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Abstract: We discuss two notions of index, i.e., the geometric index and the differentiation
index for nonlinear differential-algebraic equations (DAEs). First, we analyze solutions of
nonlinear DAEs by revising a geometric reduction method (see e.g. Rabier and Rheinboldt
(2002),Riaza (2008)). Then we show that although both of the geometric index and the
differentiation index serve as a measure of difficulties for solving DAEs, they are actually related
to the existence and uniqueness of solutions in a different manner. It is claimed in (Campbell
and Gear, 1995) that the two indices coincide when sufficient smoothness and assumptions are
satisfied, we elaborate this claim and show that the two indices indeed coincide if and only if
a condition of uniqueness of solutions is satisfied (under certain constant rank assumptions).
Finally, an example of a pendulum system is used to illustrate our results on the two indices.
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1. INTRODUCTION

We consider a nonlinear differential-algebraic equation
(DAE) of the following form

Ξ : E(x)ẋ = F (x), (1)

where x ∈ X is called the generalized state and X is an
open subset of Rn, and E : TX → Rl and F : X → Rl

are C∞-smooth maps, where TX is the tangent bundle of
X. We denote a DAE of the form (1) by Ξl,n = (E,F )
or, simply, Ξ. The DAE (1) is sometimes called a quasi-
linear DAE (see e.g., Rabier and Rheinboldt (2002); Riaza
(2008)), which is a special case of DAEs in the general
form

Ξgen : G(t, x, x′) = 0, (2)

where G : I × TX → Rl is C∞-smooth, I ⊆ R is an
open interval. Notice that Ξgen can be transformed into a
DAE of the form (1) by extending the generalized state
to (t, x, z) = (t, x, x′), i.e., ṫ = 1, ẋ = z, 0 = G(t, x, z) .

which is a DAE of form (1) with E =
[
In+1 0
0 0

]
∈

R(n+l+1)×(2n+1) and F (t, x, z) =
[

1
z

G(t,x,z)

]
.

Two main streams of researches on solutions of nonlinear
DAEs are geometric methods (Rheinboldt, 1984; Reich,
1990, 1991; Rabier and Rheinboldt, 1994) and numerical
methods (Gear, 1988; Brenan et al., 1996; Kunkel and
Mehrmann, 2006). Moreover, some crossover results of
the two methods can be consulted in Griepentrog (1991);
Campbell and Griepentrog (1995); Rabier and Rheinboldt
(2002) and the references therein. To characterize different
properties of DAEs, various notions of index are proposed,
see the survey or survey-like papers on index of DAEs as
Griepentrog et al. (1992); Campbell (1995); Campbell and
Gear (1995); Mehrmann (2015). The most commonly used
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notions of index seem to be the geometric index (Reich,
1990; Rabier and Rheinboldt, 2002) and the differentiation
index (see the two different definitions of differentiation
index in Definition 4 (Campbell and Gear, 1995) and in
Section 3 (Griepentrog, 1991)). Our formulations of the
definitions of the two indices are given in Definition 6 and
Definition 10 below, respectively.

The purpose of the present paper is to have a compre-
hensive understanding of the two notions of DAE index
by analyzing their relations and differences. Moreover,
Campbell and Gear (1995) have claimed that the geo-
metric index and the differentiation index coincide when
sufficient smoothness and assumptions are satisfied, we
aim to elaborate this claim and present our results about
the relations of the two indices. We give our analysis
on the solvability of DAEs by revising the geometric re-
duction method and show how the method leads to the
definition of geometric index in Section 2. We discuss
differentiation index and show its relations and differences
with geometric index in Section 3. The conclusions of
this paper are given in Section 4. Throughout we use the
following notations: We use x′ or ẋ to denote the derivate
of x with respect to t. The symbol Ck denotes the class
of functions which are k-times differentiable. For a map
A : X → Rl×n, kerA(x), ImA(x) and rankA(x) are the
kernel, the image and the rank of A at x, respectively.
For a smooth map f : X → R, we denote its differential
by df =

∑n
i=1

∂f
∂xi

dxi = [ ∂f
∂x1

, . . . , ∂f
∂xn

] and for a vector-

valued map f : X → Rm, where f = [f1, . . . , fm]T , we
denote its differential by Df and its Jacobian matrix by
Dxf . For two column vectors v1 ∈ Rm and v2 ∈ Rn, we
write (v1, v2) = [vT1 , v

T
2 ]T ∈ Rm+n.



2. GEOMETRIC REDUCTION METHOD AND
GEOMETRIC INDEX OF DAES

A solution of a DAE Ξ, given by (1), is a C1-curve
x : I → X with an open interval I such that for all
t ∈ I, E(x(t))ẋ(t) = F (x(t)). A point xa ∈ X is called
admissible (or consistent) if there exists a solution x(·)
such that x(ta) = xa for a certain ta ∈ I. Denote by Sa

the set of all admissible (consistent) points of Ξ. It is clear
that Sa is the set on which the solutions of DAEs exist.

