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Abstract— In this paper, we introduce a definition of solu-
tions for linear piecewise affine differential-algebraic equations
(PWA-DAEs). Firstly, to address the conflict between projector-
based jump rule and active regions, we propose a concept called
state-dependent jump path. Unlike the conventional perspective
that treats jumps as discrete-time dynamics, we interpret them
as continuous dynamics, parameterized by a virtual time-
variable. Secondly, by adapting the hybrid time-domain solution
theory for continuous-discrete hybrid systems, we define the
concept of jump-flow solutions for PWA-DAEs with the help
of Filippov solutions for differential inclusions. Subsequently,
we study various boundary behaviors of jump-flow solutions.
Finally, we apply the proposed solution concepts in simulating
a state-dependent switching circuit.

I. INTRODUCTION

Consider a linear piecewise affine differential-algebraic
equation (PWA-DAE) of the form

∆pwa : Eiẋ = Hix+ bi, x ∈ Ωi ⊆ Rn, i = 1, . . . , N, (1)

where x ∈ Rn are the state-variables, Ei, Hi : Rn → Rn,
bi ∈ Rn, N ∈ N+ is the number of DAE modes, {Ωi} is
the set of active regions, where Ωi are convex sets satisfying
N⋃
i=1

Ωi = Rn and ∀p ̸= q : Ωp ∩ Ωq = ∅. In particular,

PWA-DAEs can be seen as switched DAE control system
(see e.g. [20]) by fixing the switching signal as a state-
dependent function and the inputs as constants, switched
DAEs have been proved to be powerful tools for modeling
various physical systems, including electrical circuits with
switching devices [25], [21] and power grids [9].

Solution analysis and control of ordinary differential equa-
tion (ODE)-based piecewise linear systems have been well-
studied for decades, see e.g., [14], [22] and also [16] for
results on closely related switched ODE systems. Moreover,
there exist fruitful studies on time-dependent switched DAEs,
e.g., in [17], [18], [19], [20]. However, there are far fewer
related results on state-dependent switched DAEs and par-
ticularly on PWA-DAEs. Typically, the focus has been on
studying specific systems rather than establishing a broad
solution framework. For example, in [21], the passivity of
a state-dependent switched DAE-modelled circuit was dis-
cussed, providing insights into a specific application. In [23]
and [1], numerical methods and Modelica tools were utilized,
respectively, to simulate physical examples involving state-
dependent DAEs. State-dependent DAEs have connections
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with complementarity systems [4], [13], which are widely
used to model various systems, including circuits with diodes
and transistors and mechanics with unilateral constraints.

One challenge in studying PWA-DAE solutions is the ab-
sence of a clear definition of state-dependent jumps to ensure
consistency during mode changes. A related research area
is impulsive systems, particularly state-dependent impulsive
systems as reviewed in [28], which can be viewed as special
cases of the general hybrid time-domain systems framework
proposed in [11]. In this framework, the continuous dynamics
(flow) are governed by an ODE (or differential inclusion)
in some regions and a (possibly multivalued) jump rule
in others; the flows and jumps are generally unrelated. In
contrast, a PWA-DAE implicitly defines a consistency space
where the flow occurs, while simultaneously implying a
projector-based jump rule from an inconsistent initial value
to a consistent one. Hence, the jumps in a DAE can be seen
as intrinsic jump rules, whereas those in impulsive systems
are externally imposed. Filippov solutions for discontinuous
DAEs are discussed in [8], [3], but these works primarily
focus on semi-linear and index-1 modes, without involving
jumps.

In Section II, we revisit certain concepts of linear DAEs.
We delve into the issue of state-dependent jumps for PWA-
DAEs in Section III-A. The formulation of jump-flow so-
lutions within the hybrid time-domain and the examination
of their boundary behaviors are provided in Section III-B.
Conclusions and future prospects are given in Section IV.

II. PRELIMINARIES

The following notations will be used throughout the pa-
per. N and R are the natural numbers and real numbers,
respectively. For a matrix M ∈ Rn×m, the kernel (null
space) of M is denoted by kerM , the image of M is
denoted by imM . The identity matrix of size n × n is
denoted by In. The image of a set S ⊆ Rn under M is
MS := {Mx ∈ Rn | x ∈ S } and the pre-image of S under
M is M−1S := {x ∈ Rn | Mx ∈ S }.

Each mode of (1) is an affine DAE Eẋ = Hx+b, denoted
by ∆ = (E,H, b). A C1-curve x : [0,∞) → Rn is called
a C1-solution or a flow of ∆ if Eẋ(t) = Hx(t) + b for all
t ∈ [0,∞). A point x0 ∈ Rn is called consistent if there
exists a C1-solution x(·) starting from x0, i.e., x(0) = x0.
The set of all consistent points is called consistency space,
denoted by C. The matrix pencil (E,H) is called regular if
det(sE−H) is not identically zero. The regularity of (E,H)
guarantees the existence and uniqueness of C1-solutions of
∆. We assume throughout that all matrix pencils (Ei, Hi)



of DAE modes in the present paper are regular. Any DAE
∆ with a regular pair (E,H) can be always transformed,
via two constant invertible matrices Q and P , into the
Weierstrass form [26], [2] ∆̃ = (QEP−1, QHP−1, Qb):[

