
p ⊆ C∩, any (flow)-solution

under (R2) leaves immediately from C∩ and reach a
surface Sδ

pq =
{
x̃ = (x1, x2) ∈ Ωjp

q

∣∣ h(x̃) = x2 − δ = 0
}

for some q ∈ N and an arbitrarily small parameter
δ ∈ R. Moreover, we have sign(δ) = sign(Adf

p3x1). Ob-

serve that as δ → 0, for any point x̃ = (x1, δ) ∈ Sδ
pq,

both the flow dynamics dx̃(t)
dt = TAdf

p T−1x̃ = fdf
p (x̃)

and the jump rule dx̃(τ)
dτ = TAjp

q T−1x̃ = f jp
q (x̃) are

respected. It follows that ∂h(x̃)
∂x̃ fdf

p (x̃) = Adf
p3x1 and

∂h(x̃)
∂x̃ f jp

q (x̃) = Ajp
q4δ, where TAjp

q T−1 =

[
0 Ajp

q2

0 Ajp
q4

]
. It is

seen that sign(Ajp
q4δ) = −sign(δ) because (x1, δ) ∈ Ωjp

q .

Therefore both fdf
p and f jp

q point towards Sδ
pq, which

results in a jump-flow sliding mode ẋ ∈ αfdf
p (x) +

(1 − α)f jp
q (x), α ∈ [0, 1]. Moreover, for all x ∈ Spq,

we have V̇ (x) = ∂V (x)
∂x (αfdf

p (x) + (1 − α)f jp
q (x)) =

αx⊤
1 ((A

jp
p1)

⊤L̂ + L̂Ajp
p1)x1 + (1 − α)∂V (x)

∂x f jp
q (x) +

αg(x1, δ), where g(x1, δ) = x⊤
1 ((A

jp
p3)

⊤L̂ + L̂Ajp
p3)δ +

δ((Ajp
p2)

⊤L̄ + L̄Ajp
p2)x1 + δ((Ajp

p4)
⊤L̄ + L̄Ajp

p4)δ. Notice

that αx⊤
1 ((A

jp
p1)

⊤L̂+ L̂Ajp
p1)x1 < 0 as (x1, 0) ∈ Ωdf

p and
∂V (x)
∂x f jp

q (x) < 0 as x ∈ Spq ⊆ Ωjp
q . So V̇ (x) < 0 as δ

can be taken arbitrarily small. Hence V (x) decreases
along any jump-flow solutions under the rules (R1) and
(R2).

If it is required that the sliding modes (in particular,
jump-flow sliding modes) are excluded from the jump-
flow solutions, then the condition (IN) has to be sat-
isfied. In order to show that (IN) is not a very re-
strictive condition, we compare (IN) with the projector
assumption (PA) made in [18], the latter has already
been shown to be a weaker assumption than suppos-
ing the consistency projectors Πp pair-wisely commute

([16, 17]). Set Π∩ :=
N∏

p=1
Πp, then

(PA): ∀p ∈ N : imΠ∩ ⊆ imΠp, kerΠ∩ ⊇ kerΠp.

Lemma 4.6. (PA) implies (IN) but not conversely,
i.e., in general, (IN) does not imply (PA).

Proof. Firstly, (PA) is equivalent to (21) by Lemma 2
of [18].

∀p ∈ N : ΠpΠ∩ = Π∩ = Π∩Πp. (21)

It follows that ∀p ∈ N , Πp commutes with Π∩, i.e,
P−1
p [ I 0

0 0 ]PpΠ∩ = Π∩P
−1
p [ I 0

0 0 ]Pp ⇒ [ I 0
0 0 ]PpΠ∩P

−1
p =

PpΠ∩P
−1
p [ I 0

0 0 ] . As a consequence, we have[
Ap1 0
0 0

]
PpΠ∩P

−1
p = PpΠ∩P

−1
p

[
Ap1 0
0 0

]
⇒

P−1
p

[
Ap1 0
0 0

]
PpΠ∩ = Π∩P

−1
p

[
Ap1 0
0 0

]
Pp,
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i.e., ApΠ∩ = Π∩Ap. Secondly, if (PA) holds, then we
show imΠ∩ = C∩. Notice that Π∩ is also a projector
if (PA) satisfied by Corollary 3 of [18]. By choosing
suitable coordinates to rectify imΠ∩ and kerΠ∩ (note
that imΠ∩ ⊕ kerΠ∩ = Rn), we can assume without
loss of generality that Π∩ = [ I 0

