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Abstract: We discuss two notions of index, i.e., the geometric index and the differentiation
index for nonlinear differential-algebraic equations (DAEs). First, we analyze solutions of
nonlinear DAEs by revising a geometric reduction method (see e.g. Rabier and Rheinboldt
(2002),Riaza (2008)). Then we show that although both of the geometric index and the
differentiation index serve as a measure of difficulties for solving DAEs, they are actually related
to the existence and uniqueness of solutions in a different manner. It is claimed in (Campbell
and Gear, 1995) that the two indices coincide when sufficient smoothness and assumptions are
satisfied, we elaborate this claim and show that the two indices indeed coincide if and only if
a condition of uniqueness of solutions is satisfied (under certain constant rank assumptions).
Finally, an example of a pendulum system is used to illustrate our results on the two indices.
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1. INTRODUCTION

We consider a nonlinear differential-algebraic equation
(DAE) of the following form

Z: E(z)i = F(x), (1)
where z € X is called the generalized state and X is an
open subset of R, and £ : TX — Rl and F : X — R
are C*°-smooth maps, where T'X is the tangent bundle of
X. We denote a DAE of the form (1) by =, = (E,F)
or, simply, 2. The DAE (1) is sometimes called a quasi-
linear DAE (see e.g., Rabier and Rheinboldt (2002); Riaza
(2008)), which is a special case of DAEs in the general
form

29" G(t,x,2") = 0, (2)

where G : I x TX — R! is C®-smooth, I C R is an
open interval. Notice that Z9¢" can be transformed into a
DAE of the form (1) by extending the generalized state
to (t,x,2) = (t,z,2), ie, t=1,4=2 0=G(t,x,2).
which is a DAE of form (1) with B = [I#0] €
ROHADX@n4+1) and F(t, 2, 2) — [ ! }
G(t,x,z)

Two main streams of researches on solutions of nonlinear
DAEs are geometric methods (Rheinboldt, 1984; Reich,
1990, 1991; Rabier and Rheinboldt, 1994) and numerical
methods (Gear, 1988; Brenan et al., 1996; Kunkel and
Mehrmann, 2006). Moreover, some crossover results of
the two methods can be consulted in Griepentrog (1991);
Campbell and Griepentrog (1995); Rabier and Rheinboldt
(2002) and the references therein. To characterize different
properties of DAEs, various notions of index are proposed,
see the survey or survey-like papers on index of DAEs as
Griepentrog et al. (1992); Campbell (1995); Campbell and
Gear (1995); Mehrmann (2015). The most commonly used
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notions of index seem to be the geometric index (Reich,
1990; Rabier and Rheinboldt, 2002) and the differentiation
index (see the two different definitions of differentiation
index in Definition 4 (Campbell and Gear, 1995) and in
Section 3 (Griepentrog, 1991)). Our formulations of the
definitions of the two indices are given in Definition 6 and
Definition 10 below, respectively.

The purpose of the present paper is to have a compre-
hensive understanding of the two notions of DAE index
by analyzing their relations and differences. Moreover,
Campbell and Gear (1995) have claimed that the geo-
metric index and the differentiation index coincide when
sufficient smoothness and assumptions are satisfied, we
aim to elaborate this claim and present our results about
the relations of the two indices. We give our analysis
on the solvability of DAEs by revising the geometric re-
duction method and show how the method leads to the
definition of geometric index in Section 2. We discuss
differentiation index and show its relations and differences
with geometric index in Section 3. The conclusions of
this paper are given in Section 4. Throughout we use the
following notations: We use 2’ or % to denote the derivate
of & with respect to t. The symbol C* denotes the class
of functions which are k-times differentiable. For a map
A X — R>X" ker A(z), Im A(x) and rank A(z) are the
kernel, the image and the rank of A at x, respectively.
For a smooth map f : X — R, we denote its differential
by df = >, g—idxi = [aanl? e %] and for a vector-
valued map f : X — R™, where f = [f1,..., fm]?, we
denote its differential by Df and its Jacobian matrix by
D.f. For two column vectors v; € R™ and vy € R", we

