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Abstract: In this paper, we study two kinds of linearization (internal and external) of nonlinear
differential-algebraic equations DAEs of semi-explicit SE form. The difference of external and
internal linearization is illustrated by an example of a mechanical system. Moreover, we define
different levels of external equivalence for two SE DAEs. The proposed explicitation procedure
allows us to treat a given SE DAE as a control system defined up to feedback transformation (a
class of control systems). Then sufficient and necessary conditions, expressed via explicitation
procedure, are given to describe when a given SE DAE is level-3 externally equivalent to a
linear SE DAE of some specific forms. At last, we show by an example that level-2 external
linearization of a DAE can be achieved if its explicitation is level-2 input-output linearizable.
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1. INTRODUCTION

We study differential-algebraic equations DAEs of semi-
explicit SE form

Ξse :

{
R(x)ẋ = a(x)

0 = c(x),
(1)

whereR(x), a(x), and c(x) are smooth maps with values in
Rr×n, Rr, and Rp, respectively, and the word smooth will
mean throughout C∞-smooth, and where x ∈ X is called
the generalized state and X is an open subset of Rn. A SE
DAE of form (1) will be denoted by Ξse

n,r,p = (R, a, c) or,

simply, Ξse. A solution of Ξse is a curve x(t) ∈ C 1(I;X)
with an open interval I such that for all t ∈ I, x(t)
solves (1). An admissible point of (1) is a point x0 ∈ X
such that through x0, there passes at least one solution.
The motivation of studying SE DAEs is their presence
in modeling of electrical circuits Riaza (2008), chemical
processes Kumar and Daoutidis (1998), and constrained
mechanical systems Campbell (1995).

Definition 1. (External equivalence). Consider two SE

DAEs Ξse
n,r,p = (R, a, c) and Ξ̃se

n,r,p = (R̃, ã, c̃). If there ex-

ists a diffeomorphism ψ : X → X̃ and a smooth invertible
r × r-matrix Qa(x) such that

R̃(ψ(x)) = Qa(x)R(x)

(
∂ψ(x)

∂x

)−1

,

ã(ψ(x)) = Qa(x)a(x),
and if, additionally,

(i) there exists a smooth invertible p × p-matrix Qc(x)
such that c̃(ψ(x)) = Qc(x)c(x), we call Ξse and

Ξ̃se externally equivalent, or shortly ex-equivalent,
of level-1;

(ii) there exists a smooth invertible p × p-matrix Qc(x)
such that c̃(ψ(x)) = Qc(x)c(x) and Qc(x) = Q(c(x))

for some invertible Q(x), we call Ξse and Ξ̃se ex-
equivalent of level-2;

(iii) there exists a constant invertible p × p-matrix T

such that c̃(ψ(x)) = Tc(x), we call Ξse and Ξ̃se ex-
equivalent of level-3.

The level-i (i = 1, 2, 3) ex-equivalence of two SE DAEs

will be denoted by Ξse ex−i∼ Ξ̃se. If ψ : X0 → X̃0 is a local
diffeomorphism between neighborhoods X0 of x0 and X̃0

of x̃0, and Qa(x), Qc(x) are defined locally on X0, we will
speak about local ex-equivalence.

Remark 2. For SE DAEs, we propose three levels of exter-
nal equivalence that correspond to three kinds of transfor-
mations of the constraint c(x) = 0. The interpretation of
the three levels of ex-equivalence is as follows.

(i) Two constraints 0 = c(x) and 0 = c̃(x) are level-

1 ex-equivalent if and only if M0 = M̃0, where
M0 = {x | c(x) = 0} and M̃0 = {x | c̃(x) = 0};

(ii) Two constraints are level-2 ex-equivalent means that

the foliations Md = {x | c(x) = d} and M̃d̃ =

{x | c̃(x) = d̃} coincide, where d, d̃ ∈ Rp, i.e., there ex-

ists a diffeomorphism φ such that M̃d̃ = Mφ(d). It also
implies that the set of motions x(t) respecting the
constraint c(x) = d (equivalently, Dc(x(t)) · ẋ(t) = 0)

coincides with that respecting c̃(x) = d̃;
(iii) Two constraints are level-3 ex-equivalent means the

foliations Md and M̃d̃ coincide via a linear parameter

transformation, i.e., M̃d̃ = MTd.
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∗ Normandie Université, INSA-Rouen, LMI, 76801
Saint-Etienne-du-Rouvray, France (e-mail: yahao.chen@insa-rouen.fr).
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∗ Normandie Université, INSA-Rouen, LMI, 76801
Saint-Etienne-du-Rouvray, France (e-mail: yahao.chen@insa-rouen.fr).
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linear SE DAE of some specific forms. At last, we show by an example that level-2 external
linearization of a DAE can be achieved if its explicitation is level-2 input-output linearizable.

Keywords: differential-algebraic equations, implicit systems, linearization, internal and
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1. INTRODUCTION

We study differential-algebraic equations DAEs of semi-
explicit SE form

Ξse :

{
R(x)ẋ = a(x)

0 = c(x),
(1)

whereR(x), a(x), and c(x) are smooth maps with values in
Rr×n, Rr, and Rp, respectively, and the word smooth will
mean throughout C∞-smooth, and where x ∈ X is called
the generalized state and X is an open subset of Rn. A SE
DAE of form (1) will be denoted by Ξse

n,r,p = (R, a, c) or,

simply, Ξse. A solution of Ξse is a curve x(t) ∈ C 1(I;X)
with an open interval I such that for all t ∈ I, x(t)
solves (1). An admissible point of (1) is a point x0 ∈ X
such that through x0, there passes at least one solution.
The motivation of studying SE DAEs is their presence
in modeling of electrical circuits Riaza (2008), chemical
processes Kumar and Daoutidis (1998), and constrained
mechanical systems Campbell (1995).

Definition 1. (External equivalence). Consider two SE

DAEs Ξse
n,r,p = (R, a, c) and Ξ̃se

n,r,p = (R̃, ã, c̃). If there ex-

ists a diffeomorphism ψ : X → X̃ and a smooth invertible
r × r-matrix Qa(x) such that

R̃(ψ(x)) = Qa(x)R(x)

(
∂ψ(x)

∂x

)−1

,

ã(ψ(x)) = Qa(x)a(x),
and if, additionally,

(i) there exists a smooth invertible p × p-matrix Qc(x)
such that c̃(ψ(x)) = Qc(x)c(x), we call Ξse and

Ξ̃se externally equivalent, or shortly ex-equivalent,
of level-1;

(ii) there exists a smooth invertible p × p-matrix Qc(x)
such that c̃(ψ(x)) = Qc(x)c(x) and Qc(x) = Q(c(x))

for some invertible Q(x), we call Ξse and Ξ̃se ex-
equivalent of level-2;

(iii) there exists a constant invertible p × p-matrix T

such that c̃(ψ(x)) = Tc(x), we call Ξse and Ξ̃se ex-
equivalent of level-3.