The main idea of geometric analysis of DAE solutions is to
view a DAE as a vector field defined on a submanifold 1 .
which we will call the maximal invariant submanifold, its
formal definition is given as follows.

Definition 1. (maximal invariant submanifolds). Consider
a DAE Ξ = (E,F ) defined on X, fix an admissible point
xa ∈ X. A smooth connected submanifold M of X is called
locally invariant if there exists an open neighborhood
U ⊆ X of xa such that for any point x0 ∈ M ∩ U , there
exists a solution x : I → X of Ξ such that x(t0) = x0 for
a certain t0 ∈ I and x(t) ∈ M ∩ U for all t ∈ I. A locally
invariant submanifold M∗ is called maximal if there exists
a neighborhood V of xa such that for any other locally
invariant submanifold M , we have M ∩ V ⊆M∗ ∩ V .

The following recursive method is called the geometric
reduction method, which was frequently used (see e.g.
Reich (1990); Rabier and Rheinboldt (2002); Riaza (2008);
Berger (2016, 2017); Chen and Respondek (2021b)) to
construct the locally maximal invariant submanifold M∗

and to study the existence of solutions.

Definition 2. (geometric reduction method). For a DAE
Ξl,n = (E,F ), fix a point xp ∈ X and let U0 be an
open connected subset of X containing xp. Set M0 = X,
M c

0 = U0. Suppose that there exist an open neighborhood
Uk−1 of xp and a sequence of smooth connected subman-
ifolds M c

k−1 ( · · · ( M c
0 of Uk−1 for a certain k ≥ 1, has

been constructed. Define recursively

Mk :=
{
x ∈M c

k−1 : F (x) ∈ E(x)TxM
c
k−1
}
. (3)

As long as xp ∈ Mk, assume that there exists a neigh-
borhood Uk of xp such that M c

k = Mk ∩ Uk is a smooth
connected submanifold.

Remark 3. If we apply the above method to a linear DAE
Eẋ = Ax, where E,A ∈ Rl×n, and denote V = M , we
get the following sequence of subspaces: V0 := Rn and for
k ≥ 1, set

Vk = {x ∈ Vk−1 |Ax ∈ EVk−1} = A−1EVk−1.

The above sequence Vk is one of the Wong sequences
(Wong, 1974), which plays an important role in the ge-
ometric theory of linear DAEs (see e.g., (Berger and
Trenn, 2012) and (Chen and Respondek, 2021a)). Thus
the sequence of submanifolds Mk is, clearly, a nonlinear
generalization of the Wong sequence Vk. Note that the
limits of Vk, i.e., V ∗ = Vn is the largest subspace such
that AV ∗ ⊆ EV ∗, which coincides with the consistency
space of the linear DAE.

The geometric descriptions of Definition 2 can be imple-
mented through Algorithm 1 below.

1 Throughout when talking about submanifolds, we will always
mean embedded submanifolds, see (Lee, 2001)

Algorithm 1 Geometric reduction algorithm

Initiatlization: Consider a DAE Ξl,n = (E,F ), fix xp ∈ X and let
U0 ⊆ X be an open connected subset containing xp. Set z0 = x,
E0(z0) = E(x), F0(z0) = F (x), Mc

0 = U0, r0 = l, n0 = n, and
Ξ0 = (E0, F0).

Step k (k > 1): Suppose that we have defined at Step k−1: an open
neighborhood Uk−1 ⊆ X of xp, a smooth connected submanifold
Mc
k−1 of Uk−1 and a DAE Ξk−1 = (Ek−1, Fk−1) with

Ek−1 : Mc
k−1→Rrk−1×nk−1 , Fk−1 : Mc

k−1 → Rrk−1 ,

whose arguments are denoted zk−1 ∈ Mc
k−1. Rename Ẽk =

Ek−1, F̃k = Fk−1 and define Ξ̃k := (Ẽk, F̃k).
Assumption (A1): There exists an open neighborhood Uk ⊆

Uk−1 ⊆ X of xp such that dimE(x)TxMc
k−1 = rank Ẽk(zk−1) =

const. = rk, ∀zk−1 ∈Wk = Uk ∩Mc
k−1.

1: Find a smooth map Qk : Wk → GL(rk−1,R), such that Ẽ1
k of

QkẼk =

[
Ẽ1

k
0

]
is of full row rank and denote QkF̃k =

[
F̃1
k

F̃2
k

]
,

where Ẽ1
k : Wk → Rrk×nk−1 , F̃ 2

k : Wk → Rrk−1−rk (so all the
matrices depend on zk−1).

2: Following (3), define Mk =
{
zk−1 ∈Wk | F̃ 2

k (zk−1) = 0
}
.