write (vy,vs) = [, 0] )T € R+,



2. GEOMETRIC REDUCTION METHOD AND
GEOMETRIC INDEX OF DAES

A solution of a DAE =, given by (1), is a Cl-curve
xz : I — X with an open interval I such that for all
t eI, E(x(t)x(t) = F(z(t)). A point z, € X is called
admissible (or consistent) if there exists a solution ()
such that z(t,) = z, for a certain t, € I. Denote by S,
the set of all admissible (consistent) points of =. It is clear
that S, is the set on which the solutions of DAEs exist.

The main idea of geometric analysis of DAE solutions is to
view a DAE as a vector field defined on a submanifold® .
which we will call the maximal invariant submanifold, its
formal definition is given as follows.

Definition 1. (maximal invariant submanifolds). Consider
a DAE ZE = (E, F) defined on X, fix an admissible point
z, € X. A smooth connected submanifold M of X is called
locally invariant if there exists an open neighborhood
U C X of x, such that for any point zop € M N U, there
exists a solution x : I — X of = such that x(tg) = x¢ for
a certain tg € I and z(t) € M NU for all t € I. A locally
invariant submanifold M* is called mazimal if there exists
a neighborhood V' of z, such that for any other locally
invariant submanifold M, we have M NV C M*NV.

The following recursive method is called the geometric
reduction method, which was frequently used (see e.g.
Reich (1990); Rabier and Rheinboldt (2002); Riaza (2008);
Berger (2016, 2017); Chen and Respondek (2021b)) to
construct the locally maximal invariant submanifold M*
and to study the existence of solutions.

Definition 2. (geometric reduction method). For a DAE
Zin = (E,F), fix a point z, € X and let Uy be an
open connected subset of X containing x,. Set My = X,
M§ = Up. Suppose that there exist an open neighborhood
Ui—1 of z,, and a sequence of smooth connected subman-
ifolds Mg_, C --- € M§ of Uy, for a certain k > 1, has
been constructed. Define recursively

My :={z € Mi_,: F(z) € E(x)T,M;_,}. (3)
As long as x, € My, assume that there exists a neigh-

borhood Uy, of x, such that M = M N Uy is a smooth
connected submanifold.

Remark 3. If we apply the above method to a linear DAE
Ei = Az, where E, A € R and denote ¥ = M, we
get the following sequence of subspaces: ¥, := R™ and for
k>1, set

Vi ={r € V1| Az € BV} = AT BV,

The above sequence ¥; is one of the Wong sequences
(Wong, 1974), which plays an important role in the ge-
ometric theory of linear DAEs (see e.g., (Berger and
Trenn, 2012) and (Chen and Respondek, 2021a)). Thus
the sequence of submanifolds M}, is, clearly, a nonlinear
generalization of the Wong sequence 7. Note that the
limits of 7%, i.e., ¥* = ¥, is the largest subspace such
that A¥™* C E¥™*, which coincides with the consistency
space of the linear DAE.

The geometric descriptions of Definition 2 can be imple-
mented through Algorithm 1 below.

1 Throughout when talking about submanifolds, we will always
mean embedded submanifolds, see (Lee, 2001)

Algorithm 1 Geometric reduction algorithm

Initiatlization: Consider a DAE 5, , = (E, F'), fix , € X and let
Uop C X be an open connected subset containing x,. Set zg = =,
Eo(20) = E(z), Fo(z0) = F(z), M§ = Uo, 70 = 1, ng = n, and
Zo = (Fo, Fo).

Step k (k > 1): Suppose that we have defined at Step k—1: an open
neighborhood Uy, _; C X of x;, a smooth connected submanifold
Mg _, of Ug—1 and a DAE Z_ 1 = (Eg_1, Fx—1) with

Ek,1 : MkC:_ Fk,1 :Mlg—l —}RT"“_l,

Th—1XMNE
| RR-1X -1

whose arguments are denoted zp—; € My_;. Rename E~'k
Ekfl, Fk = Fk,1 and define ék = (Ek,FN‘k)

Assumption (A1l): There exists an open neighborhood Uy
Uk—1 C X of zp such that dim E(z)Ty M _; = rank Eg(z,_1)
const. =y, Vzp_1 € Wi = U N M _,.