The level-i (i = 1, 2, 3) ex-equivalence of two SE DAEs

will be denoted by Ξse ex−i∼ Ξ̃se. If ψ : X0 → X̃0 is a local
diffeomorphism between neighborhoods X0 of x0 and X̃0

of x̃0, and Qa(x), Qc(x) are defined locally on X0, we will
speak about local ex-equivalence.

Remark 2. For SE DAEs, we propose three levels of exter-
nal equivalence that correspond to three kinds of transfor-
mations of the constraint c(x) = 0. The interpretation of
the three levels of ex-equivalence is as follows.

(i) Two constraints 0 = c(x) and 0 = c̃(x) are level-

1 ex-equivalent if and only if M0 = M̃0, where
M0 = {x | c(x) = 0} and M̃0 = {x | c̃(x) = 0};

(ii) Two constraints are level-2 ex-equivalent means that

the foliations Md = {x | c(x) = d} and M̃d̃ =

{x | c̃(x) = d̃} coincide, where d, d̃ ∈ Rp, i.e., there ex-

ists a diffeomorphism φ such that M̃d̃ = Mφ(d). It also
implies that the set of motions x(t) respecting the
constraint c(x) = d (equivalently, Dc(x(t)) · ẋ(t) = 0)

coincides with that respecting c̃(x) = d̃;
(iii) Two constraints are level-3 ex-equivalent means the

foliations Md and M̃d̃ coincide via a linear parameter

transformation, i.e., M̃d̃ = MTd.
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There are two kinds of equivalence relations for DAEs,
namely, external and internal equivalence (for details
of internal equivalence, we refer to Chen and Respon-
dek (2018a) (linear DAEs) and Chen and Respondek
(2018b) (nonlinear DAEs)). We will show the differences
of these two equivalence relations in Section 3 by ex-
amples. Roughly speaking, the word “internal” means
that we consider the DAE on its constrained submanifold
only, Reich (1991) (also called invariant submanifold in
Chen and Respondek (2018b) or configuration subspace
in Steinbrecher (2006)), i.e., where the solutions of the
DAE exist. Correspondingly, the word “external” means
that we consider the DAE in a whole neighborhood and
for some points in that neighborhood there may not exist
solutions. More precisely, solutions of Rẋ = a(x) pass
through each point of the neighborhood but some may
not respect the algebraic constraint c(x) = 0. Therefore,
external equivalence is interesting in all problems, where
the nominal point does not respect the constraints but we
want to steer the solution towards the constraint (in finite
time or asymptotically). So the form of the DAE matters
not only on the constraint set but in a neighborhood as
well.

The purpose of this paper is to discuss when a SE DAE,
given by (1), is locally equivalent to a linear SE DAE. Some
results for linearization of DAEs can be found in Kawaji
and Taha (1994), Jiandong and Zhaolin (2002), however,
the concepts of external and internal equivalence are not
distinguished in those papers. In the present paper, we
will use a new tool named explicitation (see Definition 6)
to represent DAEs as explicit control systems. As shown
in the examples of Section 3, the internal linearizability
has direct relations with the feedback linearizability of
the explicit control system on its maximal output zero-
ing submanifold. For the external linearizability, we only
consider level-3 and level-2 external equivalence, level-1
will be discussed in future. The level-3 external lineariz-
ability of SE DAEs is closely related to the involutivity of
some distributions of an explicit control system (obtained
via explicitation), as is shown in Section 4. Moreover,
in Section 5 we provide an example of a system that is
level-2 externally linearizable but not level-3 externally
linearizable.

2. SOME RESULTS FOR THE LINEAR CASE

In this section, we introduce some concepts of linear semi-
explicit DAEs of form

∆se :

{
Rẋ = Ax
0 = Cx,

(2)

where R ∈ Rr×n, A ∈ Rr×n, C ∈ Rp×n. We assume
R to be of full row rank. A DAE of form (2) will be
denoted by ∆se

r,n,p = (R,A,C) or, simply, ∆se. From
the Kronecker canonical form KCF, see e.g. Kronecker
(1890) or Berger and Trenn (2012), for matrix pencils
sE − H (or equivalently, for linear DAEs Eẋ = Hx),
the canonical form SCF (see Proposition 1 below) can be
deduced for linear SE DAEs. Definition 1 applied to linear
systems says that two linear SE DAEs ∆se = (R,A,C) and

∆̃se = (R̃, Ã, C̃) are ex-equivalent if there exists constant

invertible matrices P , Qa, Qc such that R̃ = QaRP−1,
Ã = QaAP−1, C̃ = QcCP−1.

Proposition 1. Any linear SE DAE ∆se
r,n,p = (R,A,C) is

ex-equivalent to the following semi-explicit canonical form:

SCF :





ż1 = A1z1 +B1w1 +K1y
ż2 = A2z2 +K2y
ż3 = A3z3 +B3w3 +K3y
ż4 = A4z4 +K4y
0 = w0

0 = C3z3

0 = C4z4,
where y = (y0, y3, y4), y0 = w0, y3 = C3z3 and y4 = C4z4,
and the system matrices satisfy Ak = diag [Ak

1 , . . . , A
k
e ] for

k = 1, 3, 4, Bk =diag [Bk
1 , . . . , B

k
e ] for k = 1, 3 and Bk is

empty for k = 2, 4, Ck=diag [Ck
1 , . . . , C

k
e ] for k = 3, 4 and

Ck is empty for k = 1, 2, with

Ak
i =

[
0 Iµi−1
0 0

]
, Bk

i =
[
0
1

]
∈ Rµi×1, Ck

i = [1 0] ∈ R1×µi ,

for i = 1, . . . , e, where e depends on k and is equal to
a, b, c, d for k = 1, 2, 3, 4, respectively; A2 is in the Jordan
canonical form for real matrices.
Remark 3. If we regard the algebraic constraint as the zero
output of the control system, the above SCF coincides with
the Morse canonical form MCF for linear control systems
(see Morse (1973)), modulo output injection terms Kiy.

Now let M ∗ be the largest subspace M such that[
A
C

]
M ⊆

[
R
0

]
M .

The Wong sequences (see Wong (1974)) of ∆se are:

V0 := Rn, Vi+1 :=

[
A
C

]−1 [
R
0

]
Vi, i ∈ N,

W0 := {0}, Wi+1 :=

[
R
0

]−1 [
A
C

]
Wi, i ∈ N.

The limits of Vi and Wi are denoted by V ∗ and W ∗.
Notice that the solutions of ∆se exist on M ∗ only and,
moreover, M ∗ = V ∗ (see, e.g. Chen and Respondek
(2018a)). Now we introduce the following regularity and
reachability concepts (compare Berger and Reis (2013)).