Assumption (A2): xp ∈ Mk and rank DF̃ 2
k (zk−1) = const. =

nk−1 − nk for zk−1 ∈Mk ∩ Uk.
3: By Assumption 2, Mk ∩ Uk is a smooth submanifold and by

taking a smaller Uk, we may assume that Mc
k = Mk ∩ Uk

is connected and choose new coordinates (zk, z̄k) = ψk(zk−1)

on Wk, where z̄k = (ϕ̄1
k(zk−1), ..., ϕ̄

nk−1−nk

k
(zk−1)), with

dϕ̄1
k(zk−1), ..., dϕ̄

nk−1−nk

k
(zk−1) being all independent rows of

DF̃ 2
k (zk−1), and zk are any complementary coordinates such that

ψk is a local diffeomorphism.

4: Set Êk = QkẼk

(
∂ϕ̄k
∂zk−1

)−1

, F̂k = QkF̃k. Define

Ξ̂k :

[
Ê1
k(zk, z̄k) Ē1

k(zk, z̄k)
0 0

] [
żk
˙̄zk

]
=

[
F̂ 1
k (zk, z̄k)

F̂ 2
k (zk, z̄k)

]
(4)

with Ê1
k : Wk → Rrk×nk , F̂ 1

k ◦ ψk = F̃ 1
k , F̂ 2

k ◦ ψk = F̃ 2
k and

[Ê1
k ◦ ψk Ē1

k ◦ ψk] = Ẽ1
k

(
∂ψk
∂zk−1

)−1

.

5: Set z̄k = 0 to define the following restricted DAE on Mc
k =

{zk−1 ∈Wk | z̄k = 0} by

Ξ̂k|Mc
k

= Ξk : Ek(zk)żk = Fk(zk),

where Ek(zk) = Ê1
k(zk, 0), Fk(zk) = F̂ 1

k (zk, 0) are matrix-

valued maps and Ek : Mc
k→Rrk×nk , Fk : Mc

k → Rrk .
Repeat: Step k for k = 1, 2, 3, . . . , until nk+1 = nk, set k∗ = k.
Result: Set n∗ = nk∗ = nk∗+1, r∗ = rk∗+1, M∗ = Mc

k∗+1,

z∗ = zk∗+1 = zk∗ and Ξ∗ = (E∗, F ∗) with E∗ = Ek∗+1,
F ∗ = Fk∗+1.

The following theorem shows that under Assumptions (A1)
and (A2) of Algorithm 1, the sequence of submanifolds Mk

converges to the locally maximal invariant submanifold
M∗, which coincides locally with the admissible set Sa.

Theorem 4. Consider a DAE Ξl,n = (E,F ) and fix a point
xp ∈ X. Suppose that Assumptions (A1) and (A2) in each
Step k ≥ 1 of Algorithm 1 are satisfied. Then there always
exists k∗ ≤ n such that k∗ is the smallest integer such that
xp ∈M c

k∗+1 and M c
k∗+1 ∩ Uk∗+1 = M c

k∗ ∩ Uk∗+1. We have
that xp is an admissible point, i.e., xp = xa and M∗ =
M c

k∗+1 is a locally maximal invariant submanifold around
xp. Moreover, there exists a neighborhood U∗ ⊆ Uk∗+1 of
xp such that

(i) Sa ∩ U∗ = M∗ ∩ U∗;
(ii) there exist a local diffeomorphism defined on U∗

mapping solutions of Ξ into solutions of

E∗(z∗)ż∗ = F ∗(z∗), z̄1 = 0, . . . , z̄k∗ = 0 (5)



where z∗ = zk∗+1 = zk∗ are local coordinates on M∗,
E∗ = Ek∗+1 : M∗ → Rr∗×n∗ , F ∗ = Fk∗+1 : M∗ →
Rr∗ , and rankE∗(z∗) = r∗, ∀z∗ ∈ M∗, i.e., E∗(z∗) is
of full row rank.

(iii) for any x0 ∈M∗ ∩U∗, there passes only one solution
if and only if dim M∗ = dim E(x)TxM

∗ for all
x ∈M∗ ∩ U∗, i.e., n∗ = r∗.

The proof of Theorem 4 can be consulted in the proofs of
Propositions 2.7 and 3.3, and Theorem 3.11(ii) of (Chen
and Respondek, 2021b).

Remark 5. Item (i) of Theorem 4 illustrates that for all x
in a neighborhood U∗ of an admissible point xa = xp,
the solutions of nonlinear DAEs exist on the maximal
invariant submanifold M∗ only. Therefore, for any point
x0 ∈ U∗\M∗, there exist no solutions passing through
x0. From Theorem 4(ii), it is seen that solutions of Ξ are
isomorphic to those of E∗(z∗)ż∗ = F ∗(z∗) with E∗ being
of full row rank, which is an “under-determined” DAE
and can be expressed as an ordinary differential equation
(ODE) with free variables. Item (iii) of Theorem 4 is a
geometric characterization of the uniqueness of solutions
for nonlinear DAEs.

