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Abstract: In this paper, we study jumps of nonlinear DAEs caused by inconsistent initial
values. First, we propose a simple normal form called the index-1 nonlinear Weierstrass form
(INWF) for nonlinear DAEs. Then we generalize the notion of consistency projector introduced
in Liberzon and Trenn (2009) for linear DAEs to the nonlinear case. By an example, we compare
our proposed nonlinear consistency projectors with two existing consistent initialization methods
(one is from the paper Liberzon and Trenn (2012) and the other is given by a MATLAB function)
to show that the two existing methods are not coordinate-free, i.e., the consistent points
calculated by the two methods are not invariant under nonlinear coordinates transformations.
Next we propose a singular perturbed system approximation for nonlinear DAEs, which is an
ordinary differential equation (ODE) with a small perturbation parameter, we show that the
solutions of the proposed perturbation system approximate both the jumps resulting from the
nonlinear consistency projectors and the C1-solutions of the DAE. At last, we use a numerical
simulation of a nonlinear DAE model arising from an electric circuit to illustrate the effectiveness
of the proposed singular perturbed system approximation of DAEs.
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1. INTRODUCTION

We consider a nonlinear differential-algebraic equation
(DAE),

Ξ : E(x)ẋ = F (x), (1)

where x ∈ X is the vector of generalized states and X
is an open subset of Rn, and where E : X → Rn×n and
F : X → Rn are C∞-smooth maps. For each x ∈ X,
E(x) : TxX → Rn is a linear map. A DAE of the form (1)
will be denoted by Ξ = (E,F ) or Ξ. The matrix-valued
function E(x) is not necessarily invertible, which implies
that there may exist some algebraic constraints and some
algebraic variables in the DAE Ξ. A particular case of Ξ
is a semi-explicit DAE

ΞSE :

{
ẋ1 = f1(x1, x2),

0 = f2(x1, x2),
(2)

with E =
[
Ir 0
0 0

]
being constant. The DAE ΞSE has the

algebraic variables x2 (since the derivatives of x2 are not
present) and the algebraic constraints 0 = f2(x1, x2). We
will study also linear DAEs of the form

∆ : Eẋ = Hx, (3)

where E ∈ Rn×n and H ∈ Rn×n. A linear DAE of the
form (3) will be denoted by ∆ = (E,H) or, shortly, ∆. A
linear DAE ∆ is called regular if sE −H ∈ Rn×n[s]\0.

A C1-solution of a DAE Ξ = (E,F ) is a differentiable
function x : I → X defined on an open interval I such
that for all t ∈ I, the curve x(t) satisfies E (x(t)) ẋ(t) =

? This work was supported by Vidi-grant 639.032.733.

F (x(t)), where ẋ denotes the classical time-derivative
defined everywhere on I. A point x+

0 is called consistent
if there exists at least one C1-solution x : I → X with
t0 ∈ I such that x+

0 = x(t0). The set of all consistent
points will be called consistency space and denoted by Sc.
Without loss of generality, we can always assume t0 = 0
and I = (0, T ) for some T ∈ (0,∞] (if not, we can re-
parametrize the time variable t).

It is known that the C1-solutions of a nonlinear DAE Ξ
exist on its consistency space Sc only (see Section 2). For
a given inconsistent initial point x−0 ∈ X\Sc, there does
not exist any C1-solution starting from x−0 . Then it is
natural to search for the consistent point x+

0 ∈ Sc such
that we can get the C1-solutions of Ξ starting from x+

0 .
The instant change from the inconsistent point x−0 to a
consistent one x+

0 is called a jump of the DAE at t = 0.
Note that the jumps which we study in the paper are called
external or exogenous jumps, which are different from the
jumps at the impasse (or singular) points as discussed in
Takens (1976); Chua and Deng (1989); Sastry and Desoer
(1981). We assume throughout that once starting from the
point x+

0 , there will not exist any jump and we will study
only the C1-solutions of Ξ. In conclusion, we consider the
following initial value problem:{

Jumps : lim
t→0−

x(t) = x−0 /∈ Sa → lim
t→0+

x(t) = x+
0 ∈ Sa,

C1-solutions: (E(x)ẋ)(0,T ) = F (x)(0,T ),



for some function x : I → Rn differentiable on (0, T ) ⊂
I. The problem of finding the consistent point x+

0 for
a DAE with an inconsistent initial value x−0 is called
consistent initialization, which is a significant problem for
hybrid DAE systems involving with jump behaviors. Some
examples of such systems are the electric circuits with
instant connections or switching devices (see e.g., Zuhao
(1991); Vlach et al. (1995); Trenn (2012)), the power
systems with DC transmissions in Susuki et al. (2008), the
multi-body dynamics in Hamann and Mehrmann (2008)
and the battery model of Methekar et al. (2011).