Definition 4. ∆se
r,n,p = (R,A,C) is called

• internally regular, if ∀ x0 ∈ M ∗, ∃ only one
solution x(t) for t ≥ 0 such that x(0) = x0,

• regular, if it is internally regular and r + p = n,
• internally reachable, if ∀ x0, xe ∈ M ∗, ∃ te > 0
and a solution x(t) of ∆se such that x(0) = x0 and
x(te) = xe,

• constraint-free reachable, if ∀x0, xe ∈ Rn, ∃ te > 0
and a solution x(t) of Rẋ = Ax such that x(0) = x0

and x(te) = xe.

Lemma 5. ∆se
r,n,p = (R,A,C) is

(i) internally regular ⇔ dimV ∗ = dim(RV ∗) ⇔ V ∗ ∩
W ∗ = 0 ⇔ z1-subsystem in the SCF is absent,

(ii) regular ⇔ V ∗ ∩ W ∗ = 0 and V ∗ ⊕ W ∗ = Rn ⇔ z1-
and z4-subsystems in the SCF are absent,

(iii) internally reachable ⇔ V ∗ ⊆ W ∗ ⇔ z2-subsystem in
the SCF is absent,

(iv) constraint-free reachable ⇔ Rẋ = Ax is internally
reachable.

The above lemma, proved in Berger and Reis (2013), can
also be shown using the SCF described in Proposition 1.
The purpose of this lemma is to show how the concepts of
Definition 4 correspond to certain forms of linear SE DAEs
and that they are closely related to the Wong sequences.
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the canonical form SCF (see Proposition 1 below) can be
deduced for linear SE DAEs. Definition 1 applied to linear
systems says that two linear SE DAEs ∆se = (R,A,C) and
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3. EXPLICITATION AND INTERNAL
LINEARIZATION

We start this section by the definition of explicitation for
SE DAEs. Throughout the paper, we will assume that
R(x) is of full row rank equal to r in a neighborhood X0

of a nominal point x0.

Definition 6. (Explicitation) For Ξse
n,r,p = (R, a, c), set

m = n − r. Then the explicitation of Ξse, denoted by
Expl(Ξse), is a class of control systems of the following
form:

Σ :

{
ẋ = f(x) + g(x)v
y = h(x),

(3)

where v ∈ Rm is called the driving variable, h(x) is a
smooth Rp-valued function on X0, and where f, g1, . . . , gm
are smooth vector fields on X0 satisfying

f(x) = R†(x)a(x), Img(x) = kerR(x), h(x) = c(x).

AboveR†(x) is a right inverse ofR(x), i.e.,R(x)R†(x) = Ir
and g = (g1, . . . , gm). We will denote control system (3)
by Σn,m,p = (f, g, h) or, simply, Σ.

Notice that Expl(Ξse) is a class of control systems. Indeed,
first, the distribution kerR(x) spanned by g1, . . . , gm is
given uniquely but not the vector fields g1, . . . , gm them-
selves and, secondly, f is given up to kerR(x). We will use
the notation Σ ∈ Expl(Ξse) to indicate that control sys-
tem (3) belongs to the explicitation class of Ξse. By setting
y = 0 for system (3), we get a SE DAE parametrized by
the driving variable v. The definition of f and g implies
that ẋ = f(x) + g(x)v and R(x)ẋ = a(x) have the same
solutions. More precisely, if (x(t), v(t)), with v ∈ C 0(I),
is a solution of ẋ = f(x) + g(x)v, then x(t) is a C 1-
solution of R(x)ẋ = a(x) and, conversely, for any C 1-
solution x(t) of R(x)ẋ = a(x), there exists a C 0-function
v(t) such that (x(t), v(t)) satisfies ẋ = f(x) + g(x)v.
Thus, via explicitation, we can study the solutions of Σ
yielding a zero output instead of studying the solutions of
Ξse directly. Since the explicitation allows to treat a SE
DAE as a class of control systems, we give the definition
of equivalence for control systems.

Definition 7. (System equivalence) Consider two control

systems Σn,m,p = (f, g, h) and Σ̃n,m,p = (f̃ , g̃, h̃) defined

on X and X̃, respectively. If there exists a diffeomorphism
ψ : X → X̃, an Rm-valued function α(x), and an invertible
m×m-matrix-valued function β(x) satisfying

f̃(ψ(x)) = ∂ψ(x)
∂x (f + gα) (x),

g̃(ψ(x)) = ∂ψ(x)
∂x (gβ)(x),

and if, additionally,

(i) either there exists a constant invertible matrix T such

that h̃(ψ(x)) = Th(x), then we call Σ and Σ̃ system
equivalent, shortly sys-equivalent, of level-3,

(ii) or there exists a diffeomorphism ϕ : Rp → Rp such

that h̃(ψ(x)) = ϕ(h(x)), then we call the two control
systems sys-equivalent of level-2.

The sys-equivalence of level-i (i = 2, 3) of two control

systems will be denoted by Σ
sys−i∼ Σ̃. If ψ : X0 → X̃0

is a local diffeomorphism between neighborhoods X0 of x0

and X̃0 of x0, ϕ is a local diffeomorphism around h(x0),
and α(x), β(x) are defined locally on X0, we will speak
about local sys-equivalence.

Actually the above defined system equivalence for two non-
linear control systems of form (3) is widely considered in

nonlinear control theory, e.g., Isidori and Ruberti (1984),
Marino et al. (1994), Isidori (1995), Nijmeijer and van der
Schaft (1990). The following result is essential since it
connects control systems with SE DAEs.

Proposition 2. (i) Consider two control systems Σn,m,p =

(f, g, h) and Σn,m,p = (f̃ , g̃, h̃), that belong to the explic-

itation class of Ξse
n,r,p, i.e. Σ, Σ̃ ∈ Expl(Ξse). Then there

exist an Rm-valued function α(x) and an m×m invertible
matrix β(x) such that

f̃(x) = f(x) + g(x)α(x), g̃(x) = g(x)β(x).

(ii) Two SE DAEs Ξse
n,r,p = (R, a, c) and Ξ̃se

n,r,p = (R̃, ã, c̃)
are ex-equivalent of level-2 (respectively, level-3) if and
only if two control systems (f, g, h) = Σ ∈ Expl(Ξse) and

(f̃ , g̃, h̃) = Σ̃ ∈ Expl(Ξ̃se) are sys-equivalent of level-2
(respectively, level-3).