0 0 ]. Then in the rectified
coordinates, all Πp’s are in block diagonal form by (21),

i.e., Πp =
[
Πp1 0
0 Πp4

]
. Thus by the definition of Π∩, we get

that all Πp1’s are invertible as
N∏

p=1
Πp1 = I and

N∏
p=1

Πp4 =

0. The latter implies
N⋂

p=1
imΠp4 = {0}. Indeed, suppose

that
N⋂

p=1
imΠp4 ̸= {0}, then we take any nonzero point

x04 ∈
N⋂

p=1
imΠp4, it follows that

N∏
p=1

Πp4x04 = x04 ̸= 0

(note that Πp4’s are also projectors), which contradicts
N∏

p=1
Πp4 = 0. Therefore,

imΠ∩ = im [ I 0
0 0 ] =


N⋂

p=1

imΠp1 0

0

N⋂
p=1

imΠp4

 = C∩

(recall that imΠp = Cp). Finally, by ApΠ∩ = Π∩Ap and
imΠ∩ = C∩, we have ApC∩ ⊆ C∩.

Conversely, we show a simple example for which (IN)
holds but not (PA). Take Ξ1 : [ 0 1

0 0 ]
[
ẋ1
ẋ2

]
=

[
1 0
1 −1

]
[ x1
x2

]

and Ξ2 : [ 1 0
0 0 ]

[
ẋ1
ẋ2

]
= [ 1 0

0 1 ] [
x1
x2

]. We have Π1 = [ 0 1
0 1 ] and

Π2 = [ 1 0
0 0 ]. So C∩ = imΠ1 ∩ imΠ2 = {0} implies (IN)

holds. However, easy calculations show that (PA) is not
satisfied.

Example 4.7. Consider a SwDAE ∆σ with generalized
states ξ = (x, y, z) ∈ R3 and two modes:

∆1 :


1 2 1

0 1 1

0 0 0



ẋ

ẏ

ż

 =


1 2 1

0 0 −1
0 1 0



x

y

z

 ,

∆2 :


1 −1 0

0 0 0

0 0 1



ẋ

ẏ

ż

 =


0 −1 γ

1 0 0

0 0 −1



x

y

z

 .

where γ ≥ 0 is a constant. Then direct calculations give

Ajp
1 =

[
0 1 0
0 −1 0
0 1 0

]
, Ajp

2 =
[−1 0 0
−1 0 0
0 0 0

]
,

Adf
1 =

[
1 1 0
0 0 0
0 1 1

]
, Adf

2 =
[

0 0 0
−1 1 −γ
0 0 −1

]
.

The consistency spaces are given by

C1 =
{
ξ ∈ R3

∣∣ y = 0
}
, C2 =

{
ξ ∈ R3

∣∣ x = 0
}
.

Both ∆1 and ∆2 are unstable as the flow matrix Adf
p ,

p = 1, 2, restricted to the consistency space Cp, p = 1, 2,
has unstable eigenvalues. Now choose

T =
[
0 0 1
0 1 0
1 −1 0

]−1

=
[
0 1 1
0 1 0
1 0 0

]
to have

TAjpT−1 =
[
0 0
0 Ajp

4

]
=

[ 0 0 0
0 −β β−1
0 β β−1

]
,

TAdfT−1 =
[
Adf

1 Adf
2

Adf
3 Adf

4

]
= α

[
1 0 0
0 0 0
0 1 1

]
+(1−α)

[−γ−1 γ+2 −1
−γ γ+1 −1
0 0 0

]
.