For a regular linear DAE ∆ = (E,H), given by (3), the
consistent initialization can be solved by the linear consis-
tency projector introduced by Liberzon and Trenn (2009,
2012), which is a linear map constructed with the help
of the well-known Weierstrass form (WF). For a semi-
explicit DAE ΞSE of the form (2), the singular perturba-
tion theory (see e.g., Kokotović et al. (1999); Khalil (2001))
was frequently used to study system approximations of the
discontinues solutions of ΞSE (see e.g., Sastry and Desoer
(1981); Rabier and Rheinboldt (2002); Susuki et al. (2008)
and Section 4 of the present paper). Two existing methods
of solving the consistent initialization problem for nonlin-
ear DAEs are, the jump rule of Liberzon and Trenn (2012),
which determines the consistent initial value x+

0 through
the formula x+

0 −x
−
0 ∈ kerE(x+

0 ), and the function decic of
MATLAB (see MathWorks (2006)), which calculates the
consistent initial values via a numerical searching method,
we will show in Example 9 below that both of those
two methods are not coordinate-free, i.e., the calculated
consistent values depends on which local coordinates are
chosen for the DAE.

The aims of this paper are, on one hand, to give a nonlinear
generalization of the linear consistency projector in order
to calculate consistent initial points for nonlinear DAEs,
on the other hand, to extend the singular perturbed system
approximation method to nonlinear DAEs of the form (1)
to study the jump behaviors. This paper is organized as
follows: We introduce the notations of the paper and some
notions as invariant submanifolds, external equivalence
and linear consistency projectors in Section 2. We propose
a normal form called the index-1 nonlinear Weierstrass
form (INWF) and extend the linear consistency projector
to nonlinear DAEs in Section 3. A singular perturbed
system approximation of nonlinear DAEs is proposed
in Section 4 and we show the simulation result of our
singular perturbation method applied to an electric circuit
in Section 5. Conclusions are given in Section 6.

2. NOTATIONS AND SOME PRELIMINARIES OF
NONLINEAR DAES

We use the following notations: The symbol Ck denotes
the class of functions which are k-times differentiable.
For a map A : X → Rn×n, kerA(x), ImA(x) and
rankA(x) are the kernel, the image and the rank of
A at x, respectively. The general linear group over R
of degree n is denoted by GL(n,R). For two column
vectors v1 ∈ Rm and v2 ∈ Rn, we write (v1, v2) =
[vT1 , v

T
2 ]T ∈ Rm+n. Let fi : X → R for i = 1, . . . ,m,

in coordinates x = (x1, . . . , xn), the differential of fi is

dfi =
∑n
j=1

∂fi
∂xj

dxj = [ ∂fi∂x1
, . . . , ∂fi∂xn

], the differentials

of a vector-valued function f = (f1, . . . , fm) are Df =[
df1

...
dfm

]
. We assume that the reader is familiar with some

basic notions as smooth embedded submanifolds, tangent
spaces, involutive distributions from differential geometry,
the reader can also consult the book by Lee (2001) for the
definitions of such notions.

The existence and uniqueness of C1-solutions for nonlinear
DAEs of the form (1) have been discussed using geometric
methods in e.g., Reich (1991); Rabier and Rheinboldt
(2002); Chen and Trenn (2020); Chen et al. (2020). An
important notion in the geometric solutions theory of
DAEs is the invariant submanifold defined as follows.

Definition 1. For a DAE Ξ = (E,F ), a smooth connected
embedded submanifold M is called invariant if for any
x+

0 ∈ M , there exists a C1-solution x : I → X such that
x(t0) = x+

0 with t0 ∈ I and x(t) ∈M , ∀ t ∈ I. Fix a point
xp ∈ X, a smooth embedded submanifold M containing
xp is called locally invariant, if there exists a neighborhood
U of xp such that M ∩ U is invariant.