Now we apply the above defined explicitation to the
internal analysis of SE DAEs. For a SE DAE Ξse, a
submanifoldM∗ is called a maximal invariant submanifold
(for details, see Chen and Respondek (2018b)) if M∗ is the
largest submanifold of X such that ∀ x0 ∈ M∗, ∃ x(t) such
that x(0) = x0 and x(t) ∈ M∗, t ∈ I. M∗ can be seen as
a nonlinear generalization of the invariant space M ∗ for
linear DAEs. But note that M ∗ always exists while M∗

may not exist. Denote by Ξse|M∗ a semi-explicit DAE Ξse

restricted to its maximal invariant submanifold M∗.
Definition 8. (Internal equival.) Consider two SE DAEs

Ξse
n,r,p = (R, a, c) and Ξ̃se

n,r,p = (R̃, ã, c̃). Let M∗ and M̃∗

be their maximal invariant submanifolds. We call Ξse and
Ξ̃se internally equivalent, shortly in-equivalent, if Ξse|M∗

and Ξ̃se|M̃∗ are ex-equivalent.

Theorem 9. For Ξse
n,r,p = (R, a, c), the following are locally

equivalent:

(i) Ξse is in-equivalent to a linear DAE ∆se with internal
reachability;

(ii) A (and then any) control system (f∗, g∗) = Σ∗ ∈
Expl(Ξse|M∗) is feedback linearizable;

(iii) The linearizability distributions Gi, given by (14) be-
low, of Σ∗ = (f∗, g∗), are involutive and of constant
rank and G∗ = TM∗.

The following example illustrates the above theorem. Note
that in Chen and Respondek (2018b), it is proved that
the maximal invariant submanifold M∗ of DAEs coincides
with the output zeroing submanifold of any control system
in its explicitation class.

Example 10. (The Kapitsa pendulum with auxiliary con-
trols). Consider the following equation of the Kapitsa
pendulum taken from Fliess et al. (1995){

α̇=p+
u1
l sinα

ṗ=( g
l −

(u1)2

l2
cosα− (u2)2

2l2
cosα) sinα−u1

l p cosα

ż=u1.

(4)

We subject the system to two different holonomic con-
straints and analyze the constrained system from the DAE
point of view.

Case 1: Consider the following holonomic constraint:
z + l cosα = c10, (5)

where c10 denotes a fixed constant. This holonomic con-
straint assures that the end joint of the pendulum keeps
the same vertical position as its initial point. Now combine
equations (4) and (5), and denote x = (x1, . . . , x5), where

x1 = α, x2 = p, x3 = z, x4 = u1, x5 = u2. (6)
We get the following SE DAE:
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Ξse
1 :

{
R1(x)ẋ = a1(x)

0 = c1(x),
(7)

where

R1(x) =
[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, c1(x) = x3 + l cosx1 − c10,

a1(x) =

[
x2+

x4
l sin x1

( g
l −

(x4)2

l2
cos x1−

(x5)2

2l2
cos x1) sin x1−

x4
l x2 cos x1

x4

]
.

Consider the above DAE around an admissible point
x0 = (x10, . . . , x50) such that x50 cosx10 sinx10 �= 0. The
explicitation of DAE (7) contains the following control
system, see Definition 6, denoted by Σ1 = (f1, g1, h1), with
driving variables v1 = ẋ4, v2 = ẋ5:

Σ1 :

{
ẋ =

[
a1(x)

0
0

]
+
[
0 0
1 0
0 1

]
[ v1
v2
]

y = x3 + l cosx1 − c10.
(8)

Recall that the explicitation of our DAE is the above
control system defined up to feedback transformation.
By the zero dynamics algorithm (see Isidori (1995)), the
maximal output zeroing submanifold of Σ1, denoted by
M∗

1 , can be expressed as:

M∗
1 =

{
x |x3 + l cosx1 − c10=x4 cos

2 x1 − lx2 sinx1=0
}
.

Then system (8) restricted to M∗
1 is


ẋ1 = x2

cos2 x1

ẋ2 = ( gl −
(x2)

2

cos3 x1
− (x5)

2

2l2 cosx1) sinx1

ẋ5 = v2.

(9)

System (9) is locally static feedback equivalent to the
following chained form around x0:

˙̃x1 = x̃2, ˙̃x2 = x̃5, ˙̃x5 = ṽ2,
where (x̃1, x̃2, x̃5) are new coordinates and ṽ2 is a new
control. It follows by Theorem 9 that Ξse

1 is internally
equivalent to the following linear DAE:{

˙̃x1 = x̃2
˙̃x2 = x̃5.

Case 2: Consider again system (4) but now under the
following dummy holonomic constraints{

0 = u1
0 = ln | tan α

2 |+ (k − 1)z,
where k ∈ R. Following the notations of Case 1, we write

Ξse
2 :

{
R2(x)ẋ = a2(x)

0 = c2(x),
(10)

where R2(x) = R1(x), a2(x) = a1(x) and

c2(x) =
[ x4
ln | tan x1

2 |+ (k − 1)x3

]
.

Consider Ξse
2 around an admissible point x0. Then the

explicitation of Ξse
2 gives a control system Σ2 ∈ Expl(Ξse

2 ),
where Σ2 = (f2, g2, h2) is given by

Σ2 :




ẋ =
[
a2(x)

0
0

]
+
[
0 0
1 0
0 1

]
[ v1v2 ]

[ y1
y2 ] =

[
x4

ln | tan x1
2 |+(k−1)x3

]
.

(11)

The maximal output zeroing submanifold M∗
2 , given by

the zero dynamics algorithm applied to Σ2, is:

M∗
2 =

{
x

∣∣∣∣
ln | tan x1

2 |+ (k − 1)x3 = x2 = x4 = 0
2lg − (x5)

2 cosx1 = 0

}
,

which is the curve x3 =
ln | tan x1

2 |
1−k , equipped with the

coordinate x1, on the plane {x2 = x4 = x5 = 0}. The zero
dynamics of Σ2 is

ẋ1 = 0, (12)

and its solutions consist of fixed admissible points x0 =
(x10, 0, x30, 0, x50). Thus Ξ

se
2 is in-equivalent to ODE (12).

4. LEVEL-3 EXTERNAL LINEARIZATION

We start by reviewing the results of linearization of input-
output map for control systems, given in Isidori and
Ruberti (1984). Denote by r(A(x)) the rank of the matrix
A(x) and denote by rR(A(x)) the dimension of the vector
space spanned over R by the rows of A(x) around x0.

Theorem 11. (Isidori and Ruberti (1984), Cheng et al.
(1988)) For a control system Σn,m,p = (f, g, h), the
following conditions are equivalent locally around x0.

(i) System Σ is level-3 input-output linearizable;
(ii) The Toeplitz matrices

Mk =

[
T0(x) T1(x) ··· Tk(x)

0 T0(x) ··· Tk−1(x)
··· ··· ··· ···
0 0 ··· T0(x)

]

satisfy r(Mk(x)) = rR(Mk(x)) for all k ≤ 2n − 1,
where Tk(x) = LgL

k
fh(x);

(iii) System Σ is level-3 sys-equivalent to


ξ̇1 = f1(ξ) + g1(ξ)v1 + g3(ξ)v3

ξ̇3 = A3ξ3 +B3v3 +K3y
ξ̇4 = f4(ξ4) +K4y
y3 = C3ξ3

y4 = C4ξ4,

(13)

where y = (y3, y4) and (A3, B3, C3) is prime (see
Morse (1973) for the definition of prime form).