Thus by choosing e.g., α = 0 and β = 0.5, we have that
both Ajp

4 =
[−0.5 −0.5

0.5 −0.5

]
and Adf

1 = −γ − 1 are Hurwitz.
We now use the switching rules (R1) and (R2) above

to stabilize the SwDAE ∆σ. Set L = T⊤I3T =
[
1 0 0
0 2 1
0 1 1

]
,

define

Ωjp
1 =

{
ξ /∈ C∩

∣∣∣ ξ⊤((Ajp
1 )⊤L+ LAjp

1 )ξ < 0
}

=
{
ξ /∈ C∩

∣∣ − y2 + xy < 0
}

Ωjp
2 =

{
ξ /∈ C∩

∣∣∣ ξ⊤((Ajp
2 )⊤L+ LAjp

2 )ξ < 0
}

=
{
ξ /∈ C∩

∣∣ − x2 − 2xy − yz < 0
}

and
Ωdf

1 = {0}, Ωdf
2 = C∩.

A jump-flow solution under the rule (R1) and (R2) for
γ = 0 and γ = 1 is shown in Figure 4. The rule (R1)
renders the jumps to z-axis (i.e., C∩). Then the rule
(R2) means if the solutions is on C∩, then only ∆2 is
activated. Observe that C∩ is Adf

1 -invariant but it is Adf
2 -

invariant only if γ = 0. So the condition (IN) is only
satisfied for γ = 0 but not for γ = 1. Therefore, in the
case of γ = 1, the flow solution of ∆2 tend to leave z-
axis but the rule (R1) keep s driving the solution into z-
axis, which results in a flow-jump sliding modes around
z-axis. Figure 5 shows the projections the jumps , Ωjp

1

and Ωjp
2 to the x− y plane.

Now we apply the results of Theorem 4.5 to stabilize an
unstable circuit.

Example 4.8. Consider the switching circuit shown in
Figure 6, which consists of an inductor with inductance
L, a capacitor with capacitance C, a current controlled
voltage source vs, a voltage controlled current source is
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x

y

z

(a) γ = 0

x

y

z

(b) γ = 1

Fig. 4. Red dashed lines and blue dashed lines: Jumps of
∆1 and ∆2, blue lines: Flow of ∆2, purple line: Jump-flow
sliding modes.

x

y

Fig. 5. Red ∪ purple region: Ωjp
1 , blue ∪ purple region: Ωjp

2 ,

purple region: Ωjp
1 ∩ Ωjp

2 ; red and blue dashed lines with
arrows: Jumps of ∆1 and ∆2, red and blue lines: C1 and C2.

i=x

K2

+−

vs=− 2i

is=− v

K1

L

C

v=y

Fig. 6. A switching electric circuit

and two switches K1 and K2. The voltage and current
of the controlled sources are set as follows:

vs = −2i, is = −v.

Depending on the states (up or down) of the two
switches, the circuit can be modeled by a SwDAE ∆σ

with four DAE modes ∆i, i = 1, 2, 3, 4, considering the
characteristics of the inductor and the capacitor, and
Kirchhoff’s law.

K1

K2
Up Down

Up ∆1 ∆2

Down ∆3 ∆4

The four modes are, respectively, given by

∆1 :

[
L 0

0 0

][
ẋ

ẏ

]
=

[
0 1

−2 1

][
x

y

]
,

∆2 :

[
L 0

0 0

][
ẋ

ẏ

]
=

[
0 1

1 −1

][
x

y

]
,

∆3 :

[
0 C

0 0

][
ẋ

ẏ

]
=

[
1 0

−2 1

][
x

y

]
,

∆4 :

[
0 C

0 0

][
ẋ

ẏ

]
=

[
1 0

1 −1

][
x

y

]
.

All modes are deliberately set to be unstable via the con-
trolled sources, we now use the results of Theorem 4.5 to
stabilize the circuit. By calculation, we have C∩ = {0},
thus T = I2, Ajp

4 = Ajp and Adf
1 is empty. More-

over, the jump matrices Ajp
1 =

[
0 0
2 −1

]
, Ajp

2 =
[
0 0
1 −1

]
,

Ajp
3 =

[−1 0.5
0 0

]
, Ajp

4 =
[−1 1

0 0

]
, have the stable convex

combination:

Ajp = 0Ajp
1 +βAjp

2 +(1−β)Ajp
3 +0Ajp

4 =
[
β−1 0.5−0.5β
β −β

]
which is Hurwitz for any 0 < β < 1. Thus it is possible
to switch between modes 2 and 3 to stabilize the sys-
tem via their jump solutions only. Indeed, it is seen that
(Ajp)⊤L+ LAjp < 0 for L = I2, define

Ωjp
2 =

{
(x, y) ̸= 0

∣∣∣ x⊤((Ajp
2 )⊤L+ LAjp

2 )x < 0
}

=
{
(x, y)

∣∣ xy − y2 < 0
}

and

Ωjp
3 =

{
(x, y) ̸= 0

∣∣∣ x⊤((Ajp
3 )⊤L+ LAjp

3 )x < 0
}

=
{
(x, y)

∣∣ xy − 2x2 < 0
}
.