The definition of geometric index is given as follows (see
also Rabier and Rheinboldt (2002); Riaza (2008)).

Definition 6. (geometric index). Consider the sequence of
submanifolds M c

k constructed via Definition 2 around a
point xp, then the (local) geometric index νg of a DAE Ξ
is defined by

νg := min
{
k ≥ 0 | (M c

k+1 = M c
k) ∧ (M c

k 6= ∅)
}
.

Now combining the results of Theorem 4, we give some
comments on the geometric index defined above.

Remark 7. (i) The definition of the geometric index needs
only the assumption that for each k ≥ 0, M c

k is locally
a smooth connected submanifold. The constant rank as-
sumptions (A1) and (A2) are not necessarily required for
the existence of geometric index. Take for example the
following DAE

Ξ : xẋ = x2, (6)

where x ∈ X = R. Clearly, M∗ = M c
1 = M c

0 = X is
a maximal invariant submanifold and any point xa ∈ X
is admissible. The geometric index of (6) is νg = 0.
However dim E(x)TxM

∗ 6= const., for all x ∈ M∗ since
dim E(x)TxM

∗ equals 1 for x 6= 0 and is 0 for x = 0.

(ii) The geometric index of DAEs allows for a conclusion
about the existence of solutions. Suppose that Ξ has a
well-defined geometric index νg around xp. For any x0 ∈
Uk\M c

k , 0 ≤ k ≤ νg, around xp, we can conclude that
there does not exist any solution passing through x0.

(iii) The geometric index does not concern uniqueness of
solutions. As an example, consider two DAEs

Ξ2,2 :

{
ẋ1 = f(x1, x2)
0 = x2,

and Ξ̃2,3 :

{
ẋ1 = f(x1, x2)
0 = x3,

where f : R2 → R is smooth. Observe that both Ξ and
Ξ̃ have the same geometric index νg = 1. Nevertheless,
the DAE Ξ has a unique solution for any admissible
initial point (x10, x20) = (x10, 0), the DAE Ξ̃ has infi-
nite numbers of solutions for any admissible initial point

(x10, x20, x30) = (x10, x20, 0) since x2 is a free variable of
the ODE ẋ1 = f(x1, x2).

Example 8. Consider the following DAE Ξ5,5 = (E,F ),
borrowed from Rabier and Rheinboldt (1994),

Ξ :


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


x2

−x5x1

x4

−x5x3 − g
x2

1 + x2
3 − l

2

 . (7)

This DAE describes the mathematical model of a pendu-
lum with a mass attached to its end and where the length
of the pendulum is given by the constant l. We consider a
point xp =(x1p, x2p, x3p, x4p, x5p), where x1p = 0, x2p = 0,
x3p = −l, x4p = 0, x5p = g/l and apply Algorithm 1 to
Ξ1 = (E1, F1) = Ξ.
Step 1: since E1 is already in the desired form, we set
Q1 = I5. It follows that

M1 =
{
x ∈ X |x21 + x23 − l2 = 0

}
.

We have xp ∈M1 andM c
1 = M1∩U1 is a smooth connected

submanifold, where U1 = {x ∈ X |x3 < 0}. Then choose
a new coordinate z̄1 = x̄3 = x21 + x23 − l2 and keep the
remaining coordinates z1 = (x1, x2, x4, x5) unchanged, the
DAE Ξ1 represented in the new coordinates (defined on
U1) is

Ξ̂1 :


1 0 0 0 0
0 1 0 0 0
−2x1 0 0 0 1

0 0 0 1 0
0 0 0 0 0



ẋ1

ẋ2

ẋ4

ẋ5

˙̄x3

 =


x2

−x5x1

2x3x4

−x5x3 − g
x̄3

 ,
where x3 = −(l2 − x̄23 − x21)1/2. Set x̄3 = 0 to get

Ξ̂1|Mc
1

:

 1 0 0 0
0 1 0 0
−2x1 0 0 0

0 0 0 1

ẋ1

ẋ2

ẋ4

ẋ5

 =

 x2

−x5x1

−2(l2 − x2
1)1/2x4

x5(l2 − x2
1)1/2 − g

 .
Step 2: consider Ξ2 = (E2, F2) = Ξ̂1|Mc

1
. Find Q2 such

that

Q2E2(z1)=

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

]
, Q2F2(z1)=

[ x2
−x5x1

x5(l
2−x2

1)
1/2−g

−(l2−x2
1)

1/2x4+x1x2

]
.

It follows that

M2 =
{
x ∈M c

1 | − (l2 − x21)1/2x4 + x1x2 = 0
}
.