Note that in Isidori and Ruberti (1984) and Cheng et al.
(1988), the implication (i) ⇒ (ii) is proved by the structure
algorithm, from which a linearizing feedback can be con-
structed via a r2n−1 ×m full row rank decoupling matrix
LgΓ(x). Due to the reason of saving space, here we will not
re-implement the structure algorithm but emphasize that
this rank r2n−1 will be used for the external linearization
problem below.

For a nonlinear control system Σn,m,p = (f, g, h), define
sequences of distributions Gi, Si and codistributions Pi

by (see Isidori (1995) and Nijmeijer and van der Schaft
(1990) for those concepts, as well as for the definitions of
Lie bracket, Lie derivative, and the notations [f,G] and
LfG)

G1 := G := span {g1, . . . , gm}
Gi+1 := Gi + [f,Gi]
G∗ :=

∑
i≥1

Gi.
(14)

S1 := G,
Si+1 := Si + [f, Si ∩ ker dh] +

∑m

j=1
[gj , Si ∩ ker dh]

S∗ :=
∑
i≥1

Si.

P1 := span {dh1, . . . , dhp},
Pi+1 := Pi + Lf (Pi ∩G⊥) +

∑m

j=1
Lgj (Pi ∩G⊥)

P ∗ :=
∑
i≥1

Pi.

The above distributions and codistributions, together
with Vi := P⊥

i , V ∗ := (P ∗)⊥, play an important role in
the problems of linearization and decoupling of nonlinear
control systems.

Theorem 12. Consider Ξse
n,r,p = (R, a, c) around a point

x0. Then in a neighborhood X0 of x0, Ξse is level-3 ex-
equivalent to a linear SE DAE ∆se with internal regularity
and constraint-free reachability if and only if a (and then
any) control system Σ = (f, g, h) ∈ Expl(Ξse) satisfies the
following conditions in X0:

(i) Σ is level-3 input-output linearizable;
(ii) G∗ = TX0;
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Ξse
1 :

{
R1(x)ẋ = a1(x)

0 = c1(x),
(7)

where

R1(x) =
[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, c1(x) = x3 + l cosx1 − c10,

a1(x) =

[
x2+

x4
l sin x1

( g
l −

(x4)2

l2
cos x1−

(x5)2

2l2
cos x1) sin x1−

x4
l x2 cos x1

x4

]
.

Consider the above DAE around an admissible point
x0 = (x10, . . . , x50) such that x50 cosx10 sinx10 �= 0. The
explicitation of DAE (7) contains the following control
system, see Definition 6, denoted by Σ1 = (f1, g1, h1), with
driving variables v1 = ẋ4, v2 = ẋ5:

Σ1 :

{
ẋ =

[
a1(x)

0
0

]
+
[
0 0
1 0
0 1

]
[ v1v2 ]

y = x3 + l cosx1 − c10.
(8)

Recall that the explicitation of our DAE is the above
control system defined up to feedback transformation.
By the zero dynamics algorithm (see Isidori (1995)), the
maximal output zeroing submanifold of Σ1, denoted by
M∗

1 , can be expressed as:

M∗
1 =

{
x |x3 + l cosx1 − c10=x4 cos

2 x1 − lx2 sinx1=0
}
.

Then system (8) restricted to M∗
1 is


ẋ1 = x2

cos2 x1

ẋ2 = ( gl −
(x2)

2

cos3 x1
− (x5)

2

2l2 cosx1) sinx1

ẋ5 = v2.

(9)

System (9) is locally static feedback equivalent to the
following chained form around x0:

˙̃x1 = x̃2, ˙̃x2 = x̃5, ˙̃x5 = ṽ2,
where (x̃1, x̃2, x̃5) are new coordinates and ṽ2 is a new
control. It follows by Theorem 9 that Ξse

1 is internally
equivalent to the following linear DAE:{

˙̃x1 = x̃2
˙̃x2 = x̃5.

Case 2: Consider again system (4) but now under the
following dummy holonomic constraints{

0 = u1
0 = ln | tan α

2 |+ (k − 1)z,
where k ∈ R. Following the notations of Case 1, we write

Ξse
2 :

{
R2(x)ẋ = a2(x)

0 = c2(x),
(10)

where R2(x) = R1(x), a2(x) = a1(x) and

c2(x) =
[ x4
ln | tan x1

2 |+ (k − 1)x3

]
.

Consider Ξse
2 around an admissible point x0. Then the

explicitation of Ξse
2 gives a control system Σ2 ∈ Expl(Ξse

2 ),
where Σ2 = (f2, g2, h2) is given by

Σ2 :




ẋ =
[
a2(x)

0
0

]
+
[
0 0
1 0
0 1

]
[ v1v2 ]

[ y1
y2 ] =

[
x4

ln | tan x1
2 |+(k−1)x3

]
.

(11)

The maximal output zeroing submanifold M∗
2 , given by

the zero dynamics algorithm applied to Σ2, is:

M∗
2 =

{
x

∣∣∣∣
ln | tan x1

2 |+ (k − 1)x3 = x2 = x4 = 0
2lg − (x5)

2 cosx1 = 0

}
,

which is the curve x3 =
ln | tan x1

2 |
1−k , equipped with the

coordinate x1, on the plane {x2 = x4 = x5 = 0}. The zero
dynamics of Σ2 is

ẋ1 = 0, (12)

and its solutions consist of fixed admissible points x0 =
(x10, 0, x30, 0, x50). Thus Ξ

se
2 is in-equivalent to ODE (12).

4. LEVEL-3 EXTERNAL LINEARIZATION

We start by reviewing the results of linearization of input-
output map for control systems, given in Isidori and
Ruberti (1984). Denote by r(A(x)) the rank of the matrix
A(x) and denote by rR(A(x)) the dimension of the vector
space spanned over R by the rows of A(x) around x0.

Theorem 11. (Isidori and Ruberti (1984), Cheng et al.
(1988)) For a control system Σn,m,p = (f, g, h), the
following conditions are equivalent locally around x0.

(i) System Σ is level-3 input-output linearizable;
(ii) The Toeplitz matrices

Mk =

[
T0(x) T1(x) ··· Tk(x)

0 T0(x) ··· Tk−1(x)
··· ··· ··· ···
0 0 ··· T0(x)

]

satisfy r(Mk(x)) = rR(Mk(x)) for all k ≤ 2n − 1,
where Tk(x) = LgL

k
fh(x);

(iii) System Σ is level-3 sys-equivalent to


ξ̇1 = f1(ξ) + g1(ξ)v1 + g3(ξ)v3

ξ̇3 = A3ξ3 +B3v3 +K3y
ξ̇4 = f4(ξ4) +K4y
y3 = C3ξ3

y4 = C4ξ4,

(13)

where y = (y3, y4) and (A3, B3, C3) is prime (see
Morse (1973) for the definition of prime form).