1: Find a smooth map Qy : Wi — GL(ri_1,R), such that E‘i of
- ~ ~ ml
QrE, = [%{} is of full row rank and denote Qi Fr = [;’;],
k
where E] : W, —» R X™—1 2 : W) — R™~17"k (so all the
matrices depend on z;_1).
2: Following (3), define M} = {Zk—l € Wi | Fg(zk,l) = O} .

Assumption (A2): z, € M; and rankDF‘,?(zk_l) = const. =
ng_1 —ng for zx_1 € My N Uy.

3: By Assumption 2, My N Uy is a smooth submanifold and by

N

taking a smaller Uy, we may assume that My = M, N Uy

is connected and choose new coordinates (zk,Zx) = Y (zk—1)
— — _MN_1—N .

on Wi, where z, = (@p(zh—1), @y = " (2k—1)), with

de; (zk-1), ...,dcﬁzk_lfnk (2,_1) being all independent rows of
Dﬁf (zk—1), and zj, are any complementary coordinates such that
i 1s a local diffeomorphism.

_ -1 ~
4: Set By, = QkEk(a‘fol) , B, = Q1 Fy,. Define

(1>

L [Ei(zkaik) E;ﬁ(zk,fk)} [{k} _ }j‘é(zkv%k) (1)
with Eh% s Wi — RTEXNE Fkl oy = Fklv ﬁfo"pk = ﬁl? and
1

- = (0
2 o e o

5: Set zx = 0 to define the following restricted DAE on Mg =
{zk—1 € Wi |2z, =0} by

Eklme = Ek : Br(zr)2e = Fi(zr),
where Ej(z) = E}(2x,0), Fi(zk) = Fl(z,0) are matrix-
valued maps and E}, : M;C:—>Rrk><"k, Fi: Mg — Rk
Repeat: Step k for k =1,2,3,..., until ng4; = nyg, set k* = k.
Result: Set n* = npx = ngxy1, 75 = rp=p, M* = M£*+1,
z* = zpxqy1 = zp+= and E* = (E*, F*) with E* = Ep«4q,
F* = Fk*+l‘

The following theorem shows that under Assumptions (A1)
and (A2) of Algorithm 1, the sequence of submanifolds My,
converges to the locally maximal invariant submanifold
M*, which coincides locally with the admissible set S,.

Theorem 4. Consider a DAE E; ,, = (E, F') and fix a point
z, € X. Suppose that Assumptions (A1) and (A2) in each
Step k > 1 of Algorithm 1 are satisfied. Then there always
exists k* < n such that k£* is the smallest integer such that
xp € Mg, and M. N U1 = M. NUg«11. We have
that x, is an admissible point, i.e., , = z, and M* =
M. is a locally maximal invariant submanifold around
xp. Moreover, there exists a neighborhood U* C Uy« of
xp such that

(i) SaNU*=M*NU";
(ii) there exist a local diffeomorphism defined on U*
mapping solutions of = into solutions of

B (2")% = F*(2*), 51 =0,... 5. =0 (5)



where z* = zx+41 = 2~ are local coordinates on M™,
FE* = Epeqq : M* - R"XY  F* = Feyy : M* —
R"", and rank E*(2*) = r*, Vz* € M*, i.e., E*(2*) is
of full row rank.

(iii) for any x¢p € M* NU*, there passes only one solution
if and only if dim M* = dim E(z)T,M* for all
re M*NU*, ie,n* =r*.

The proof of Theorem 4 can be consulted in the proofs of
Propositions 2.7 and 3.3, and Theorem 3.11(ii) of (Chen
and Respondek, 2021b).