A locally invariant submanifold M∗, around a point xp, is
called locally maximal, if there exists a neighborhood U of
xp such that for any other locally invariant submanifold
M , we have M ∩ U ⊆ M∗ ∩ U . It is shown in Chen
and Trenn (2020); Chen et al. (2020) that the maximal
invariant submanifold M∗ around a nominal point xp
locally coincides with the consistency space Sc, i.e., there
exists a neighborhood U∗ of xp such that

M∗ ∩ U∗ = Sc ∩ U∗.
Hence in the present paper, we make no difference between
the notion of maximal invariant submanifold M∗ and
that of consistency space Sc when considering a DAE Ξ
around a point xp. Note that there is an iterative way of
calculating the locally maximal invariant submanifold M∗

of DAEs, called the geometric reduction method (see e.g.,
Rabier and Rheinboldt (2002); Chen and Trenn (2020);
Chen et al. (2020)), the number of steps for the geometric
reduction method to produce M∗ and to get the solutions
of a DAE is called the geometric index (see Chen and
Trenn (2020)) of the DAE.

We now recall a definition of equivalence for linear DAEs,
two linear DAEs ∆ = (E,H) and ∆̃ = (Ẽ, H̃) are called
externally equivalent (see Chen and Respondek (2021)) or
strictly equivalent if there exist constant and invertible
matrices Q and P such that Ẽ = QEP−1 and H̃ =
QHP−1. The same concept can be generalized to nonlinear
DAEs of form (1) as follows.

Definition 2. (external equivalence). Consider two DAEs

Ξ = (E,F ) and Ξ̃ = (Ẽ, F̃ ) defined on X and X̃,

respectively. Then Ξ and Ξ̃ are called externally equivalent,
shortly ex-equivalent, if there exist a diffeomorphism ψ :
X → X̃ and Q : X → GL(n,R) such that

Ẽ(ψ(x))=Q(x)E(x)

(
∂ψ(x)

∂x

)−1

, F̃ (ψ(x))=Q(x)F (x).

The ex-equivalence of two DAEs will be denoted by

Ξ
ex∼ Ξ̃. If ψ : U → Ũ is a local diffeomorphism between

neighborhoods U of xp and Ũ of x̃p, and Q(x) is defined
on U , we will speak about local ex-equivalence.



Remark 3. It is easily seen, that for two externally equiv-
alent systems Ξ and Ξ̃ a C1-curve x : I → X is a solution
of Ξ if and only if ψ ◦ x is a solution of Ξ̃.

To illustrate the notions of maximal invariant submanifold
and external equivalence, we use the following example.

Example 4. Consider a DAE Ξ = (E,F ), given by

Ξ :

[
1 3x2

2 − 1
0 0

] [
ẋ1

ẋ2

]
=

[
−x2

x1

]
. (4)

Fix a point xp = (x1p, x2p) = (0, 1), the locally max-
imal invariant submanifold of Ξ around xp is M∗ ={
x ∈ R2 |x1 = 0, x2 >

√
3

3

}
(note that M∗ is connected).

We have that Ξ is locally ex-equivalent to the following
form (i.e., the (INWF), see Definition 5)[

1 0
0 0

] [
ξ̇1
ξ̇2

]
=

[
−f(ξ1, 0)

ξ2

]
, (5)

on the neighborhood V =
{
x ∈ R2 |x2 >

√
3

3

}
of xp, via

ψ = ξ = (ξ1, ξ2) = (x1 + x3
2 − x2, x1) and Q =

[
1 −f ′
0 1

]
,

where f(ξ) = f(ξ1, 0)+f ′(ξ)ξ2, f = 1
3

(
a+(a2− 1

27 )
1
2

)− 1
3

+(
a+(a2− 1

27 )
1
2

) 1
3

, a(ξ1, ξ2) = ξ1−ξ2
2 .