Note that in Isidori and Ruberti (1984) and Cheng et al.
(1988), the implication (i) ⇒ (ii) is proved by the structure
algorithm, from which a linearizing feedback can be con-
structed via a r2n−1 ×m full row rank decoupling matrix
LgΓ(x). Due to the reason of saving space, here we will not
re-implement the structure algorithm but emphasize that
this rank r2n−1 will be used for the external linearization
problem below.

For a nonlinear control system Σn,m,p = (f, g, h), define
sequences of distributions Gi, Si and codistributions Pi

by (see Isidori (1995) and Nijmeijer and van der Schaft
(1990) for those concepts, as well as for the definitions of
Lie bracket, Lie derivative, and the notations [f,G] and
LfG)

G1 := G := span {g1, . . . , gm}
Gi+1 := Gi + [f,Gi]
G∗ :=

∑
i≥1

Gi.
(14)

S1 := G,
Si+1 := Si + [f, Si ∩ ker dh] +

∑m

j=1
[gj , Si ∩ ker dh]

S∗ :=
∑
i≥1

Si.

P1 := span {dh1, . . . , dhp},
Pi+1 := Pi + Lf (Pi ∩G⊥) +

∑m

j=1
Lgj (Pi ∩G⊥)

P ∗ :=
∑
i≥1

Pi.

The above distributions and codistributions, together
with Vi := P⊥

i , V ∗ := (P ∗)⊥, play an important role in
the problems of linearization and decoupling of nonlinear
control systems.

Theorem 12. Consider Ξse
n,r,p = (R, a, c) around a point

x0. Then in a neighborhood X0 of x0, Ξse is level-3 ex-
equivalent to a linear SE DAE ∆se with internal regularity
and constraint-free reachability if and only if a (and then
any) control system Σ = (f, g, h) ∈ Expl(Ξse) satisfies the
following conditions in X0:

(i) Σ is level-3 input-output linearizable;
(ii) G∗ = TX0;
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(iii) [adk
f̃
g̃i, ad

l
f̃
g̃j ] = 0 for 1 ≤ i, j ≤ m, 0 ≤ l, k ≤ n,

where f̃ and g̃i are vector fields modified by a
feedback transformation resulting from the structure
algorithm;

(iv) V ∗ ∩ S∗ = 0.

Moreover, ∆se is regular if and only if Ξse satisfies (i)-(iv)
and, additionally, condition

(v) V ∗ ⊕ S∗ = TX0.

Remark 13. (i) The distributions V ∗ and S∗ are, obvi-
ously, the nonlinear generalizations of the limits of Wong
sequences V ∗ and W ∗, respectively.

(ii) Condition (iv) above can be replaced by (iv)’: the rank
r2n−1 of the decoupling matrix LgΓ(x) in the structure
algorithm equals m. Condition (v) can be replaced by (v)’:
r + p = n.

Observe that if the rank r2n−1 = m, which implies that
the feedback transformation of the structure algorithm is
unique, then condition (iii) of Theorem 12 is verifiable.
However, if r2n−1 < m, which implies some inputs are
not used for the purpose of input-output linearization,
then condition (iii) may be difficult to check. We give
the following theorem, in which the “unused” inputs serve
to linearize the remaining part (contained in V ∗) of the
system and all conditions become checkable.

Theorem 14. Consider Ξse
n,r,p = (R, a, c) around a point x0.

Then in a neighborhood X0 of x0, Ξse is level-3 ex-
equivalent to a linear SE DAE ∆se of the form{

ż1 = A1z1 +B1w1,
ż3 = A3z3 +B3w3 +K3y,

0 = w0

0 = C3z3,
(15)

where all matrices are in the SCF, if and only if a (and then
any) control system Σ ∈ Expl(Ξse) satisfies the following
conditions in X0:

(i) Σ is level-3 input-output linearizable;
(ii) Si and Gi are involutive and of constant rank;
(iii) S∗ = TX0;
(iv) Si ∩ V ∗ = Gi ∩ V ∗.

Sketch of Proof : Only if . If Ξse is level-3 ex-equivalent to
∆se given by (15), then any control system Σ ∈ Expl(Ξse)
is level-3 ex-equivalent to



ż1 = A1z1 +B1w1, ẇ1 = v1,
ż3 = A3z3 +B3w3 +K3y, ẇ3 = v3,
y0 = w0, ẇ0 = v0,
y3 = C3z3.

The above linear control system satisfies (i)-(iv) in an
obvious way. Moreover, the invariance of Si, Gi (clearly, Gi

is involutive for the linear system), and V ∗ under level - 3
sys-equivalence, completes the proof of necessity.
If . Suppose Σ ∈ Expl(Ξse) satisfies conditions (i)-(iv),
then by condition (i) and Theorem 11, Σ is level-3 sys-
equivalence to a control system of the form (13) via the
structural algorithm. Subsequently, condition (iii) implies
that there is no ξ4 in system (13), i.e., after input-output
linearization, Σ becomes


ξ̇1 = f1(ξ1, ξ3) + g1(ξ1, ξ3)v1 + g3(ξ1, ξ3)v3

ξ̇3 = A3ξ3 +B3v3 +K3y3

y3 = C3ξ3.

(16)

For ease of proof, we assume that v1 is of dimension 1.
Denote

f =

(
f1(ξ)

A3ξ3 +K3y3

)
, g1 =

(
g1(ξ)
0

)
, g3 =

(
g3(ξ)
B3

)
.

In view of condition (iii), the key of the following proof is

to find new coordinates ξ̃1 and new control ṽ1 (we do not

change ξ3 and v3) such that in (ξ̃1, ξ3)-coordinates and
with the control (ṽ1, v3), the distributions Gi are rectified.
Notice that from the involutivity of Si in (ii), we have

Si+1 = Si + [f, Si ∩ ker dh]. Now from V ∗ = span
{

∂
∂ξ1

}
,

via condition (iv) and a direct calculation of Si, we get for

(16), Gi ∩ V ∗ = Si ∩ V ∗ = span
{
g1, adfg1, . . . , ad

i−1
f g1

}
.