We have xp ∈ M2 and M c
2 = M2 ∩ U2 is a smooth

connected submanifold, where U2 = {x ∈ U1 |x1 < l}.
Then we define new local coordinates on M c

1 via the local
diffeomorphism ψ2(z1) = (z2, z̄2) = (x1, x2, x5, x̄4), where
z̄2 = x̄4 = −(l2−x21)1/2x4 +x1x2. The DAE Ξ2 in the new
coordinates is

Ξ̂2 :

 1 0 0 0
0 1 0 0

−a(z1) −x1 0 1
0 0 0 0

ẋ1

ẋ2

ẋ5

˙̄x4

=

 x2

−x5x1

g(l2 − x2
1)1/2 − x5(l2 − x2

1)
x̄4

 ,
where a(z1) = x21x2(l2 − x21)−1 + x2. Set x̄4 = 0 to have

Ξ̂2|Mc
2

:

[
1 0 0
0 1 0

−a(x) −x1 0

][
ẋ1

ẋ2

ẋ5

]
=

[
x2

−x5x1

−x5(l2 − x2
1) + g(l2 − x2

1)1/2

]
.

Step 3: Consider Ξ3 = (E3, F3) = Ξ̂2|Mc
2
. Then via a

similar procedure as in Step 1 and 2, we get

M3 =
{
x ∈M c

2 |x21x22(l2 − x21)−1 + x22 − x5l2 − gx3 = 0
}



=
{
x ∈M c

2 |x24 + x22 − x5l2 − gx3 = 0
}
.

It follows that xp ∈M3 andM c
3 = M3∩U3, where U3 = U2,

is a smooth connected submanifold. Set x̄5 = x21x
2
2(l −

x21)−1 + x22 + g(l2 − x2)1/2 − l2x5 and define the new local
coordinates (z3, z̄3) = (x1, x2, x̄5) on M c

2 , then we denote

Ξ3 in the new coordinates by Ξ̂3. It follows that

Ξ̂3|Mc
3

:
[

1 0
0 1

] [
ẋ1

ẋ2

]
=
[

x2

−x5x1

]
, (8)

where x5 = 1
l2 (x21x

2
2(l − x21)−1 + x22 + g(l2 − x21)1/2).

Step 4: Since Ξ4 = Ξ̃3|Mc
3

is an ODE, it is seen that k∗ = 3
and M∗ = M c

4 = M c
3 .

Notice that xp ∈ M∗ and assumptions (A1) and (A2)
are satisfied around xp, we can conclude by Theorem 4
that the solution of Ξ passing through any point x0 ∈
M∗ ∩ U∗, where U∗ = U3, exists and is unique (since
dimM∗ = dimE(x)TxM

∗ = 2 for all x ∈ M∗ ∩ U∗),
and this unique solution is mapped via a diffeomorphism
defined on U∗ into the solution of Ξ∗ = Ξ̃3|Mc

3
, given by

(8), with the constraints x̄3 = x̄4 = x̄5 = 0. Moreover, the
geometric index νg = k∗ = 3. Note that our sequence of
submanifolds Mk coincides with that of the projections Wk

of the tangent bundles TWk in (Rabier and Rheinboldt,
1994). But the two methods of constructing sequences of
submanifolds are different, although it is interesting to
compare them, it is not our aim to discuss their differences
in details in the present paper.

3. GEOMETRIC INTERPRETATION OF THE
DIFFERENTIATION INDEX

A classical definition of differentiation index (Gear, 1988)
is given for DAEs of the general form (2): define the
differential array of (2) by

Hk(t, x, x′, w)=


H

DtH + DxHx
′ + Dx′Hx

′′

.

.

.

dk

dtk
H

 (t, x, x′, w)=0,

(9)

where w =
[
x(2), . . . , x(k+1)

]
, the differentiation index νd

is the least integer k such that equation (9) uniquely
determines x′ as a function of (x, t), i.e., x′ = v(x, t).
Note that some other definition of differentiation index
in, e.g., (Campbell and Gear, 1995), requires, a priori, the
solvability of DAEs. We do not state such a requirement
since an index is a measure of difficulties for solving
a DAE, whose definition should be independent of the
solvability of the DAE (Rabier and Rheinboldt, 2002). We
now illustrate two deficiencies or ambiguities of the above
classical definition of differentiation index.

Remark 9. (i) In contrast to the geometric index of Def-
inition 6, the above classical definition of differentiation
index does not allow for a conclusion about the existence
of solutions. Take the following DAEs for example,

Ξ2,2 :

{
ẋ1 = x2
ẋ2 = f(x1, x2)

and Ξ̃3,2 :

{
ẋ1 = x2
ẋ2 = f(x1, x2)
0 = x1

,

where f : R2 → R is smooth and we assume f(0, 0) 6= 0.