In1
0

0 N

] [
ẋ1

ẋ2

]
=

[
A1 0
0 In2

] [
x1

x2

]
+

[
b1
b2

]
, (2)

where A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a nilpotent matrix
with nilpotency index ν, i.e. Nν−1 ̸= 0 and Nν = 0, where
n1+n2 = n. The index of ∆ is defined to be the nilpotency
index ν of N , thus we have N = 0 for index-1 DAEs. The
matrices Q, P can be constructed with the help of the limits
V ∗ = Vn and W ∗ := Wn [2] of the Wong sequences [27]
of the matrix pencil (E,H), given by,{

V0 = Rn, Vk+1 = H−1EVk, k ≥ 1,

W0 = {0}, Wl+1 = E−1HWl, l ≥ 1.
(3)

The consistency projector, the differential projector and the
impulse projector of ∆ are defined [24], [25], respectively,
as follows

Π:= P−1

[
In1

0
0 0

]
P, Πdf := P−1

[
In1

0
0 0

]
Q.

and
Πimp := P−1

[
0 0
0 In2

]
Q.

With the help of the above definitions, it can easily be
concluded that the consistency space of ∆ is given by

C = imΠ− {Πimpb} = V ∗ − {Πimpb}

and the C1-solution (flow) starting from a consistent point
x+
0 ∈ C can be expressed by x(t) = eA

df tx+
0 +∫ t

0
eA

df (t−s)Πdfbds, where Adf = ΠdfH is called the flow
matrix.

If the initial point x−
0 /∈ C is not consistent, then a re-

initialization procedure is needed to find a consistent point
x+
0 in order to solve the DAE. One approach to achieve the

consistent initialization is to introduce a jump (an instant
change) from x−

0 to x+
0 ; utilizing (2) and following similar

arguments as in [24], [17], [25] this jump map is uniquely
defined via the projectors Π and Πimp by

x+
0 = Πx−

0 −Πimpb ∈ C.

III. MAIN RESULTS

A. State-dependent jumps and jump sliding behavior

The first problem to discuss is the definition of jumps
for PWA-DAE (1). Consider an inconsistent initial point
x−
0 /∈ Cp and x−

0 ∈ Ωp for an index p ∈ {1, 2, . . . , N}.
If we directly apply the projectors Πp to x−

0 and Πimp
p to

bp, we obtain the consistent point x+
0 = Πpx

−
0 − Πimp

p bp ∈
Cp. However, in general, x+

0 /∈ Ωp, which means that the
resulting consistent point violates the active region rule.
Therefore, it becomes necessary to introduce a new definition
of jumps for PWA-DAE to address this issue.

To generalize the definition of jumps for nonlinear DAEs,
a novel approach called the “jump path” is proposed in [5].

We now adapt this notion for PWA-DAEs in the present
paper. The key idea is not just to consider the jump map
x−
0 → x+

0 , but instead to introduce a jump path J : [0, a]→
Rn, τ 7→ J(τ), with J(0) = x−

0 and J(a) = x+
0 ∈ C, such

that dJ(τ)
dτ ∈ kerE. The latter condition, which requires the

jump direction to stay in kerE, is inspired by the impulse-
free jump condition x+

0 −x
−
0 ∈ kerE, meaning that the jump

does not cause any Dirac impulse, see, for example, [24],
[17], [18] for the distributional solutions theory of DAEs. It
can be proved by the results in [5] that for an index-1 linear
affine DAE ∆, the jump associated with the jump path is
uniquely defined and it coincides with the one defined by
the consistency projector, i.e., J(a) = Πx−

0 −Πimpb.

Define Cpwa :=
N⋃
i=1

(Ci ∩ Ωi) and call it the consistency

space for the PWA-DAE ∆pwa. Note that from any point
x+
0 ∈ Cpwa, there exists a unique maximal C1-solution for

the corresponding activated DAE mode ∆p, where p satisfies
x+
0 ∈ Ωp.

Definition 1 (State-dependent jump path). Consider a PWA-
DAE ∆pwa, an absolutely continuous curve J : [0, a]→ Rn

is called a convergent jump path starting from an initial point
x−
0 ∈ Rn if J(0) = x−

0 , ∀τ ∈ [0, a) : J(τ) ∩ Cpwa = ∅,
J(a) ∈ Cpwa and

dJ(τ)

dτ
∈ im f jp

i (J(τ)), J ∈ Ωi (4)

where
f jp
i (J(τ)) := (Πi − I)J(τ)−Πimp

i bi.

The change x−
0 → x+

0 := J(a) is called a state-dependent
jump associated with J(τ). If a = ∞ and J(∞) =
lim
τ→∞

J(τ) does not exist, then J(τ) is called a divergent
jump path.