Remark 5. Ttem (i) of Theorem 4 illustrates that for all x
in a neighborhood U* of an admissible point z, = x,
the solutions of nonlinear DAEs exist on the maximal
invariant submanifold M™* only. Therefore, for any point
xg € U*\M™*, there exist no solutions passing through
2o. From Theorem 4(ii), it is seen that solutions of = are
isomorphic to those of E*(z*)2* = F*(z*) with E* being
of full row rank, which is an “under-determined” DAE
and can be expressed as an ordinary differential equation
(ODE) with free variables. Item (iii) of Theorem 4 is a
geometric characterization of the uniqueness of solutions
for nonlinear DAEs.

The definition of geometric index is given as follows (see
also Rabier and Rheinboldt (2002); Riaza (2008)).

Definition 6. (geometric index). Consider the sequence of
submanifolds M} constructed via Definition 2 around a
point x,, then the (local) geometric index v, of a DAE =
is defined by

vg:=min {k > 0] (Mg, = Mg) A (Mg #0)}.

Now combining the results of Theorem 4, we give some
comments on the geometric index defined above.

Remark 7. (1) The definition of the geometric index needs
only the assumption that for each & > 0, M} is locally
a smooth connected submanifold. The constant rank as-
sumptions (A1) and (A2) are not necessarily required for
the existence of geometric index. Take for example the
following DAE

2 ad = a?, (6)

where x € X = R. Clearly, M* = My = M§ = X is
a maximal invariant submanifold and any point =, € X
is admissible. The geometric index of (6) is v, = 0.
However dim E(x)T,M* # const., for all x € M* since
dim E(z)T,M* equals 1 for = # 0 and is 0 for z = 0.

(ii) The geometric index of DAEs allows for a conclusion
about the existence of solutions. Suppose that = has a
well-defined geometric index v, around x,. For any zg €
U\Mg, 0 < k < vy, around z,, we can conclude that
there does not exist any solution passing through z.

(iii) The geometric index does not concern uniqueness of
solutions. As an example, consider two DAEs

o2 { %1 _ iéfl’ z2) and Hy3: { %1 _ iifbw)

where f : R? — R is smooth. Observe that both = and
= have the same geometric index vy = 1. Nevertheless,
the DAE Z has a unique solution for any admissible
initial point (z10,220) = (210,0), the DAE Z has infi-
nite numbers of solutions for any admissible initial point

(210, 20, 230) = (%10, T20,0) since x2 is a free variable of
the ODE 3'31 = f(l‘l, 1‘2).

Ezample 8. Consider the following DAE E55 = (E, F),
borrowed from Rabier and Rheinboldt (1994),
10000 T T2
01000 ) —T5x1
E: (00100 [a3]| = T4 . (7)
00010 T4 —T5x3 — ¢

00000 5

This DAE describes the mathematical model of a pendu-
lum with a mass attached to its end and where the length
of the pendulum is given by the constant [. We consider a
point x, = (T1p, T2p, T3p, Tap, Tsp), Where z1, = 0, T2, = 0,
x3p = —I, x4p = 0, x5, = g/l and apply Algorithm 1 to
El = (El,Fl) ==

Step 1: since Ej is already in the desired form, we set
Q1 = I5. It follows that

My ={zeX|zi+ai—1"=0}.

We have x,, € M; and M{ = M;NU; is a smooth connected
submanifold, where U; = {z € X |23 < 0}. Then choose
a new coordinate z; = Z3 = x7 + 2% — [* and keep the
remaining coordinates z; = (21, Z2, €4, 25) unchanged, the

DAE =, represented in the new coordinates (defined on
Ul) is

a:f—&-xg—ﬁ

1 0000 T1 T2
. 0 1000 T2 —T5T1
El —2x1 0001 T4 | = 2x314 ,
0 0010 5 —T5T3 — g
0 0000 .i‘5 T3
where z3 = —(12 — 22 — 23)'/2. Set 73 = 0 to get
1 000 T1 T2
& | 0 100 j:z _ —XI5T1
—HME 1 221 000 |@a]| = | =202 —22)V/ 22y
0 00 1] Lis z5(12 —a2)V/2 — g
Step 2: consider Eg = (EQ,FQ) = é1|]ulc_ Find Q2 such

that

z2
—ZT5T1
(=) /7= |-

7(l27:1:f)1/214+x1x2

1000
Q2E5(z1)= [8 5 (1)} , QaFs(z1)=
0000

It follows that
My = {x € M7| — (I — 22)Y %2y + w20 = 0} .