The two DAEs Ξ and Ξ̃ have the same differentiation index
νd = 0 by the definition above. However, Ξ has a unique

solution and Ξ̃ has no solutions for the admissible initial
point (x10, x20) = (0, 0). The reason is that the above
definition of differentiation index only implies the existence
and uniqueness of some vector field determined by the
differential array but does not indicate where the solutions
of the DAE should exist (solutions of DAE exists on the
maximal invariant submanifold M∗ which we discussed in
Section 2). In particular, if the defined vector field v(x, t)
is not tangent to M∗ at x0 ∈ M∗ (as in our example, the

vector field (x2, f(x1, x2)) determined by Ξ̃ is not tangent
to M∗ =

{
x ∈ R2 |x1 = x2 = 0

}
at (x10, x20) = (0, 0)),

then the trajectory of ẋ = v(x, t) will leave M∗, indicating
that the DAE does not have a solution at x0.

(ii) The classical definition of differentiation index does
not indicate the difference between ODEs and “over-
determined” DAEs. Consider the DAEs Ξ2,2 and Ξ̃3,2 of
item (i) above, we suppose now f(0, 0) = 0. Then both

Ξ and Ξ̃ have the same differentiation index νd = 0. The
DAE Ξ is clearly an ODE which does not need any differ-
entiation to be solved, while Ξ̃ needs two times of differ-
entiations (of the algebraic constraint x1 = 0) in order to
deduce a solution. Note that the “over-determined” (and
also ”under-determined”) properties of nonlinear DAEs
can be characterized by the notion of strangeness index,
see e.g., (Kunkel and Mehrmann, 2006).

To give a geometric background to the notion of differen-
tiation index, a new definition was proposed in (Griepen-
trog, 1991). In the present paper, in order to clear out the
deficiencies mentioned in Remark 9, we reform Griepen-
trog’s definition of differentiation index as follows. Con-
sider a nonlinear DAE Ξl,n = (E,F ) and fix a point
xp ∈ X, let U0 ⊆ X be a neighborhood of xp, set

H(x, ζ1) = E(x)ζ1 − F (x), denote ( dk

dtk
H) = H(k) and

for k ≥ 0, define

Hk(x, ζ̄k+1) =


H(0)(x, ζ1)

H(1)(x, ζ1, ζ2)
...

H(k)(x, ζ̄k+1)

 = 0, (10)

where ζ̄k+1 = (ζ1, . . . , ζk+1). Set M0 = X, M c
0 = U0,

Z0
1 = Rn and for k > 0, define

Mk :=
{
x ∈ X |Hk−1(x, ζ̄k) = 0

}
, (11)

As long as xp ∈Mk, assume that there exists a neighbor-
hood Uk ⊆ Uk−1 such that Mc

k = Mk ∩ Uk is a smooth
connected submanifold. Set

Zk
1 :=

{
ζ1 ∈ Rn |Hk−1(x, ζ̄k) = 0, x ∈Mc

k

}
.

Definition 10. (Differentiation index). The (local) differ-
entiation index νd of a DAE Ξ around a point xp is defined
by νd :=

min

{
k ≥ 0

∣∣∣∣ (Mc
k 6= ∅) ∧ (Zk

1 =Zk
1 (x) is a singleton)∧

(Zk
1 (x) ∈ TxMc

k,∀x ∈Mc
k)

}
.

Now we state our main theorem of this subsection.

Theorem 11. For a DAE Ξl,n = (E,F ), fix a point xp,
assume that for each k ≥ 0,

(A1)’ dim E(x)TxMc
k = const. for all x ∈Mc

k around xp.
(A2)’ Mc

k is a smooth connected submanifold and xp ∈
Mc

k;



Then we have that for each k ≥ 0, the set M c
k of the

geometric reduction method of Definition 2 is a smooth
connected submanifold and

Mc
k = M c

k ,

and there exists a smallest integer k∗ such that Mc
k∗+1 ∩

Uk∗+1 = Mc
k∗ ∩ Uk∗+1. It follows that xp ∈ M∗ is ad-

missible and M∗ =Mk∗+1 is a locally maximal invariant
submanifold, and

(i) the geometric index νg = k∗;
(ii) the differentiation index νd exists and νd = νg if and

only if dimM∗ = dimE(x)TxM∗ for all x ∈ M∗
around xp.

Proof. First, we constructMk explicitly via the following
procedure: Fix xp ∈ X and let U0 be an open connected
subset of X containing xp. SetMc

0 = U0, E0 = E, F0 = F .
Assume in Step k − 1, we have constructed a smooth
submanifold Mc

k−1, and maps Ek−1 :Mc
k−1 → Rl×n and

Fk−1 : Mc
k−1 → Rl×n. Step k (k > 0): Rename Êk =

Ek−1, F̂k = Fk−1. Assume that rank Êk(x) = const. = rk
for all x ∈Mc

k−1 around xp. After a suitable permutation,

it is possible to assume that the first rk rows of Êk are
linearly independent. Then we can rewrite Êkv + F̂k = 0
as [

Ê1
k

Ê2
k

]
v +

[
F̂ 1
k

F̂ 2
k

]
= 0,

where Ê1
k : Mc

k−1 → Rrk×n is of full row rank and

F̂ 1
k : Mc

k−1 → Rrk . Find ak : Mk−1 → R(l−rk)×rk such

that akÊ
1
k = Ê2

k. Denote

vk = Ê1
kv + F̂ 1

k ,

we have Ê2
kv+F̂ 2

k = ak(Ê1
kv+F̂ 1

k )−akF̂ 1
k +F̂ 2

k = akvk+F̃ 2
k ,

where F̃ 2
k = F̂ 2

k − akF̂ 1
k . Define

Mk =
{
x ∈Mc

k−1 | Êk(x)v + F̂k(x) = 0
}

=
{
x ∈Mc

k−1 | F̃ 2
k (x) = 0

}
.