The motivation behind jump rule (4) is to allow the
jumping direction dJ(τ)

dτ = lim
ϵ→0

J(τ+ϵ)−J(τ)
ϵ to depend on

the position J(τ) of the path and to require any inconsistent
point x ∈ Ωp to move towards the consistent initialization
x+ = Πpx−Πimp

p bp for the active mode ∆p, i.e., the moving
direction is (Πpx − Πimp

p bp) − x = f jp
p (x). One should

keep in mind that the jump still happens instantaneously, in
particular, τ is not a real time-variable (it is virtual), but just
describes the position on the jump path. It is not necessary
to specify how fast the path moves, thus we use inclusion
and im f jp

i in (4) instead of using dJ(τ)
dτ = f jp

i (J(τ)). To
solve (4), it is enough to choose any vector gjpi (J, τ) ∈
im f jp

i (J) and solve dJ
dτ = gjpi (J, τ). The solutions from

different choices of gjpi are different parametrizations of
the same curve. The simplest choice is gjpi = f jp

i , then
a = ∞. By applying this choice to a single affine DAE
mode ∆ = (E,H, b), we have

J(τ) = eA
jpτx−

0 −
∫ τ

0

eA
jp(τ−s)Πimpbds,

where Ajp := Π− I . It follows that x+
0 = J(∞) = Πx−

0 −
Πimpb. This means that Definition 1 is a generalization of the
projectors-based jump rule for affine DAEs to PWA-DAEs.



Remark 1. (i) If the mode ∆i is index-1, then dJ
dτ ∈

im f jp
i (J) ⊆ kerEi, thus the defined state-dependent jump

does not cause Dirac impulses for index-1 modes and Def-
inition 1 is indeed an adaptation of the impulse-free jump
rule [5] to PWA-DAEs.
(ii) For any jump path J(τ), by a change of variables
τ̃ = φ(τ), where φ : [0, a] → [τ̃0, τ̃1] is a diffeomor-
phism, we re-parameterize J(τ) as J̃(τ̃) = J(φ−1(τ̃)) :
[τ̃0, τ̃1] → Rn, it can be seen that J̃ still satisfy (4), i.e.,
dJ̃
dτ̃ ∈ im f jp

i (J̃), so the above definition is invariant under
different parametrizations of the jump path, which means
that given any parametrization of a curve starting from x−

0 ,
we may verify if it is indeed a jump path by directly using
Definition 1.

In the spirit of Filippov solutions for piecewise ODEs
[10], [7], [14], we may express the rule (4) by the following
differential inclusion

dJ(τ)

dτ
∈ F jp(J(τ)),

where F jp is a set defined by

F jp(J) := con{im f jp
i (J),∀i : J ∈ clo(Ωi) ̸= ∅},

where con represents the convex closure and clo(Ωi) is the
closure of Ωi.

Jump sliding behavior. Let Spq := clo(Ωp) ∩ clo(Ωq)
be the common boundary of two neighboring active
regions Ωp and Ωq . Then for any point J ∈ Spq \ (Cp∪
Cq) if both the vectors f jp

p (J) and f jp
q (J) point towards

Spq , then there always exists a convex combination
αf jp

p (J)+(1−α)f jp
q (J) ∈ TJSpq for some 0 ≤ α ≤ 1,

where TJSpq is the tangent space of Spq at J ∈ Spq ,
which means that F jp(J) ∩ TJSpq ̸= ∅ and the jump
path J(τ) approximates a trajectory sliding on the
boundary Spq , which we call the jump sliding behavior
of ∆pwa.

Example 1. Consider a PWA-DAE ∆pwa with x =
(x1, x2) ∈ R2 and two modes

∆1 :

[
1 −γ
0 0

] [
ẋ1

ẋ2

]
=

[
0 −1
1 0

] [
x1

x2

]
+

[
0
−1

]
,

∆2 :

[
−γ 1
0 0

] [
ẋ1

ẋ2

]
=

[
−1 0
0 1

] [
x1

x2

]
+

[
0
−1

]
.

The active regions are Ω1 = {x ∈ Rn | γ(x1 − x2) ≥ 0}
and Ω2 = R2 \ Ω1. By a direct calculation, we
get f jp

1 (J) =
[

−1 0
− 1

γ 0

]
J +

[
1
1
γ

]
and f jp

2 (J) =[
0 − 1

γ

0 −1

]
J +

[
1
γ

1

]
. The boundary of Ω1 and Ω2 is S12 ={

(x1, x2) ∈ R2
∣∣ x1 = x2

}
. It can been seen below that both

f1(J) and f2(J) point towards S12 and ∃0 < α < 1 :
αf jp

1 (J) + (1 − α)f jp
2 (J) ∈ TJS12 whenever x1 ≥ 1

and x2 ≥ 1. Thus starting from any inconsistent point
x−
0 =

[
x−
10

x−
20

]
∈ S12 ∩ {x ∈ R | x1 ≥ 0, x2 ≥ 0}, there exists

a jump sliding behavior. As seen from Fig 1, the jump sliding
behavior J(τ) converges to (1, 1) (implying that x+

0 = (1, 1)

is the resulting consistent point) if γ > 1, and J(τ) diverges
if γ < −1.