We have z, € M, and M5 = M, N U, is a smooth
connected submanifold, where Uy = {z € Uj|z1 <}
Then we define new local coordinates on M7 via the local
diffeomorphism vs(21) = (29, 22) = (1,2, x5, ZT4), where

2o =Ty = —(lQ —m%)1/2x4 +2122. The DAE =5 in the new
coordinates is
1 0 007 [x: x2
= 0 1 00 To| —I5T1
T2 | —a(z1) —x1 01| |@s| — [g(% —22)1/2 — 25012 —22)|
0 0 0] Lza T4

o~

where a(z1) = 23x2(12 — 22)71 + 2. Set 2, = 0 to have

. 1 0 0] [ T2
EQ ‘MC . 0 1 0 To| = —I5T1
: —a(z) —z1 0] |25 —z5(12 —22) + g(I% — x%)1/2

Step 3: Consider E5 = (Es5, F3) = é2|M2c. Then via a
similar procedure as in Step 1 and 2, we get

Mz = {z € M5 |zix3(1* — 27) " + 23 — a50° — gz = 0}



= {2 € M§ |z} + 23 — x51* — gxs = 0} .
It follows that x, € M3 and M$ = M3NUs, where Us = Uy,
is a smooth connected submanifold. Set z5 = z?x3(l —
22)~ 4 23 + g(12 — 2%)'/2 — 1225 and define the new local
coordinates (zs,z3) = (21, x2,Z5) on MS, then we denote
Z3 in the new coordinates by ég. It follows that
2

&| (1 0] Jz]
=3IM35 - |o 1 To| ~ |—z5xz1]|’

where @5 = & (¢33 (1 — 27) " + 23 + g(1% — a})!/?).

(®)

Step 4: Since =4 = §3|M§ is an ODE;, it is seen that k" = 3
and M* = M§ = Ms.

Notice that z, € M* and assumptions (Al) and (A2)
are satisfied around z,, we can conclude by Theorem 4
that the solution of = passing through any point xy €
M* N U*, where U* = Us, exists and is unique (since
dim M* = dim E(z)T,M* = 2 for all z € M*NU"),
and this unique solution is mapped via a diffeomorphism
defined on U* into the solution of E* = Zs| Mg, given by
(8), with the constraints T3 = Z4 = T5 = 0. Moreover, the
geometric index v, = k* = 3. Note that our sequence of
submanifolds M}, coincides with that of the projections Wy
of the tangent bundles TWj, in (Rabier and Rheinboldt,
1994). But the two methods of constructing sequences of
submanifolds are different, although it is interesting to
compare them, it is not our aim to discuss their differences
in details in the present paper.

3. GEOMETRIC INTERPRETATION OF THE
DIFFERENTIATION INDEX

A classical definition of differentiation index (Gear, 1988)
is given for DAEs of the general form (2): define the
differential array of (2) by

D:H + DmHZ’ + D, Hz'
Hy(t,z, o', w)= (t,z, 2", w) =0,
Ly
dtk
)
where w = [z®, ..., D]  the differentiation index vy
is the least integer k such that equation (9) uniquely
determines 2’ as a function of (z,t), ie., ' = v(x,1).

Note that some other definition of differentiation index
in, e.g., (Campbell and Gear, 1995), requires, a priori, the
solvability of DAEs. We do not state such a requirement
since an index is a measure of difficulties for solving
a DAE, whose definition should be independent of the
solvability of the DAE (Rabier and Rheinboldt, 2002). We
now illustrate two deficiencies or ambiguities of the above
classical definition of differentiation index.