(12)

Assume that there exists a neighborhood Uk ⊆ Uk−1 of
xp such that Mc

k = Mk ∩ Uk is a smooth connected
submanifold. Set

Ek =

[
Ê1

k

DxF̃
2
k

] ∣∣∣Mc
k

and Fk =

[
F 1
k−1
0

] ∣∣∣Mc
k
,

where Ek :Mc
k → Rl×n and Fk :Mc

k → Rl.

We now show that under assumptions (A1)’ and (A2)’, for
each k > 0, the setMk, constructed by (12), is indeed the
one defined by (11). Observe that for k ≥ 0,

kerEk(x) = kerE(x) ∩ TxMc
k, ∀x ∈Mc

k.

Thus assumption (A1)’ implies that rankEk(x) = const.
for all x ∈Mc

k. Then consider the differentiation array Hk,
given by (10), denote ζ1 = v and use the same notations
vk as in the above procedure to have

H(0)(x, v) = E(x)v + F (x) =

[
Ê1

1(x)

Ê2
1(x)

]
v +

[
F̂ 1
1 (x)

F̂ 2
1 (x)

]
=

[
v1

ã1(x, v1) + F̃ 2
1 (x)

]
,

where ã1(x, v1) = a1(x)v1. Now by assumption (A2)’ that
Mc

k = Mk ∩ Uk is a smooth connected submanifold, we
have (note that for any smooth map L defined on X, its
restriction L|M to a smooth submanifold M ⊆ X and the
differentiation of L with respect to t are two commutative
operations, i.e., d

dt (L|M ) = ( d
dtL)|M )

H(1)|Mc
1

= (H|Mc
1
)(1) =

 v
(1)
1

ã
(1)
1 +

[
v̄1

ã2 + F̃ 2
2

] ,
where ā2(x, v2) = a2(x)v2 and v2 = (v1, v̄1); in general,

Hk|Mc
k

=

[
v
(k)
1

ã
(k)
1 + (F̃ 2

1 )(k)

]
,

where (F̃ 2
1 )(k) is given by the following iterative formula:

(F̃ 2
i )(k) =

[
v̄
(k−1)
i

ã
(k−1)
i+1 + (F̃ 2

i+1)(k−1)

]
,

where āi = āi(x, vi) = ai(x)vi and vi = (vi−1, v̄i−1) for

i > 1. Notice that for each k, since Ê1
k is of full row rank,

the differentiation v
(k)
1 of v1 and v̄

(k−1)
i of v̄i for i ≥ 1 do

not create any constraint for x. So it is clear to see that
for k > 0,

Mc
k =

{
x ∈ Uk |Hk−1(x, ζ̄k) = 0

}
=
{
x ∈Mc

k−1 ∩ Uk |H(k−1)(x, ζ̄k) = 0,
}

=
{
x ∈Mc

k−1 ∩ Uk | F̃ 2
k (x) = 0

}
,

Zk
1 =

{
ζ1 |Hk−1(x, ζ̄k) = 0

}
= {ζ1 |Ek−1(x)ζ1 + Fk−1(x) = 0, x ∈Mc

k}
= {ζ1 | vk(ζ1, x) = 0, x ∈Mc

k} .
(13)

Next we show that for each k > 0, Mc
k coincides with the

submanifold M c
k of the geometric reduction method of Def-

inition 2. It is clear thatM c
1 =

{
x ∈ U0|F̂1(x) ∈ Im Ê1(x)

}
=
{
x ∈ X | F̃ 2

1 (x) = 0
}

= Mc
1. For k > 1, suppose that

M c
k−1 =Mc

k−1, then we have

Mk =
{
x ∈Mc

k−1 | Êk(x)v + F̂k(x) = 0
}

=

{
x ∈M c

k−1 |
[
Ê1

k(x)

DxF̃
2
k (x)

]
v +

[
F̂ 1
k (x)
0

]
= 0

}
=
{
x ∈M c

k−1 |E1
k−1(x)v + F 1

k−1(x)=0, v ∈ TxM c
k−1
}

=
{
x ∈M c

k−1 |F 1
k−1(x) ∈ E1

k−1(x)TxM
c
k−1
}

=
{
x ∈M c

k−1 |F (x) ∈ E(x)TxM
c
k−1
}

= Mk.