Ω1

Ω2

x1

x2

(a) γ > 1

Ω2

Ω1

x1

x2

(b) γ < −1

Fig. 1: Red and blue dashed arrows: Jump directions of ∆1

and ∆2, Red and blue lines: C1 and C2, black dashed line
with arrows: Jump sliding modes.

Now given an inconsistent initial value x−
0 /∈ Cpwa, if

the purpose is only to find the re-initialization value x+
0 ,

instead of calculating the jump path from x−
0 , we may use

the following algorithm which calculates x+
0 by iteratively

applying the projectors Πi and Πimp
i , but the algorithm

works only if the jump sliding behavior is not present. Let
Cpwa(x, δ) := {y ∈ R | x ∈ Cpwa : |y − x| ≤ δ } and denote
∂Ωp the boundary of Ωp.

Algorithm 1 State dependent jumps algorithm

Require: x−
0 ∈ Rn

Ensure: x+
0 ∈ Cpwa(x, δ)

1: if x−
0 ∈ Cpwa(x, δ) then

2: return x+
0 = x−

0

3: end if
4: Set x̂+

0 ← Πpx
−
0 −Πimp

p bp, where p satisfies x−
0 ∈ Ωp.

5: if ∀0 ≤ α ≤ 1 : (1− α)x−
0 + αx̂+

0 ∈ Ωp then
6: return x+

0 = x̂+
0

7: else
8: Set α∗ ← min

{
α
∣∣ (1− α)x−

0 + αx̂+
0 ∈ ∂Ωp

}
.

9: Set x−
0 ← (1− α∗)x−

0 + α∗x̂+
0 .

10: Go to Step 1.
11: end if

Proposition 1. Given a PWA-DAE ∆pwa and an inconsistent
point x−

0 /∈ Cpwa. Assume that there is no jump sliding
behavior for the jump path starting from x−

0 . If Algorithm 1
returns to a point x+

0 ∈ Rn, then the change x−
0 → x+

0 is
a convergent state-dependent jump of ∆pwa in the sense of
Definition 1.

The proof is omitted as it is clear that for each iteration
J̄(α) = (1−α)x−

0 +αx̂0 for α ∈ [0, α∗] is a parametrization
of the jump path from x−

0 on Ωp.

Example 2. Consider a PWA-DAE ∆pwa with two modes
with states x = (x1, x2) ∈ R2,

∆1 :

[
1 −1
0 0

] [
ẋ1

ẋ2

]
=

[
0 0
0 1

] [
x1

x2

]
+

[
1
0.5

]
,

∆2 :

[
1 2
0 0

] [
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
−

[
0
1

]
.



The active regions are given by

Ω1 =
{
x ∈ R2

∣∣ x1x2 ≤ 0
}
, Ω2 = R2 \ Ω2.

The following figure shows the re-initialization of an in-
consistent point x−

0 = (0, 1.2) via Algorithm 1. By a
direct calculation, we have Π1 =

[
1 −1
0 0

]
, Πimp

1 = [ 0 1
0 1 ],

Π2 = [ 0 0
0.5 1 ], Π

imp
2 =

[
0 1
0 −0.5

]
. In the first iteration, ∆1 is

activated, we have x̂+
01 = Π1x

−
0 −Πimp

1 b1 =
[−1.7
−0.5

]
/∈ Cpwa,

thus we find x−
01 = 0.294x−

0 + 0.706x̂−
01 ≈

[−1.2
0

]
∈ ∂Ω1.

Similarly, for the second iteration, x̂+
02 = Π2x

−
01−Πimp

2 b2 =[
1

−1.47

]
/∈ Cpwa and x−

02 =
[

0
−0.8

]
. Finally, the algorithm

returns to x̂+
0 = Π1x

−
02 − Πimp

1 b1 =
[

0.3
−0.5

]
∈ Cpwa in the

third iteration.

x−
0

x−
01

x−
02

x̂+
01

x̂+
02

x+
0

x1

x2

Fig. 2: Red and blue dashed arrows: Jump directions of ∆1

and ∆2, Red and blue lines: C1 and C2. Red and blue regions:
Ω1 and Ω2.

Note that in Algorithm 1, we use Cpwa(x, δ) instead
of Cpwa as it may take infinite numbers of steps for the
algorithm to reach a point exactly on Cpwa. Moreover, in the
case of J(τ) is a divergent jump path, Algorithm 1 does not
return to any point.

Example 3. Consider a PWA-DAE ∆pwa with two modes
with states x = (x1, x2) ∈ R2,

∆1 :

[
1 −1
0 0

] [
ẋ1

ẋ2

]
=

[
0 0
0 1

] [
x1

x2

]
+

[
1
0

]
,

∆2 :

[
2 1
0 0

] [
ẋ1

ẋ2

]
=

[
0 0
1 0

] [
x1

x2

]
−
[
−1
0

]
.

with the active regions given by

Ω1 =
{
x ∈ R2

∣∣ x2 − y2 + γxy ≤ 0
}
, Ω2 = R2 \ Ω2.

The consistency space Cpwa = {0} is a single point. In case
(a) γ = 1, the algorithm return to a point x+

0 ≈ 0 while in
case (b) γ = 10, the algorithm does not return to any point
as the jump solution is not convergent.