3. INDEX-1 NONLINEAR WEIERSTRASS FORM
AND NONLINEAR CONSISTENCY PROJECTOR

Consider a nonlinear DAE Ξ = (E,F ), let H(x, ẋ) =
E(x)ẋ − F (x), define the k-th order differential array of
H(x, ẋ) = 0 by

Hk(x, x′, w)=


H

DxHx
′+Dx′Hx

′′

...
dk

dtk
H

 (x, x′, w)=0, (6)

where w =
(
x(2), . . . , x(k+1)

)
, the differentiation index or

shortly, the index, of the DAE Ξ is the least integer k such
that equation (6) uniquely determines x′ as a function of
x, i.e., x′ = v(x). In Chen and Trenn (2020), we have
shown that under some constant rank assumptions, the
differential index coincides with the geometric index, we
will use a simplification of those constant rank assumptions
in the present paper: For a DAE Ξ = (E,F ), fix a point
xp, define F2 := F\ImE = Q2F , assume that F2(xp) = 0
and introduce the following constant rank condition, there
exists a neighborhood U of xp such that

(CR) rankE(x) = const., ∀x ∈ U ; rank DF2(x) = const.
and rank (E ker DF2(x)) = const., ∀x ∈ U such that
F2(x) = 0.

The assumption rankE(x) = const. ensures that there
exists Q : U → GL(n,R) such that E1 of QE =

[
E1
0

]
is of

full row rank. Denote QF =
[
F1

F2

]
, then the map F\ImE

is given by F2. The assumption rank DF2(x) = const.
guarantees that the zero-level set {x ∈ U |F2(x) = 0}
is a smooth embedded submanifold and the condition
rank (E ker DF2(x)) = const. excludes singular/impasses
points (see Chua and Deng (1989); Chen (2019)) and helps
to view the DAE as an ODE defined on a submanifold.
Note that under the condition (CR), a DAE Ξ is of dif-
ferentiation index-1 if and only if it is of geometric index-1

(Chen and Trenn (2020)). Now we define a normal form,
which is a semi-explicit DAE of index-1 with the algebraic
equations fully decoupled from its differential equations.

Definition 5. (index-1 nonlinear Weirstrass form). We say
that a DAE Ξ is represented in the index-1 nonlinear
Weirstrass form (INWF) if Ξ is of the form{

ξ̇1 = F ∗(ξ1),

0 = ξ2.
(7)

where ξ1 ∈ X1 ⊆ Rr, ξ2 ∈ X2 ⊆ Rn−r and F ∗ : X1 → Rr.
Remark 6. For any DAE in (INWF) with an inconsistent
initial point (ξ−10, ξ

−
20) /∈ M∗, i.e., ξ−20 6= 0 (it is clear

that the maximal invariant submanifold of (7) is M∗ =
{(ξ1, ξ2) ∈ X1 ×X2 | ξ2 = 0}), we could easily deduce that
(ξ+

10, ξ
+
20) = (ξ−10, 0) is the only possible jumping point

from (ξ−10, ξ
−
20). Indeed, for the DAE (7), only ξ2-variables

are allowed to jump because any jump of ξ1-variables
will produce a Dirac impulse on the left-hand side of
ξ̇1 = F ∗(ξ1) (see the distributional solution theory of
DAEs in Trenn (2009)), which is not possible since F ∗(ξ1)
is not able to produce a same impulsive term on the right-
hand side in order to equalize the differential equations.

Theorem 7. Consider a DAE Ξ = (E,F ) and fix a point
xp ∈ X. Assume that Ξ satisfies the condition (CR)
in a neighborhood U ⊆ X of xp. Then there exists a
neighborhood V ⊆ U of xp such that Ξ is locally ex-
equivalent to the (INWF), given by (7), if and only if Ξ
is of index-1 and the distribution E = kerE is involutive.

Proof. Only if. Assume that Ξ is locally ex-equivalent
to the (INWF), denoted by Ξ̃ = (Ẽ, F̃ ). It is clear

that Ξ̃ is index-1 and that ker Ẽ is involutive (since

Ẽ is constant). Notice that the Q-transformation pre-

serves the kernels and ker Ẽ(ψ(x)) = ∂ψ
∂x kerE(x); let

kerE = span {g1, . . . , gn−r} for some vector fields gi, we

have ker Ẽ = span
{
∂ψ
∂x g1, . . . ,

∂ψ
∂x gm

}
, so the Lie bracket

[gi, gj ] ∈ kerE (i.e., kerE is involutive) if and only if

[∂ψ∂x gi,
∂ψ
∂x gj ] = ∂ψ

∂x [gi, gj ] = ∂ψ
∂x kerE = ker Ẽ (i.e., ker Ẽ is

involutive). We conclude that Ξ is index-1 and E = kerE
is involutive as well.