Remark 9. (i) In contrast to the geometric index of Def-
inition 6, the above classical definition of differentiation
index does not allow for a conclusion about the existence
of solutions. Take the following DAEs for example,

—_ . il = T2
=220

~ T1= T2
.’bng(.’bl,xg) and =32 - xng(:cl,xg) s

0= I
where f : R? — R is smooth and we assume f(0,0) # 0.

The two DAEs = and = have the same differentiation index
vq = 0 by the definition above. However, = has a unique

1x

solution and = has no solutions for the admissible initial
point (z10,%20) = (0,0). The reason is that the above
definition of differentiation index only implies the existence
and uniqueness of some vector field determined by the
differential array but does not indicate where the solutions
of the DAE should exist (solutions of DAE exists on the
maximal invariant submanifold M* which we discussed in
Section 2). In particular, if the defined vector field v(x,t)
is not tangent to M* at xg € M* (as in our example, the
vector field (zg, f(x1,22)) determined by Z is not tangent
to M* = {x ER?|x1 =20 = O} at (2109,220) = (0,0)),
then the trajectory of & = v(x,t) will leave M*, indicating
that the DAE does not have a solution at xg.

(ii) The classical definition of differentiation index does
not indicate the difference between ODEs and “over-
determined” DAEs. Consider the DAEs 239 and =35 of
item (i) above, we suppose now f(0,0) = 0. Then both
= and = have the same differentiation index vy = 0. The
DAE E is clearly an ODE which does not need any differ-
entiation to be solved, while = needs two times of differ-
entiations (of the algebraic constraint z; = 0) in order to
deduce a solution. Note that the “over-determined” (and
also ”under-determined”) properties of nonlinear DAEs
can be characterized by the notion of strangeness index,
see e.g., (Kunkel and Mehrmann, 2006).

To give a geometric background to the notion of differen-
tiation index, a new definition was proposed in (Griepen-
trog, 1991). In the present paper, in order to clear out the
deficiencies mentioned in Remark 9, we reform Griepen-
trog’s definition of differentiation index as follows. Con-
sider a nonlinear DAE =;, = (E,F) and fix a point
zp, € X, let Uy € X be a neighborhood of z,, set
H(z,(1) = E(x)¢1 — F(x), denote (%H) = H® and
for k > 0, define
HOz, ()

H(l) (LE, Cla CZ)

Hy(z, () = =0, (10)

H® (2, Cy1)

where Cup1 = (Ciy-. -5 Ceg1). Set Mo = X, M§ = U,
Z) =R" and for k > 0, define

My :={z € X|Hy_1(z,{) =0}, (11)
As long as x, € My, assume that there exists a neighbor-
hood Uy C Ujg_1 such that M$ = M; N U is a smooth
connected submanifold. Set

28 ={G e R" | Hy_1(2, () = 0,2 € M§}.

Definition 10. (Differentiation index). The (local) differ-

entiation index v4 of a DAE = around a point z,, is defined

by vq :=
; (M # D) A (ZF=ZF(2) is a singleton) A
mm{kzo‘ (2F(z) € Ty MG, Vo € M) :

Now we state our main theorem of this subsection.
Theorem 11. For a DAE =, = (E,F), fix a point z,,
assume that for each k£ > 0,
(A1) dim E(z)TyMS$ = const. for all € Mg around z,,.
(A2)” M5, is a smooth connected submanifold and z, €
o



Then we have that for each & > 0, the set M of the
geometric reduction method of Definition 2 is a smooth
connected submanifold and
2 = M,?,

and there exists a smallest integer k™ such that Mg. N
Ugr41 = M§. N Uk-41. It follows that z, € M* is ad-
missible and M* = M~ is a locally maximal invariant
submanifold, and

(i) the geometric index vy = k*;
(ii) the differentiation index v, exists and v4 = v, if and
only if dim M* = dim E(z)T,M* for all x € M*

around .