B. PWA-DAE jump-flow solution on hybrid time domain

Starting from a consistent point x+
0 ∈ Cpwa, there exists

a C1-solution x(t) of the active mode ∆p, where p satisfies
x+
0 ∈ Ωp ∩Cp. It is conceivable that x(t) may exit Cpwa at a

certain time t = tk, i.e., x(t−k ) /∈ Cpwa. In such instances, a
consistency re-initialization, represented as a jump x(t−k )→
x(t+k ) ∈ Cpwa, should be determined following the guidelines
outlined in Definition 1. Consequently, a complete trajectory
of a PWA-DAE entails a hybrid behavior that incorporates

x−
0

x+
0

x1

x2

(a) γ = 1

x−
0

x1

x2

(b) γ = 10

Fig. 3: Red and blue dashed arrows: Jump directions of ∆1

and ∆2, Red and blue lines: C1 and C2, Red and blue regions:
Ω1 and Ω2

both jump and flow dynamics. Given that these dynamics
are characterized using both the real-time variable t and
the virtual variable τ , we customize the hybrid time-domain
framework proposed in [12], [11] for PWA-DAE solutions.

Definition 2 (PWA-DAE hybrid time domain). A subset
E =

⋃
j

[τj , τj+1] × [tj , tj+1] ⊂ R≥0 × R≥0 is called a

PWA-DAE hybrid time domain if it is a union of finite or
infinite sequence of indexed intervals [τj , τj+1] × [tj , tj+1],
j = 0, 1, 2, . . . , for some ordered sequences 0 ≤ τ0 ≤ τ1 ≤
. . . and 0 ≤ t0 ≤ t1 ≤ . . . in R. In the case of a finite
numbers m+1 of intervals, the last intervals are allowed to
be half-open, i.e., [τm, τ ) or [tm, T ) with τ and T finite or
equal to ∞.

Remark 2. One distinction between Definition 2 and the
original definition of hybrid time-domain in [12] is the
discrete time-sequence j becomes a continuous virtual time-
interval [τj , τj+1]. This adaptation is necessitated by the
nature of the state-dependent jump, which, as previously dis-
cussed, embodies an absolutely continuous dynamic. Another
notable difference lies in the reordering of the time variables
τ and t: it is now prioritized to first incorporate jump
dynamics, which facilitate re-initialization, followed by the
inclusion of flow dynamics originating from the consistent
initial point. The figures below illustrate the typologies of
these two distinct definitions.

Definition 3 (PWA-DAE hybrid arc). A function x : E →
Rn defined on a PWA-DAE hybrid time-domain is called
a PWA-DAE hybrid arc if for each j = 0, 1, 2, . . . , the
function τ 7→ x(τ, tj) by fixing tj is absolutely continuous
on the interval Iτj := {τ | (τ, tj) ∈ E } and the function
t 7→ x(τj+1, t) by fixing τj+1 is absolutely continuous on
the interval Itj := {t | (τj+1, t) ∈ E }.

Now with the help of the above two definitions, we can
define the jump-flow solution of a PWA-DAE from any initial
point (consistent or not). Recall and define the following
jump and flow vector fields

f jp
i (x) = (Πi − I)x−Πimp

i bi, fdf
i (x) := Adf

i x+Πdf
i bi



t

j

t1 t2 t3

1

2

3

(a)

t

τ

t1 t2 t3

τ1

τ2

τ3

(b)

Fig. 4: (a). A hybrid time domains E defined in [12],
[11], where E is the union of [0, t1] × {0}, [t1, t2] × {1},
[t2, t3] × {2} and [t3,∞) × {3}. (b). A PWA-DAE hybrid
time domains E which is the union of [0, τ1] × [0, t1],
[τ1, τ2]× [t1, t2], [τ2, τ3]× [t2, t3].

and define

F jp(x) := con{im f jp
i (x),∀i : x ∈ clo(Ωi) \ Ci},

F df(x) := con{f jp
i (x), fdf

k (x),∀i : x ∈ clo(Ωi) \ Ci,∀k :
x ∈ clo(Ωk) ∩ Ck}.

Definition 4 (Jump-flow solutions). A PWA-DAE hybrid arc
x : E → Rn is a jump-flow solution of ∆pwa starting from
an initial point x0 ∈ Rn if x(0, 0) = x0 and the following
conditions are satisfied:
(Jump Condition) For each j ∈ N such that Iτj has non
empty interior:

dx(τ, tj)

dτ
∈ F jp(x(τ, tj)) for almost all τ ∈ Iτj ,

x(τ, tj) /∈ Cpwa for all τ ∈ [min Iτj , sup I
τ
j ),

(Flow Condition) For each j ∈ N such that Itj has non
empty interior:

dx(τj+1, t)

dt
∈ F df(x(τj+1, t)) for almost all t ∈ Itj ,

x(τj+1, t) ∈ Cpwa for all t ∈ [min Itj , sup I
t
j),

Remark 3. (i) In contrast to the definitions outlined in [12],
[11], the jump condition and flow condition in Definition 4
exhibit a symmetry structure. This symmetry arises from the
fact that the jumps considered here are also characterized
by absolutely continuous dynamics as the flows. However, it
is worth noting that the definitions of F jp and F df are not
symmetry, which is because the consideration of the jump-
flow sliding behaviors discussed below.