If. Suppose that Ξ is of index-1 and the distribution E =
kerE is involutive. Then by rankE(x) = const. (denote
this rank by r) of (CR), there exists Q : U → GL(n,R)
such that rankE1(x) = r in

Q(x)E(x)ẋ = Q(x)F (x)⇒
[
E1(x)

0

]
ẋ =

[
F1(x)
F2(x)

]
. (8)

Notice that the condition (CR) implies that there exists
a neighborhood U1 ⊆ U of xp such that rankA(x) =

rank
[
E1(x)

DF2(x)

]
= const., ∀x ∈ U1 : F2(x) = 0. Since

the DAE is of differentiation index-1, we have that A(x)
has to be invertible, i.e., rankA(x) = n, because only
if A(x) is invertible, we can uniquely solve ẋ = v(x) =

A−1(x)
[
E1(x)

DF2(x)

]
with only a first order differentiation of

(8) (note that we only need to differentiate the algebraic
equation 0 = F2(x)). Since the distribution Ξ = kerE
is involutive, by Frobenius theorem (see e.g., Lee (2001)),
there exist a neighborhood U2 ⊆ U1 and a smooth map ξ1 :
U2 → Rr such that span

{
dξ1

1 , . . . ,dξ
r
1

}
= E⊥, where dξi1

are independent rows of Dξ1 and E = kerE = kerE1, i.e.,



Dξ1(x) kerE1(x) = 0, ∀x ∈ U2. It follows that there exists
Q1 : U2 → GL(r,R) such that Dξ1(x) = Q1(x)E1(x). Set
ξ2 = F2, then we have ψ(x) = (ξ1(x), ξ2(x)) is a local
diffeomorphism on U2 since

∂ψ(x)

∂x
=
[

Dξ1(x)
DF2(x)

]
=
[
Q1(x) 0

0 I

] [ E1(x)
DF2(x)

]
=
[
Q1(x) 0

0 I

]
A(x)

is invertible for all x ∈ U2. Define the new local coordinates
ξ = ψ = (ξ1, ξ2) on U2, the DAE (8) under the new ξ-
coordinates is represented by[

E1(x)
0

](∂ψ(x)

∂x

)−1
∂ψ(x)

∂x
ẋ =

[
F1(x)
F2(x)

]
⇔[

E1
1(ξ1,ξ2) 0

0 0

] [
ξ̇1
ξ̇2

]
=
[
F̃1(ξ1,ξ2)

ξ2

]
, (9)

where E1
1 : U2 → Rr×r, [E1

1 ◦ ψ,E2
1 ◦ ψ] = E1(∂ψ∂x )−1

with E2
1 ≡ 0, F̃1 ◦ ψ = F1. Notice that E2

1 = 0 because
ImE2

1(x) = E1(x) ker Dξ1(x) = 0 and that E1
1(x) is

invertible for x ∈ U2 since rankE(x) = const. = r,

∀x ∈ U2. Let F̄1 = (E1
1)−1F̃1, we can always find F̄ ′1 : U2 →

Rr×m such that F̄1(ξ1, ξ2) = F̄1(ξ1, 0) + F̄ ′1(ξ1, ξ2)ξ2. Then

via Q̃ =
[

(E1
1)−1 −F̄ ′1
0 I

]
, the DAE (9) is ex-equivalent to the

(INWF) with F ∗(ξ1) = F̄1(ξ1, 0). Finally, it is seen that
Ξ is locally (on V = U2) ex-equivalent to the (INWF) via

the diffeomorphism ψ and the Q̃Q-transformation.