SoMc
k =Mk∩Uk coincides with M c

k = Mk∩Uk. Then k∗

is the smallest integer such thatMc
k∗+1 ∩Uk∗+1 =Mc

k∗ ∩
Uk∗+1 and the geometric index νg = k∗ by Definition 6. It
can be deduced fromM∗ =Mc

k∗+1 =Mc
k∗ on Uk∗+1 that

Zk∗

1 (x) = Zk∗+1
1 (x) ∈ TxM∗. Thus by (13),

Zk∗

1 (x) = Zk∗+1
1 (x)

= {ζ1 ∈ Rn |Ek∗(x)ζ1 + Fk∗(x) = 0, x ∈M∗}
It follows that Zk∗

1 = Zk∗

1 (x) is a singleton if and only
if Ek∗ is invertible, i.e., rankEk∗ = n, or, equivalently,
dim kerEk∗(x) = 0. We can now conclude by Definition
10 that the differentiation index νd = k∗ = νg if and



only if dim kerEk∗(x) = dim(kerE(x) ∩ TxM∗) = 0, i.e.,
dimM∗ = dimE(x)TxM∗ for all x ∈M∗ around xp. 2

Remark 12. (i) Assumptions (A1)’ and (A2)’ of Theorem
11 correspond to assumptions (A1) and (A2) of Theorem
4, respectively. If, a priory, we assume that for each k ≥ 0,
M c

k =Mc
k, then it is clear that (A1) coincides with (A1)’,

and (A2) is equivalent to (A2)’ sinceMc
k = M c

k is a smooth

(embedded) submanifold if and only if rank DF̃ 2
k (zk−1) =

const. for zk−1 ∈Mk ∩ Uk (see e.g., (Lee, 2001)).

(ii) The differentiation index νd associated with a geomet-
ric background, given by Definition 10, allows to have a
conclusion on the existence of solutions as the sequence
of submanifolds Mk coincides with Mk and M∗ = M∗ is
a locally maximal invariant submanifold, which coincides
locally with the admissible set Sa.

(iii) The differentiation index and the geometric index
differ from each other by their relations with unique-
ness of solutions. Namely, the geometric index may exist
even a DAE does not have a unique solution, while the
differentiation index exists only if the DAE is uniquely
solvable. As seen from Theorem 11, the geometric index νg
always exists if the submanifolds Mk are not empty and
the sequence of submanifolds converges. While in order
to have a well-defined differentiation index, the condition
dimM∗ = dimE(x)TxM∗ for uniqueness of solutions is
necessary.

Example 13. (continuation of Example 8) Consider the
DAE Ξ = (E,F ), given by (7), since the derivatives
(ẋ1, ẋ2, ẋ3, ẋ4) are already determined by the first four
equations of Ξ, we only differentiate the last equation
x21 + x23 − l2 = 0 to determine ẋ5. It is not hard to verify
that assumptions (A1)’ and (A2)’ are satisfied around x0,
and Mc

1 =
{
x ∈ U0 |x21 + x23 − l2 = 0

}
= M c

1 ,

Mc
2 = {x ∈Mc

1 ∩ U2 | 2x1ẋ1 + 2x3ẋ3 = 0}
= {x ∈Mc

1 ∩ U2 |x1x2 + x3x4 = 0} = M c
2 ,

Mc
3 = {x ∈Mc

2 |x1ẋ2 + x2ẋ3 + x3ẋ4 + x4ẋ3 = 0}
=
{
x ∈Mc

2 | − x5x21 + x22 − x5x23 − x3g + x24 = 0
}

=
{
x ∈Mc

2 |x24 + x22 − x5l2 − gx3 = 0
}

= M c
3 .

Moreover, by differentiating x24 + x22 − x5l2 − gx3 = 0, we
get that

ẋ5 =
1

l2
(−2x4(x5x3 + g)2x2(x5x1)− gx4).

Combining the above equation with the first 4-equations
of (7), we have

Z3
1 = {ζ1 | ζ1 = (x2,−x5x1, x4,−x5x3 − g, ẋ5), x ∈Mc

3} .
We can conclude that Z3

1 = Z3
1 (x) is a singleton and

Z3
1 (x) ∈ TxMc

3,∀x ∈ M c
3 . Therefore the differentiation

index νd =3, which coincides with the geometric index νg.

4. CONCLUSIONS

In this paper, we revised the geometric reduction method
and give our conditions for the existence and uniqueness
of the solutions of nonlinear DAEs. Then we discuss the
notion of geometric index via its relations with solutions of
DAEs. We modify the classical definition of the differenti-
ation index of DAEs and show that under some constant
rankness and smoothness assumptions, the sequence of
submanifolds defined by the differentiation array coincides

with those defined by the geometric reduction method
and the differentiation index coincides with the geometric
index if and only if a condition for uniqueness of solutions
is satisfied.
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