(ii) In solving the differential inclusion within the (Jump
Condition), our objective is to identify a specific map-
ping Gjp ∈ F jp. Notably, if we were to set Gjp =
con{f jp

i (x),∀i : x ∈ clo(Ωi)\Ci}, the jump path defined by
dx
dτ ∈ Gjp would be parameterized over [0,∞). However,
since the jump path in (Jump Condition) is required to
be parameterized over Iτj , we may choose Gjp(x, τ) =

con{f jp
i (x)

(
dφj

dτ

)−1

,∀i : x ∈ clo(Ωi) \ Ci}, where φj :

[0,∞)→ Iτj represents a change of variables.

Recall that Spq denotes the boundary shared by both Ωp

and Ωq . For any x ∈ Spq∩Cp∩Cq , meaning x is a consistent
point for both ∆p and ∆q on the boundary of Ωp and Ωq

respectively, we have F df(x) = αfdf
p (x) + (1 − α)fdfq(x)

for α ∈ [0, 1]. If fdf
i (x) and fdf

j (x) point towards Spq , then
it is evident that a flow sliding behavior will emerge when
considering the Filippov solution of the differential inclusion
in the (Flow Condition).

A challenge arises when x ∈ (Spq ∩ Cp) \ Cp, meaning x
is consistent for one mode ∆q but not for another mode
∆p. In such cases, the flow rule dx(τ,t)

dt = fdf
p (x(τ, t))

should be followed for ∆p, while the jump rule dx(τ,t)
dτ ∈

im f jp
q (x(τ, t)) should be respected for ∆q . Describing the

sliding behavior on (Spq ∩ Cp) \ Cp becomes challenging as
it involves two dynamics described by different variables, t
and τ . The (Flow Condition) actually provides a solution
with the assistance of the definition of F df .

Jump-flow sliding behavior. In the case that both
vector fields fdf

p (x) and f jp
q (x) point towards (Spq ∩

Cp) \ Cp, there exists 0 ≤ α ≤ 1 such that

F df(x) = αfdf
p (x) + (1− α)f jp

q (x) ∈ TxSpq (5)

for x ∈ Spq , the system follows a jump-flow sliding
behavior defined by α ∈ [0, 1] :

dx(τj+1, t)

dt
∈ αfdf

p (x(τj+1, t))+(1−α)f jp
q (x(τj+1, t)).

Remark 4. Because x ∈ (Spq ∩ Cp) \ Cp ⊆ Ωp ∩ Cp ⊆
Cpwa is consistent for ∆pwa, it is reasonable to describe the
jump-flow behavior in (Flow Condition) instead of (Jump
Condition). An intuition for using the convex combination of
the flow vector field fdf

p and the jump vector field f jp
q comes

from the singular perturbation approximations of DAEs [15],
[6], [5], the variables τ and t can be related via a small
parameter ϵ by dt

dτ = ϵ, thus the jump rule for ∆q can be
wrote as dx(τ,t)

dt = dx(τ,t)
dτ

1
ϵ = 1

ϵ f
jp
q (x(τ, t)). Then there

always exist a convex combination of fdf
p (x) and 1

ϵ f
jp
q (x)

belongs to TxSpq if and only if (5) holds. Indeed, let β :=
α

ϵ(1−α)+α (so 0 ≤ β ≤ 1), it is clear that βfdf
p (x) + (1 −

β)ϵf jp
q (x) is proportional to αfdf

p (x)+(1−α)f jp
q (x) and is

thus in TxSpq .

Example 4. Consider a PWA-DAE ∆pwa on R2 with two
modes

∆1 :

[
1 0
0 1

] [
ẋ1

ẋ2

]
=

[
−1 −1
−1 1

] [
x1

x2

]
+

[
0
0

]
,

∆2 :

[
1 0
0 0

] [
ẋ1

ẋ2

]
=

[
1 0
0 1

] [
x1

x2

]
+

[
1
0

]
.

Clearly, ∆1 is an ODE, i.e., an index-0 DAE and ∆2 is an
index-1 DAE. We show two different cases of active regions,
the first case is

Ω1 =
{
(x1, x2) ∈ R2

∣∣ x1 > x2

}
, Ω2 = R2 \ Ω1.

Thus S12 =
{
(x1, x2) ∈ R2

∣∣ x1 − x2 = 0
}

. For each x ∈
S12 \ {0} in the first quadrant, there exists 0 ≤ α ≤ 1 such



x1

x2

(a)

-|δ|

|δ| x1

x2

(b)

Fig. 5: Red arrows and blue dashed arrows: Flow directions
of ∆1 and jump direction of ∆2, black line: Jump-flow
solutions.

that αfdf
1 (x) + (1− α)f jp

2 (x) ∈ TxS12 = im [ 11 ], where

fdf
1 (x) =

[
−x1 − x2

−x1 + x2

]
and f jp

2 (x) =

[
0
−x2

]
.