By using the hysteresis switching jump rule (R1), we
activate mode ∆p, p = 2, 3, in the region Ωjp

p , p = 2, 3,
respectively, to steer and keep the jump solution in the
set Ωjp

2 ∩ Ωjp
3 and eventually drive any initial point into

the origin. We show the solutions for two different initial
points in Figure 7.
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x

y

Fig. 7. Red ∪ purple region: Ωjp
2 , blue ∪ purple region: Ωjp

3 ,

purple region: Ωjp
2 ∩ Ωjp

3 ; red and blue dashed lines with
arrows: Jumps of ∆2 and ∆3, red and blue lines: C2 and C3.

4.3 Stabilization via state-dependent switching rule

For linear switched ODEs without Hurwitz convex com-
binations, it is still possible to find state-dependent
switching signals to stabilize the system, e.g., using the
“min-max–switching” strategy shown in [13] (see also
[33] for the nonlinear case). We now generalize this
strategy to linear SwDAEs.

Theorem 4.9. Consider a SwDAE ∆σ, given by (1),
and the flow matrices Adf

p and the jump matrices Ajp
p

defined by (5) for each mode ∆p. Suppose that there ex-
ist positive-definite matrices Ljp

p = (Ljp
p )⊤ and Ljp

p =

(Ldf
p )⊤, p = 1, . . . , N , such that

(A1): x⊤((Ajp
p )⊤Ljp

p +Ljp
p Ajp

p )x < 0 whenever ∀q ∈ N :

x⊤Ljp
p x ≤ x⊤Ljp

q x and x /∈ C∩;

(A2): x⊤((Adf
p )⊤Ldf

p + Ldf
p Adf

p )x < 0 whenever ∀q ∈
N : x⊤Ldf

p x ≤ x⊤Ldf
q x and x ∈ C∩ \ {0}.

Then the switching rule

(MMS): σ(x) =


arg min

p∈N
(x⊤Ljp

p x) if x /∈ C∩

arg min
p∈N

(x⊤Ldf
p x) if x ∈ C∩

asymptotically stabilizes ∆σ.

Moreover, if x⊤Ljp
p x ≤ x⊤Ljp

q x of (A1) (or x⊤Ldf
p x ≤

x⊤Ldf
q x of (A2)) becomes x⊤Ljp

p x ≥ x⊤Ljp
q x (or

x⊤Ldf
p x ≥ x⊤Ldf

q x), then by changing arg min
p∈N

(x⊤Ljp
p x)

(or arg min
p∈N

(x⊤Ldf
p x)) into argmax

p∈N
(x⊤Ljp

p x) (or

argmax
p∈N

(x⊤Ldf
p x)), the rule (MMS) still asymptotically

stabilizes ∆σ under the changed conditions (A1) and
(A2).

Proof. We first prove that any initial point x−
0 /∈ C∩ will

jump into a consistent point x+
0 ∈ C∩ under the rule

(MMS) by condition (A1). Recall that the jump dy-

namics are driven by dJ(τ)
dτ = Adf

σ J(τ). The Lyapunov

function V jp
σ (x) = x⊤Ljp

σ x, by construction, is contin-
uous (also piece-wise smooth) for all x /∈ C∩. More-

over, for each p ∈ N , we have
dV jp

p (x)

dτ < 0 for all τ

such that the p-th mode is active, so V jp
σ (x) strictly de-

creases for all x /∈ C∩ if no jump sliding modes are
present. The same conclusion holds when there exist
jump sliding modes on the switching surface (by a sim-
ilar proof as that in section 3.4.2 of [13]). Observe that
dV jp

σ (x)
dτ = x⊤((Ajp

σ )⊤Ljp
p + Ljp

p Ajp
σ )x = 0 for all x ∈ C∩

as ∀p ∈ N : kerAjp
p = Cp. Following a similar line as

proving LaSalle’s invariance principle (see e.g., Theo-
rem 4.4 of [12]), it can be shown that any solution J(τ)

of dJ(τ)
dτ = Adf

σ J(τ) starting from x−
0 converges to C∩,

which means that x−
0 jumps into a point x+

0 ∈ C∩.