With the help of the (INWF), we can generalize the
notion of consistency projector to nonlinear DAEs:

Definition 8. (nonlinear consistency projector). For a non-
linear DAE Ξ = (E,F ), fix a point xp and assume that
there exists a neighborhood V of xp such that Ξ is locally
(on V ) ex-equivalent to the (INWF), given by (7), via a
Q-transformation and a local diffeomorphism ψ. The (lo-
cal) nonlinear consistency projector ΩE,F : V \M∗ → V ∩
M∗ of Ξ is then defined by

ΩE,F := ψ−1 ◦ π ◦ ψ,
where π : Rn → Rn is the canonical projection attaching
(ξ1, ξ2) 7→ (ξ1, 0).

For a DAE Ξ being locally (on V ) ex-equivalent to the
(INWF) with an inconsistent initial value x−0 ∈ V \M∗,
we can get a unique consistent point x+

0 = ΩE,F (x−0 ) ∈
V ∩ M∗ since in the ξ-coordinates of the (INWF),
the inconsistent point (ξ−10, ξ

−
20) = ψ(x−0 ) has to jump

into (ξ+
10, ξ

+
20) = (ξ−10, 0) (see Remark 6), hence x+

0 =
ψ−1(ξ+

10, ξ
+
20) = ψ−1 ◦ π ◦ ψ(x−0 ) = ΩE,F (x−0 ). Then we

compare the consistent initial values calculated by the
nonlinear consistency projector with that from the jump
rules in Liberzon and Trenn (2012) and MATLAB decic
function (see MathWorks (2006)).

Example 9. (continuation of Example 4). The DAE (4) sat-
isfies the condition (CR) in the neighborhood U ={
x ∈ R2 |x 6= ±

√
3/3
}

of xp. We have shown in Example 4
that (4) is ex-equivalent (on V ⊆ U) to the (INWF),
given by (5), via Q and ψ. Thus the nonlinear (local)
consistency projector of Ξ is

ΩE,F = ψ−1 ◦ π ◦ ψ =

[
0

f(x1 + x2
2 − x2, 0)

]
.

Take an inconsistent initial value x−0 = (1, 0.7) ∈ V \M∗,
the consistent point calculated by the nonlinear consis-

tency projector is x+
0 = Ω(x−0 ) = (0, 1.233) ∈ M∗. Note

that the inconsistent initial point of (5) is ξ−0 = ψ(x−0 ) =
(0.643, 1) and the consistent point is ξ+

0 = (0.643, 0) since
only ξ2-variables are allowed to jump (see Remark 6). Then
we use the jump rule x+

0 −x
−
0 = kerE(x+

0 ) in Liberzon and

Trenn (2012) to calculate the consistent values x̃+
0 and ξ̃+

0
for (4) and (5), respectively, and we get

x̃+
0 = (0, 0.109) and ξ̃+

0 = (0.643, 0).

Similarly, we use MATLAB decic function to determine
the consistent values x̄+

0 and ξ̄+
0 for (4) and (5), respec-

tively, to get

x̄+
0 = (0, 0.7) and ξ̃+

0 = (0.643, 0).

Since ξ̃+
0 6= ψ(x̃+

0 ) and ξ̄+
0 6= ψ(x̄+

0 ), we conclude that
the two consistent initialization methods in Liberzon and
Trenn (2012) and MathWorks (2006) do not preserve the
calculated consistent points when changing the coordi-
nates of the given DAE. On the other hand, the jump
x−0 → x+

0 of (4), given by the nonlinear consistency
projector, and the jump ξ−0 → ξ+

0 of (5) are clearly the
same jump in different coordinates since ξ−0 = ψ(x−0 ),
ξ+
0 = ψ(x+

0 ), which proves that the consistent initialization
calculated by the consistency projector is coordinate-free.

4. SINGULAR PERTURBED SYSTEM
APPROXIMATION OF NONLINEAR DAES

We first recall a singular perturbed system for a semi-
explicit DAE ΞSE of the form (2). Replacing the algebraic
constraint 0 = f2(x1, x2) by εẋ2 = f2(x1, x2), where ε
represents some modeling parameters which can be ig-
nored (e.g, the small inductance of an inductor in electrical
circuits, see page 367 of Rabier and Rheinboldt (2002)),
we get a perturbed ODE system ΞSEε on the left-hand side
of the following formula, then by rescaling time t to τ by
dτ
dt = 1

ε , we get a perturbed system in the time-scale τ on
the right-hand side.