Then there exists a smallest number, denoted by ρ, such
that Gρ ∩ V ∗ = G∗ ∩ V ∗ (note that dim(Gρ ∩ V ∗) −
dim(Gρ−1 ∩ V ∗) = 1). Thus, from the involutivity of
Gi, we can choose a scalar function ψ(ξ1, ξ3) such that
dψ ∈ (Gρ−1)

⊥ and dψ /∈ (Gρ ∩ V ∗)⊥ = (V ∗)⊥. The
above construction implies that the dummy output y1 =
ψ(ξ1, ξ3) has relative degree ρ and Lg1L

ρ−1
f ψ �= 0. Observe

that Gρ ∩ V ∗ = V ∗ and that span
{
dψ, . . . , dLρ−1

f ψ
}
∩

(V ∗)⊥ = 0. Thus (ψ, . . . , Lρ−1
f ψ, ξ3) form a local diffeo-

morphism (since span
{
dξ3

}
= (V ∗)⊥ and dψ, . . . , dLρ−1

f ψ

are independent). Finally, via the change of coordinates

ξ̃11 = ψ, . . . , ξ̃1ρ = Lρ−1
f ψ and the feedback transformation

ṽ1 = Lρ−1
f ψ + v1Lg1L

ρ−1
f ψ + v3Lg3L

ρ−1
f ψ, we get


˙̃
ξ11 = ξ̃12 ,

˙̃
ξ12 = ξ̃13 , . . . ,

˙̃
ξ1ρ = ṽ1,

ξ̇3 = A3ξ3 +B3v3 +K3y3,
y3 = C3ξ3.

�

Example 15. (Continuation of Example 10) Case 1: Con-
sider Ξse around a point x0 (not necessarily admissible).
Assume x50 cosx10 sinx10 �= 0. Then the control system
Σ1 satisfies conditions (i)-(iv) of Theorem 14 around x0.
In particular, via the change of coordinates


x̃3 = x3 + l cosx1 − c0, x̃4 = x4 cos
2 x1 − lx2 sinx1,

x̃1 = l ln | tan x1

2 | − x3, x̃2 = lx2

sin x1
,

x̃5 = g − cos x1(lx2+x4 sin x1)
2

l sin2 x1
− (x5)

2 cos x1

2l

and the static feedback transformation{
ṽ1 = α̃1(x) + cos2 x1v1,

ṽ2 = α̃2(x)− 2(x4 sin x1+lx2) cos x1

l sin x1
v1 − x5 cos x1

l v2,

where α̃1(x) = Lf x̃4(x) and α̃2(x) = Lf x̃5(x), Σ1 is level-

3 sys-equivalent to Σ̃1 below. It follows from Proposition 2
that Ξse

1 is level-3 ex-equivalent to the following ∆se
1 (since

Σ1 ∈ Expl(Ξse
1 ) and Σ̃1 ∈ Expl(∆se

1 )):

Σ̃1 :




˙̃x3 = x̃4, y = x̃3
˙̃x4 = ṽ1
˙̃x1 = x̃2
˙̃x2 = x̃5
˙̃x5 = ṽ2

⇒ ∆se
1 :





˙̃x1 = x̃2
˙̃x2 = x̃5
˙̃x3 = x̃4
0 = x̃3.

Note that the above transformation bringing Σ̃1 into the
linear DAE, given by ∆se

1 , is a dual procedure to that
of explicitation and it is called implicitation of a control
system (for details, see Chen and Respondek (2018a),
Chen and Respondek (2018b)).

Case 2: We show that although Ξse
2 is internally equivalent

to the ODE ẋ1 = 0, it is ex-equivalent to a linear SE
DAE. Consider Ξse

2 around x0, which is not necessarily
admissible. Assume x50 cosx10 sinx10 �= 0. Since Σ2 satis-
fies conditions (i)-(v) of Theorem 12 around x0, it can be

seen that Σ2 is level-3 sys-equivalent to the following Σ̃2
via the coordinates change
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{
x̃3 = x3, x̃4 = x4, x̃1 = l ln | tan x1

2 | − x3,

x̃2 = lx2

sin x1
, x̃5 = g − cos x1(lx2+x4 sin x1)

2

l sin2 x1
− (x5)

2 cos x1

2l

and the static feedback transformation{
ṽ1 = v1,
ṽ2 = α̃2(x)− 2(x4 sin x1+lx2) cos x1

l sin x1
v1 − x5 cos x1

l v2,

where α̃2(x) = Lf x̃5(x). Moreover, since Σ2 ∈ Expl(Ξse
2 )

and obviously Σ̃2 ∈ Expl(∆se
2 ), by Proposition 2, Ξse

2 is
level-3 ex-equivalent to the following ∆se

2 , which is regular
and constraint-free reachable:

Σ̃2 :





˙̃x3 = x̃4
˙̃x4 = ṽ1, y1 = x̃4
˙̃x1 = x̃2 + ky1, y2 = x̃1
˙̃x2 = x̃5
˙̃x5 = ṽ2

⇒ ∆se
2 :





˙̃x1 = x̃2 + kx̃4
˙̃x2 = x̃5
˙̃x3 = x̃4
0 = x̃4
0 = x̃1.

5. AN EXAMPLE WHICH IS NOT LEVEL-3
EXTERNALLY LINEARIZABLE BUT SO IS LEVEL-2

Example 16. Consider a SE DAE Ξse
3 = (R3, a3, c3),

described by

R3(x) =

[
1 0 −x1 0 0 0
0 0 e3x3 −1 0 0
0 0 0 0 1 0

]
, a3(x) =

[
2(x1e

x3 )
1
2 x2

−(x5+kex3 )
x6

]
,

c3(x) = [ x3
x4

] ,
where k ∈ R. We can choose a control system (f3, g3, h3) =
Σ3 ∈ Expl(Ξse

3 ), given by

Σ3 :







ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


 =




2(x1e
x3 )

1
2 x2

0
0

x5+kex3

x6
0


+




0 x1 0
1 0 0
0 1 0
0 e3x3 0
0 0 0
0 0 1


[

v1
v2
v3

]

y1 = x3y2 = x4.
It is easy to verify that Σ3 is not level-3 input-output
linearizable (since the Toeplitz matrices Mk(Σ3) do not
satisfy rank condition (ii) of Theorem 11). However, via a
nonlinear coordinates change in the output space

ỹ1 = ey1 , ỹ2 = y2 −
1

3
e3y1 ,

the system with the new outputs ỹ1, ỹ2 is level-3 input-
output linearizable. Additionally, the transformed system
satisfies conditions (i)-(iv) of Theorem 14. In fact, by
choosing new coordinates{

x̃1 = (x1e
−x3)

1
2 , x̃2 = x2, x̃3 = ex3 ,

x̃4 = x4 − 1
3e

3x3 , x̃5 = x5, x̃6 = x6,

and the feedback transformation v1 = ṽ1, v2 = e−x3 ṽ2,
v3 = ṽ3, the system Σ3 is level-2 sys-equivalent to the
linear control system Σ̃3 below. Moreover, since Σ3 ∈
Expl(Ξse

3 ), by Proposition 2, Ξse
3 is level-2 ex-equivalent

to the linear DAE ∆se
3 below

Σ̃3 :




˙̃x1 = x̃2
˙̃x2 = ṽ1
˙̃x3 = ṽ2, ỹ1 = x̃3
˙̃x4 = x̃5 + kỹ1, ỹ2 = x̃4
˙̃x5 = x̃6
˙̃x6 = ṽ3

⇒ ∆se
3 :




˙̃x1 = x̃2
˙̃x4 = x̃5 + kỹ1
˙̃x5 = x̃6
0 = x̃3
0 = x̃4.