If condition (IN) is satisfied, then any solution x(t)
starting from x+

0 ∈ C∩ is a flow solution and stays in C∩
for all x. Condition (A2) guarantees that V df

σ = x⊤Ldf
σ x

decreases along the flow solutions of ẋ = Adf
σ x (which

coincides with those of ∆σ) under the rule (MMS) no
matter the (flow) sliding modes are present or not as in
the case of switched ODEs (see section 3.4.2 of [13]). It
follows that the flow solution x(t) starting from x+

0 ∈ C∩
asymptotically converges to the origin as t→∞.

If condition (IN) is not satisfied, then it is possible that
there exists a jump-flow sliding mode on a surface Sδ

pq

near Spq =
{
x ∈ C∩

∣∣ x⊤(Ldf
p − Ljp

q )x = 0
}
, i.e., the so-

lution of ẋ = Adf
p x escapes C∩ to Sδ

pq (see also the
proof of Theorem 4.5 above), and then both the rule
dx(t)
dt = Adf

p x and dx(τ)
dτ = Ajp

q x are respected. The slid-

ing mode is characterized by x⊤((Adf
p )⊤(Ldf

p − Ljp
q ) +

(Ldf
p −Ljp

q )Adf
p )x ≥ 0 and x⊤((Ajp

q )⊤(Ldf
p −Ljp

q )+(Ldf
p −

Ljp
q )Ajp

q )x ≤ 0 for x ∈ Sδ
pq. Then it is possible to prove

that both V df
p (x) and V jp

q (x) decrease along the Filip-

pov solution of ẋ = αAdf
p x+(1−α)Adf

q x. We only show

the case for V df
p : V̇p(x) = αx⊤((Adf

p )⊤Ldf
p +Ldf

p Adf
p )x+

(1 − α)x⊤((Ajp
q )⊤Ldf

p + Ldf
p Ajp

q )x ≤ αx⊤((Adf
p )⊤Ldf

p +

Ldf
p Adf

p )x + (1 − α)x⊤((Ajp
q )⊤Ljp

q + Ljp
q Ajp

q )x. The first

term αx⊤((Adf
p )⊤Lp + LpA

df
p )x < 0 for all x ∈ Sδ

pq by

(A1) (recall that δ is arbitrarily small); x⊤((Ajp
q )⊤Ljp

q +

Ljp
q Ajp

q )x < 0 for all x ∈ Sδ
pq by (A2). Therefore, the

jump-flow sliding mode is also asymptotically stable.

It is also possible to use the S-lemma to write the con-
ditions (A1) and (A2) in matrix inequalities forms as
shown in (A1)’ and (A2)’ below. However, similar to
the switched ODEs case [13], it is required to exclude

12



the sliding modes for the rules derived from the inequal-
ities (A1)’ and (A2)’ when the scalars ϵpq or τpq are
non-positive.

Corollary 4.10. Consider a SwDAE ∆σ, the switch-
ing rule (MMS) asymptotically stabilizes∆σ if there ex-
ist positive-definite matrices Ljp

p = (Ljp
p )⊤ > 0, Ldf

p =

(Ldf
p )⊤ > 0, non-negative scalars ϵpq ≥ 0, τpq ≥ 0 and

positive scalar κp > 0 such that ∀p ∈ N :

(A1)’: (Ajp
p )⊤Ljp

p + Ljp
p Ajp

p −
N∑
q=1

ϵpq(L
jp
p − Ljp

q ) +

κpB
⊤B ≤ 0;

(A2)’:C⊤((Adf
p )⊤Ldf

p +Ldf
p Adf

p −
N∑
q=1

τpq(L
df
p −Ldf

q ))C <

0,

where C is any full column rank matrix such that imC =
C∩ and B is any full row rank matrix such that kerB =
C∩.