There exists a jump-flow sliding behavior from x0, i.e., the
Filippov solution of dx(τ,t)

dt ∈ αfdf
1 (x)+ (1−α)f jp

2 (x), α ∈
[0, 1] as shown in Fig 3a. In the second case, the active
regions are chosen as

Ω1 =
{
(x1, x2) ∈ R2

∣∣ x2 = 0
}
, Ω2 = R2 \ Ω1.

The boundary S̃12 =
{
(x1, x2) ∈ R2

∣∣ x2 = 0
}

coincides
with the consistency space C2 of ∆2. For any point x ∈ S̃12,
the (Flow condition) dx(τ,t)

dt = fdf
1 (x) = Adf

1 x should
be respected. Notice that S̃12 is not Adf

1 -invariant, once
the trajectory reaches any point of S̃12, it will leave S̃12

immediately to S̃δ
12 =

{
(x1, x2) ∈ R2

∣∣ x2 = δ
}

with an
arbitrarily small parameter δ > 0. Then for x ∈ S̃δ

12, there
exists 0 ≤ α ≤ 1 such that αfdf

1 (x) + (1 − α)f jp
2 (x) ∈

TxS̃
δ
12 = im [ 10 ], thus there exists a jump-flow sliding

behavior on S̃δ
12. For any point (x10, δ) ∈ Sδ

2 , the trajectory
slides to (0, δ) and eventually heads towards (0, 0) as seen
in Figure 5b.

The following theorem states the well-posedness of PWA
jump-flow solution and summarize its boundary behaviors.
Note that below the uniqueness for a jump path means that
x(τ, tj) is a uniquely defined curve on Iτj up to different
τ -parametrizations. Define Emax :=

⋃
j

[τj , τj+1]× [tj , tj+1],

with τ0 = t0 = 0 and the last intervals are either [τm,∞)×
[tm, tm+1] or [τm, τm+1]× [tm,∞)

Theorem 1. Given a PWA-DAE ∆pwa with an initial point
x0 ∈ Rn, there exists a unique maximal solution x : Emax →
Rn such that x(0, 0) = x0. For any boundary Spq of two
neighboring active regions Ωp and Ωq , there are basically
six different boundary behaviors possible:
(a) Flow-flow crossing or sliding if Spq ∩ Cp ∩ Cq ̸= ∅, the
active vector fields are fdf

p and fdf
q .

(b) Jump-jump crossing or sliding if Spq \ (Cp∪Cq) ̸= ∅, the
active vector fields are f jp

p and f jp
q .

(c) Jump-flowing crossing or sliding if (Spq ∩ Cp) \ Cq ̸= ∅,
the active vector fields are fdf

p and f jp
q .

The crossing behaviors happen when the corresponding
active vector fields fdf

p (or f jp
p ) point towards Spq and

fdf
q (or f jp

q ) point away from Spq . The sliding behaviors
are present when both fdf

p (or f jp
p ) and fdf

q (or f jp
q ) point

towards Spq .

By the classical results for Filippov solutions of differen-
tial inclusions, see e.g., [7], there exists a unique maximal
solution from any point x−

0 /∈ Cpwa for the inclusion
in (Jump Condition) and there exists a unique maximal
solution from any point x+

0 /∈ Cpwa for the inclusion in (Flow
Condition), thus it is clear that the jump-flow solutions of
∆pwa from any initial point x0 is well-posed.

Example 5. Consider an RLC electric circuit with two
switches K1 and K2, an inductor L, a capacitor C and two
resistors R1 and R2. Depending on the situations the two

L

iL=x1

K1

Is

CvC=x2

R2

R1

+−Vs

K2

Fig. 6: A switching RLC circuit

switches, the circuit can be modeled by a PWA-DAE ∆pwa

via Kirchhoff’s law. The states are x = (x1, x2), where
x1 = iL is the current of L and x2 = vc is the voltage
of C, ∆pwa has four DAE modes ∆i, i = 1, 2, 3, 4.

K1

K2 Open Closed

Down ∆1 ∆2

Up ∆4 ∆3

The four modes are, respectively, given by,

∆1 :
[

L R2C
L
R1

−C

] [
ẋ1
ẋ2

]
=

[
0 −1
−1 0

]
[ x1
x2

] + [ 00 ] ,

∆2 :
[

L
R1

−C

0 0

] [
ẋ1
ẋ2

]
=

[−1 0
0 1

]
[ x1
x2

]−
[

0
Vs

]
,

∆3 : [ 0 0
0 0 ]

[
ẋ1
ẋ2

]
= [ 0 1

1 0 ] [
x1
x2

] +
[−Vs

Is

]
.

∆4 :
[
L R2C
0 0

] [
ẋ1
ẋ2

]
=

[
0 −1
1 0

]
[ x1
x2

] +
[

0
Is

]
.