In view of the example above, even if an explicit control
system is not level-3 input-output linearizable, it may
be so under level-2 sys-equivalence. Thus via further
transformations, the original SE DAE is possibly level-2
externally linearizable. It suggests that the future work
should be focused on level-2 input-output linearizability
of control systems and corresponding SE DAEs.
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{
x̃3 = x3, x̃4 = x4, x̃1 = l ln | tan x1

2 | − x3,

x̃2 = lx2

sin x1
, x̃5 = g − cos x1(lx2+x4 sin x1)

2

l sin2 x1
− (x5)

2 cos x1

2l

and the static feedback transformation{
ṽ1 = v1,
ṽ2 = α̃2(x)− 2(x4 sin x1+lx2) cos x1

l sin x1
v1 − x5 cos x1

l v2,

where α̃2(x) = Lf x̃5(x). Moreover, since Σ2 ∈ Expl(Ξse
2 )

and obviously Σ̃2 ∈ Expl(∆se
2 ), by Proposition 2, Ξse

2 is
level-3 ex-equivalent to the following ∆se

2 , which is regular
and constraint-free reachable:

Σ̃2 :





˙̃x3 = x̃4
˙̃x4 = ṽ1, y1 = x̃4
˙̃x1 = x̃2 + ky1, y2 = x̃1
˙̃x2 = x̃5
˙̃x5 = ṽ2

⇒ ∆se
2 :





˙̃x1 = x̃2 + kx̃4
˙̃x2 = x̃5
˙̃x3 = x̃4
0 = x̃4
0 = x̃1.

5. AN EXAMPLE WHICH IS NOT LEVEL-3
EXTERNALLY LINEARIZABLE BUT SO IS LEVEL-2

Example 16. Consider a SE DAE Ξse
3 = (R3, a3, c3),

described by

R3(x) =

[
1 0 −x1 0 0 0
0 0 e3x3 −1 0 0
0 0 0 0 1 0

]
, a3(x) =

[
2(x1e

x3 )
1
2 x2

−(x5+kex3 )
x6

]
,

c3(x) = [ x3
x4

] ,
where k ∈ R. We can choose a control system (f3, g3, h3) =
Σ3 ∈ Expl(Ξse

3 ), given by

Σ3 :







ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


 =




2(x1e
x3 )

1
2 x2

0
0

x5+kex3

x6
0


+




0 x1 0
1 0 0
0 1 0
0 e3x3 0
0 0 0
0 0 1


[

v1
v2
v3

]

y1 = x3y2 = x4.
It is easy to verify that Σ3 is not level-3 input-output
linearizable (since the Toeplitz matrices Mk(Σ3) do not
satisfy rank condition (ii) of Theorem 11). However, via a
nonlinear coordinates change in the output space

ỹ1 = ey1 , ỹ2 = y2 −
1

3
e3y1 ,

the system with the new outputs ỹ1, ỹ2 is level-3 input-
output linearizable. Additionally, the transformed system
satisfies conditions (i)-(iv) of Theorem 14. In fact, by
choosing new coordinates{

x̃1 = (x1e
−x3)

1
2 , x̃2 = x2, x̃3 = ex3 ,

x̃4 = x4 − 1
3e

3x3 , x̃5 = x5, x̃6 = x6,

and the feedback transformation v1 = ṽ1, v2 = e−x3 ṽ2,
v3 = ṽ3, the system Σ3 is level-2 sys-equivalent to the
linear control system Σ̃3 below. Moreover, since Σ3 ∈
Expl(Ξse

3 ), by Proposition 2, Ξse
3 is level-2 ex-equivalent

to the linear DAE ∆se
3 below

Σ̃3 :




˙̃x1 = x̃2
˙̃x2 = ṽ1
˙̃x3 = ṽ2, ỹ1 = x̃3
˙̃x4 = x̃5 + kỹ1, ỹ2 = x̃4
˙̃x5 = x̃6
˙̃x6 = ṽ3

⇒ ∆se
3 :




˙̃x1 = x̃2
˙̃x4 = x̃5 + kỹ1
˙̃x5 = x̃6
0 = x̃3
0 = x̃4.

In view of the example above, even if an explicit control
system is not level-3 input-output linearizable, it may
be so under level-2 sys-equivalence. Thus via further
transformations, the original SE DAE is possibly level-2
externally linearizable. It suggests that the future work
should be focused on level-2 input-output linearizability
of control systems and corresponding SE DAEs.
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Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995).
Flatness and defect of non-linear systems: introductory
theory and examples. International Journal of Control,
61(6), 1327–1361.

Isidori, A. and Ruberti, A. (1984). On the synthesis
of linear input-output responses for nonlinear systems.
Systems Control Letters, 4(1), 17 – 22.

Isidori, A. (1995). Nonlinear Control Systems. Springer-
Verlag New York, Inc., 3rd edition.

Jiandong, Z. and Zhaolin, C. (2002). Exact linearization
for a class of nonlinear differential-algebraic systems. In
Proceedings of the 4th World Congress on Intelligent
Control and Automation, 2002., volume 1, 211–214.
IEEE.

Kawaji, S. and Taha, E.Z. (1994). Feedback linearization
of a class of nonlinear descriptor systems. In Proceedings
of the 33rd IEEE Conference on Decision and Control,
1994., volume 4, 4035–4037. IEEE.

Kronecker, L. (1890). Algebraische Reduction der Schaaren
bilinearer Formen.

Kumar, A. and Daoutidis, P. (1998). Control of nonlinear
differential algebraic equation systems: an overview.
In Nonlinear Model Based Process Control, 311–344.
Springer.

Marino, R., Respondek, W., and van Der Schaft, A. (1994).
Equivalence of nonlinear systems to input-output prime
forms. SIAM Journal on Control and Optimization,
32(2), 387–407.

Morse, A.S. (1973). Structural invariants of linear mul-
tivariable systems. SIAM Journal on Control, 11(3),
446–465.

Nijmeijer, H. and van der Schaft, A. (1990). Nonlinear
Dynamical Control Systems. Springer.

Reich, S. (1991). On an existence and uniqueness theory
for nonlinear differential-algebraic equations. Circuits,
Systems and Signal Processing, 10(3), 343–359.

Riaza, R. (2008). Differential-Algebraic Systems: Analyti-
cal Aspects and Circuit Applications. World Scientific.

Steinbrecher, A. (2006). Numerical Solution of Quasi-
Linear Differential-Algebraic Equations and Industrial
Simulation of Multibody Systems. Technische Universitt
Berlin.

Wong, K.T. (1974). The eigenvalue problem λTx + Sx.
Journal of Differential Equations, 16(2), 270–280.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

437