Proof. First, we construct My, explicitly via the following
procedure: Fix z, € X and let Uy be an open connected
subset of X containing z,,. Set M§ = Uy, Eg = E, Fy = F.
Assume in Step k — 1, we have constructed a smooth
submanifold Mj,_,, and maps Fj_; : Mj_; — RZX"A and
Fioq1 @ M$_, — R™™ Step k (k > 0): Rename Ej =
Ej_1, Fyy = F_1. Assume that rank E’k(x) = const. = ry,
for all x € M{_, around z,. After a suitable permutation,
it is possible to assume that the first r, rows of E), are
linearly independent. Then we can rewrite Exv + F, = 0

as ) .
o] o (2]
Tlo4 |5 =0,
[E}f F;
where E,i ¢_1 — R™ ™ is of full row rank and
Fl o M§_, — R™. Find ay, : My_; — RE)%7 guch

that akEA,i = E,% Denote
Vg = E;U + F,i,
we have~E’,%v—|:FkQ = a,E.(EA,iv—FFkl)—akﬁ’kl—l—FkQ = akvk—&—ﬁ}?,
where F,? = Fk2 — akFIJ;. Define
My, = {x e MS_, | En(x)o + Fy(z) = o}
—{w e M, | F2(@) = 0}

Assume that there exists a neighborhood U, C Ujy_1 of
zp such that Mj = My N Uy is a smooth connected
submanifold. Set

E} F}
B, = [Dm%§:| ‘M; and Fj = [ %_1:| ‘M; )

where Ej : M§ — R*™ and Fy, M — RE.

(12)

We now show that under assumptions (A1)’ and (A2)’, for
each k > 0, the set My, constructed by (12), is indeed the
one defined by (11). Observe that for k£ > 0,

ker Ey(x) = ker E(z) N T, M3, Yo € M;.

Thus assumption (A1)’ implies that rank Ey(x) = const.
for all x € M. Then consider the differentiation array Hy,
given by (10), denote ¢; = v and use the same notations
v as in the above procedure to have

0t =stae 1= [ o+ [

= [oxtoron)+ 72

where a1 (z,v1) = a1(z)v1. Now by assumption (A2)’ that
¢ = My NUy is a smooth connected submanifold, we
have (note that for any smooth map L defined on X, its
restriction L]y to a smooth submanifold M C X and the
differentiation of L with respect to t are two commutative
operations, i.e., %(L\M) = (%L)|M)
(1)

HY e = (H|ame)Y = NN IR
1 as + F22
where as(z,v2) = az(x)ve and vy = (v1,01); in general,

H*| i
MC = - ~
Lo e+ ™

)

where (F2)(*) is given by the following iterative formula:

(FH™ oY
Fi = | (k-1 L. _ )
az(‘+1 ) + (Fi2+1)(k b

where a; = a;(z,v;) = a;(z)v; and v; = (v;—1,0;—1) for
i > 1. Notice that for each k, since E} is of full row rank,

the differentiation v§k) of v; and @fkfl) of v; for i > 1 do

not create any constraint for x. So it is clear to see that
for k > 0,

i ={xe U Her(2,G) = 0}
= {I S M2_1 N U |H(k71)(xa<_k) = 07}

:{xEMi_lﬂUﬂﬁg(x):O}’

Z¥ ={¢ | Hi-1(2,¢) =0}
={C | Er—1(2)C1 + Fr1(x) = 0,2 € M}
= {Cl |’Uk(<1,$) = 0,1’ € MZ} .
Next we show that for each k > 0, M}, coincides with the
submanifold M of the geometric reduction method of Def-

inition 2. It is clear that M{ = {x € Up|F1(z) € Im E’l(x)}

= {x € X|Fi(z) = 0} = M¢§. For k > 1, suppose that
Mg = M§_,, then we have

My, = {x e Ms_, | En(z)v + By(z) = 0

frest [ ] -
(

= {2z e M{_||Ep_i(x)v+ F_(z)=0,v € T,M{_, }

= {z e M{_,|F;_,(x) € Ej_,(2)T. M{_ }

={z e M{_,|F(z) € E(x)T, M;_,} = M.
So M{, = M, NUy coincides with Mg = My NUy. Then k*
is the smallest integer such that Mg. | NUp-y1 = MG N
Ui+ 41 and the geometric index vy = k* by Definition 6. It
can be deduced from M* = Mj. ; = Mj. on Uy« that