We assume for the simplicity of calculations that L = 1H ,
C = 1F , R1 = R2 = 1Ω, Is = 4A and Vs = −4V . The
active regions are chosen, respectively, as

Ω1 =
{
x ∈ R2

∣∣ x1 ≤ 0, x2 < 0
}
,

Ω2 =
{
x ∈ R2

∣∣ x1 < 0, x2 ≥ 0
}
,

Ω3 =
{
x ∈ R2

∣∣ x1 > 0, x2 ≥ 0
}
.

Ω4 =
{
x ∈ R2

∣∣ x1 ≥ 0, x2 < 0
}
,

By calculations, we have fdf
1 (x) =

[
−x1−x2

2
x1−x2

2

]
, f jp

2 (x) =[−x2−4
−x2−4

]
, f jp

3 (x) =
[−x1−4
−x2−4

]
, f jp

4 (x) =
[−x1−4

x1+4

]
, these

vector fields are drawn below in their active regions.
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Fig. 7: Jump-flow solutions of the circuit

It can be seen in Figure 7 that there are four boundary
behaviors, namely, jump-jump sliding for x1 > 0, x2 = 0;
jump-jump crossing for x1 = 0, x2 > 0; jump-flow crossing
for x1 < 0, x2 = 0; jump-flow sliding for x1 = 0, x2 < 0.

In Figures 8 and 9, we draw the jump-flow solution
x(τ, t) = (x1(τ, t), x2(τ, t)) from the initial point (1, 4.75).
The solution is defined on E = [0, τ1] × [0, t1] ∪ [τ1, τ2] ×
[t1,∞), where τ1 = τ2 = 3.95 and t1 = 3.14 is the real time
that the solution reaches x1 = 0 via the flow. The (Jump
Condition) on Ω2 and Ω3 are chosen as dx

dτ = f jp
2 (x) and

dx
dτ = f jp

3 (x), respectively. The solutions for the jump-flow
sliding behavior dx

dt = αfdf
1 (x) + (1− α)f jp

4 (x), α ∈ [0, 1],
are calculated by a MATLAB ODE solver.

τ

t

x1

1 3 5 7

-5

-3

-1

1
2

τ1 = τ2

t1

Fig. 8: The hybrid arc x1(τ, t) with x1(0, 0) = 1.

τ

t

x2

1 3 5 7

-3

-1

1

3

τ1 = τ2

t1

Fig. 9: The hybrid arc x2(τ, t) with x2(0, 0) = 4.75.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we present a solution framework for PWA-
DAEs. We redefine state-dependent jumps as continuous
dynamics in line with the active region rule. Leveraging
hybrid time-domain techniques, we establish a well-defined
concept of jump-flow solutions, which have various sliding
and crossing boundary behaviors. This solution framework
offers a foundation for future studies on the stability and sta-
bilization of DAEs under state-dependent switching signals.
Furthermore, we aim to explore its applicability in linear
complementarity systems.
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[3] M. Biák and D. Janovská, “Differential algebraic equations of Filippov
type,” Appl. of Math. 2015, pp. 1–16, 2015.

[4] B. Brogliato, “Some perspectives on the analysis and control of
complementarity systems,” IEEE Trans. Autom. Control, vol. 48, no. 6,
pp. 918–935, 2003.

[5] Y. Chen and S. Trenn, “Impulse-free jump solution of nonlinear
differential algebraic equation,” Nonlinear Analysis: Hybrid Systems,
vol. 46, p. 101238, 2022.

[6] ——, “Stability analysis of switched nonlinear differential-algebraic
equations via nonlinear Weierstrass form,” in European Control Conf.
(ECC), 2022, pp. 1091–1096.

[7] J. Cortes, “Discontinuous dynamical systems,” IEEE Control Systems
Magazine, vol. 28, no. 3, pp. 36–73, 2008.

[8] L. Dieci, C. Elia, and L. Lopez, “On Filippov solutions of discontin-
uous DAEs of index 1,” Communications in Nonlinear Science and
Numerical Simulation, vol. 95, p. 105656, 2021.

[9] A. D. Domı́nguez-Garcı́a and S. Trenn, “Detection of impulsive effects
in switched DAEs with applications to power electronics reliability
analysis,” in IEEE Conf. Decis. Control, 2010, pp. 5662–5667.

[10] A. Filippov, Differential Equations with Discontinuous Right-hand
Sides. Mathematics and Its Applications: Soviet Series, 18. Dordrecht
etc.: Kluwer Academic Publishers, 1988.

[11] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical
systems,” IEEE Control Systems Magazine, vol. 29, no. 2, pp. 28–
93, 2009.

[12] R. Goebel and A. R. Teel, “Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications,” Automatica,
vol. 42, no. 4, pp. 573–587, 2006.

[13] W. Heemels, J. M. Schumacher, and S. Weiland, “Linear complemen-
tarity systems,” SIAM J. Appl. Math., vol. 60, no. 4, pp. 1234–1269,
2000.

[14] M. K.-J. Johansson, Piecewise Linear Control Systems: A Computa-
tional Approach. Springer, 2003, vol. 284.

[15] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2001.

[16] D. Liberzon, Switching in Systems and Control, ser. Systems and
Control: Foundations and Applications. Boston: Birkhäuser, 2003.
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