Moreover, suppose that sliding modes does not exist
in any solution of ∆σ, if (A1)’ (or (A2)’) holds
for non-positive scalars ϵpq ≤ 0 (or τpq ≤ 0), then
by changing arg min

p∈N
(x⊤Ljp

p x) (or arg min
p∈N

(x⊤Ldf
p x))

into argmax
p∈N

(x⊤Ljp
p x) (or argmax

p∈N
(x⊤Ldf

p x)), the rule

(MMS) still asymptotically stabilizes ∆σ under the
changed conditions (A1)’ and (A2)’.

Remark 4.11. In the case of Ajp
4 is invertible, i.e.,

there exists an invertible matrix T such that (18) holds,
(A1)’ may be rewrote as the following inequality in Tx-
coordinates:[

0 0
0 Ajp

4p

]⊤ [
I 0
0 L̄p

]
+
[
I 0
0 L̄p

] [
0 0
0 Ajp

4p

]
−

N∑
q=1

ϵpq

[
0 0
0 L̄p−L̄q

]
+ κp [ 0 0

0 I ] ≤ 0

for Ljp
p = T⊤

[
I 0
0 L̄p

]
T , thus (A1)’ holds if and only if

there exist L̄p = L̄⊤
p > 0 such that

(A1)”: (Ajp
4p)

⊤L̄p + L̄pA
jp
4p −

N∑
q=1

ϵpq(L̄p − L̄q) < 0.

Similarly, define Ldf
p := T⊤

[
L̂p 0
0 I

]
T , L̂p = L̂⊤

p > 0, the

condition (A2)’ can be rewrote as

(A2)”: (Adf
1p)

⊤L̂p + L̂pA
jp
1p −

N∑
q=1

τpq(L̂p − L̂q) < 0.

Example 4.12. Consider a SwDAE ∆σ with general-
ized states x = (x1, x2, x3, x4) ∈ R4 and two unstable
modes

∆1 :


1 0 0 1

0 1 1 0

0 0 2 1

0 0 0 0




ẋ1

ẋ2

ẋ3

ẋ4

 =


0 −1 1 0

2 0 −1 2

0 0 1 2

0 0 1 0




x1

x2

x3

x4

 ,

∆2 :


1 0 1 0

0 1 0 1

0 0 1 −2
0 0 0 0




ẋ1

ẋ2

ẋ3

ẋ4

 =


0 −2 0 1

1 0 1 2

0 0 1 0

0 0 0 1




x1

x2

x3

x4

 .

The consistency spaces are given by

C1 =
{
x ∈ R3

∣∣ x3 = 0
}
, C2 =

{
x ∈ R3

∣∣ x4 = 0
}
.

Calculate the jump and flow matrices through (5) to get

Ajp
1 =

[
0 0 −2 0
0 0 1 0
0 0 −1 0
0 0 2 0

]
, Ajp

2 =

[
0 0 0 2
0 0 0 1
0 0 0 −2
0 0 0 −1

]
,

Adf
1 =

[
0 −1 0 −2
2 0 0 2
0 0 0 0
0 0 0 2

]
, Adf

2 =

[
0 −2 −1 0
1 0 1 0
0 0 1 0
0 0 0 0

]
.

Find a matrix T such that (18) is satisfied, i.e.,

T =

[
1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

]
, TAjpT−1 =

[
0 0
0 Ajp

4

]
=

[ 0 0 0 0
0 0 0 0
0 0 −β 2β−2
0 0 2β β−1

]
.

It follows that

TAjpT−1 =
[
Adf

1 Adf
2

Adf
3 Adf

4

]
= α

[
0 −1 1 0
2 0 0 0
0 0 0 0
0 0 0 2

]
+(1−α)

[
0 −2 1 0
1 0 2 −1
0 0 1 0
0 0 0 0

]
.

It is seen that although the convex combination Ajp
4 can

be Hurwitz for some 0 < β < 1, it does not exist 0 ≤ α ≤
1 such that Adf

1 = α
[
0 −1
2 0

]
+ (1−α)

[
0 −2
1 0

]
is Hurwitz.