ZF () = 2 *1(x) € T, M*. Thus by (13),
Z{ (@) = 27 (2)
={( e R"| Ep+ (2)¢ + Fr+ () = 0,2 € M*}
It follows that ZF = ZF'(z) is a singleton if and only
if Eyp« is invertible, i.e., rank Ex« = n, or, equivalently,

dimker Ej«(z) = 0. We can now conclude by Definition
10 that the differentiation index vy = k* = vy, if and

(13)



only if dimker Ex«(z) = dim(ker E(z) N T, M*) = 0, i.e.,
dim M* = dim E(z)T, M* for all z € M* around z,. O
Remark 12. (1) Assumptions (A1)’ and (A2)’ of Theorem
11 correspond to assumptions (A1) and (A2) of Theorem
4, respectively. If, a priory, we assume that for each k > 0,

= M¢, then it is clear that (A1) coincides with (A1),
and (A2) is equivalent to (A2)’ since M§, = M{ is a smooth
(embedded) submanifold if and only if rank DFZ(zx_1) =
const. for z_1 € My N Uy, (see e.g., (Lee, 2001)).

(ii) The differentiation index v, associated with a geomet-
ric background, given by Definition 10, allows to have a
conclusion on the existence of solutions as the sequence
of submanifolds My, coincides with M} and M* = M* is
a locally maximal invariant submanifold, which coincides
locally with the admissible set S,.

(iii) The differentiation index and the geometric index
differ from each other by their relations with unique-
ness of solutions. Namely, the geometric index may exist
even a DAE does not have a unique solution, while the
differentiation index exists only if the DAE is uniquely
solvable. As seen from Theorem 11, the geometric index v,
always exists if the submanifolds M} are not empty and
the sequence of submanifolds converges. While in order
to have a well-defined differentiation index, the condition
dim M* = dim E(x)T, M* for uniqueness of solutions is
necessary.

Ezample 13. (continuation of Example 8) Consider the
DAE Z = (E,F), given by (7), since the derivatives
(&1,29,23,%4) are already determined by the first four
equations of Z, we only differentiate the last equation
23 + 23 — 12 = 0 to determine #5. It is not hard to verify
that assumptions (A1)’ and (A2)’ are satisfied around xo,
and M§ = {z € Uy |af +a3— 1> =0} = MF,

g = {J? S Mi N Uy | 2x1%1 + 2x313 = 0}
= {:E GM?QU2|I1I2+Z’31‘4 :0} :MQC,
g e {LE S Mg |ZL‘15.82 + xol3 + T3T4 + T4T3 = 0}
= {z e M5 — w5 + a3 — 503 — w39 + 7F = 0}
={z € M§|a] + a3 — asl> — gr3 = 0} = Mj.
Moreover, by differentiating 22 + 23 — 2512 — gx3 = 0, we
get that
. 1
T = l—z(—2m4(x5x3 + 9)2xo(z521) — g24).
Combining the above equation with the first 4-equations
of (7), we have

Z} ={G |G = (v2, —w511, 24, — 2573 — g, 5), © € M5}
We can conclude that Z = Z3(z) is a singleton and
Z3(x) € TyM$§, Vo € Mg. Therefore the differentiation
index v4=3, which coincides with the geometric index v.

4. CONCLUSIONS

In this paper, we revised the geometric reduction method
and give our conditions for the existence and uniqueness
of the solutions of nonlinear DAEs. Then we discuss the
notion of geometric index via its relations with solutions of
DAEs. We modify the classical definition of the differenti-
ation index of DAEs and show that under some constant
rankness and smoothness assumptions, the sequence of
submanifolds defined by the differentiation array coincides

with those defined by the geometric reduction method
and the differentiation index coincides with the geometric
index if and only if a condition for uniqueness of solutions
is satisfied.
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