So it is not possible to use the results in section 4.2 to
stabilize the SwDAE.

Nevertheless, it is found that for

Ljp
1 = T⊤

[
1 0 0 0
0 1 0 0
0 0 1.2 0
0 0 0 0.2

]
T =

[
1 0 0 1
0 1 1 0
0 1 2.2 0
1 0 0 1.2

]
,

Ljp
2 = T⊤

[
1 0 0 0
0 1 0 0
0 0 0.2 0
0 0 0 1.2

]
T =

[
1 0 0 1
0 1 1 0
0 1 1.2 0
1 0 0 2.2

]
,

the conditions (A1) of Theorem 4.9 are satisfied for
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x⊤Ljp
p x ≥ x⊤Ljp

p x. Moreover, the matrices

Ldf
1 = T⊤

[
1.32 −0.21 0 0
−0.21 0.85 0 0

0 0 1 0
0 0 0 1

]
T =

[ 1.32 −0.21 −0.21 1.32
−0.21 0.85 0.85 −0.21
−0.21 0.85 1.85 −0.21
1.32 −0.21 −0.21 2.32

]
,

Ldf
2 = T⊤

[
0.85 0.21 0 0
0.21 1.32 0 0
0 0 1 0
0 0 0 1

]
T =

[
0.85 0.21 0.21 0.85
0.21 1.32 1.32 0.21
0.21 1.32 2.32 0.21
0.85 0.21 0.21 1.85

]
,

yield (A2) of Theorem 4.9 for x⊤Ljp
p x ≥ x⊤Ljp

p x. Thus
the switching rule

σ(x) =


arg max

p∈{1,2}
(x⊤Ljp

p x) if x3 ̸= 0 ∨ x4 ̸= 0

arg max
p∈{1,2}

(x⊤Ldf
p x) if x3 = x4 = 0

stabilizes the SwDAE. The following figure shows the
jump-flow solution under the above switching rule for
an initial point x0 /∈ C1 ∩ C2. Remark that the linear
subspace C∩ = C1 ∩ C2 is both Adf

1 -invariant and Adf
2 -

invariant, so the condition (IN) is satisfied and there
exist no jump-flow sliding modes.

x3

x4

(a) Jump solution pro-
jected to x3 − x4 plane

x1

x2

(b) Flow solution existing
on x1 − x2 plane

Fig. 8. Red dashed lines and blue dashed lines: Jumps of ∆1

and ∆2, red and blue lines: Flows of ∆1 and ∆2.

5 Conclusions and perspectives

In this paper, a novel solution framework is proposed
for linear state-dependent SwDAEs, enabling the gen-
eralization of classical stability and stabilization results
from switchedODEs to their DAE counterparts. The key
innovation lies in treating the reinitialization-induced
jumps during switching as ODE-governed dynamics,
thereby addressing the inherent conflicts between con-
sistency projection and state-dependent switching rules.
This approach paves the way for a comprehensive anal-
ysis of three distinct sliding modes: those triggered by
jump dynamics, flow dynamics, and a combination of
both. Building upon this solution framework, two well-
known switched ODEs stabilization strategies – the
Hurwitz convex combination and the min-max switch-
ing rule – is investigated in the context of DAEs. The

approach behind our stabilization rule involves exclu-
sively employing state-dependent jumps to guide the
initial point towards the intersection of all consistency
spaces C∩. Subsequently, by switching between the flow
dynamics of each mode restricted to C∩, our method-
ology ensures the convergence of the entire jump-flow
solution.

The proposed solution framework presents a fresh per-
spective for exploring linear SwDAEs, paving the way for
potential extensions to nonlinear switched SwDAEs or
those in the discrete-time case. Furthermore, beyond our
state-dependent switching strategy, there exists promis-
ing potential in exploring alternative stabilization tech-
niques that mix the utilization of jumps and flow dy-
namics. Investigating various switching rules could yield
valuable insights. Exploring the utilization of multiple
Lyapunov functions for SwDAEs is also an interesting
topic for further research. Finally, as highlighted in the
introduction, the close relationship between complemen-
tarity systems and state-dependent SwDAEs suggests a
compelling direction for future work—adapting and ap-
plying our results to complementarity systems could sig-
nificantly advance the field.
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