ΞSEε :

{
ẋ1 = f1(x1, x2),

εẋ2 = f2(x1, x2).

ε= dt
dτ⇔


dx1

dτ
= εf1(x1, x2),

dx2

dτ
= f2(x1, x2).

There are, in general, two assumptions in the singular
perturbed approximation method of semi-explicit DAEs:
(a) df2

dx2
is invertible (which is actually equivalent to that

ΞSE is of index-1); (b) the so-called boundary layer
model dx2

dτ = f2(x−10, x2) is asymptotically stable uniformly
in x2. Then under assumptions (a),(b), the well-known
Tihkonov’s theorem (see e.g., Khalil (2001) and a similar
result in Theorem III.1 of Sastry and Desoer (1981)) states
that if a unique solution (x1(t), x2(t)) of ΞSE starting from
a consistent initial point (x+

10, x
+
20) exists on the interval

I = (0, α), then there exists δ ≥ 0 such that a solution
(x̄1(t, ε), x̄2(t, ε)) of ΞSEε starting from any point (x−10, x

−
20)

with ||x+
10 − x

−
10||+ ||x

+
20 − x

−
20|| < δ satisfies

lim
ε→0
||x1(t)− x̄1(t, ε)|| = 0,

lim
ε→0
||x2(t)− x̄2(t, ε)|| = 0,

(10)

on all closed subintervals of I. In this section, we will
propose a singular perturbed system approximation for



nonlinear DAEs of the form (1) with the help of the
proposed normal form (INWF).

Definition 10. (singular perturbed system). For a nonlin-
ear DAE Ξ = (E,F ), fix a point xp, assume that there
exists a neighborhood V of xp such that Ξ is locally
(on V ) ex-equivalent to the (INWF) of (7) via a Q-
transformation and a local diffeomorphism ψ. Define the
following singular perturbed system on V :

Ξε : ẋ = E−1
ε (x, ε)F (x), (11)

where Eε(x, ε) = E(x) +Q−1(x)

[
0 0
0 −εIn−r

]
∂ψ(x)
∂x .

Remark 11. Any linear index-1 regular DAE ∆ = (E,H)
of the form (3) is always ex-equivalent to a decoupled DAE

given by
([

In1
0

0 0

]
,
[
A1 0
0 In2

])
. Applying the construction

of (11) to ∆, we get the following singular perturbed
system:

∆ε : ẋ = E−1
ε Hx = P−1

[
A1 0
0 − 1

ε In2

]
Px,

where Eε = Q−1
[
In1

0

0 −εIn2

]
P . The above perturbed

linear system ∆ε is proposed in Section IV of Mironchenko
et al. (2015) as an ODE approximation of linear DAEs.

The following theorem shows that the solution x̄(t, ε) of the
proposed perturbed system Ξε of (11) with an inconsistent
initial value x−0 converges to the C1-solution x(t) of Ξ
staring from a consistent point x+

0 calculated via the
nonlinear consistency projector.

Theorem 12. Consider a DAE Ξ = (E,F ) and fix a point
xp ∈ X. Assume that the condition (CR) is satisfied in
a neighborhood U of xp. Suppose that Ξ is of geometric
index-1 and that E = kerE is involutive, implying that
there exists a neighborhood V ⊆ U of xp such that Ξ is
locally (on V ) ex-equivalent to the (INWF) of (7) via Q
and ψ. Let x−0 ∈ V \M∗ be an inconsistent initial point
of Ξ and x+

0 = ΩE,F (x−0 ) ∈ M∗ be the consistent point
calculated via the nonlinear consistency projector ΩE,F .
If x̄(t, ε) : I → V is the solution of the perturbed system
Ξε of (11) starting from x−0 and x(t) : I → V is the C1-
solution of Ξ starting from x+

0 , then we have

lim
ε→0
||x̄(t, ε)− x(t)|| = 0, ∀t ∈ I. (12)

Proof. Suppose that Ξ is locally (on V ) ex-equivalent to
the (INWF) of (7) via Q and ψ. Consider the following
disturbed system for (7):[

ξ̇1
ξ̇2

]
=

[
Ir 0
0 −εIn−r

]−1 [
F ∗(ξ1)
ξ2

]
=

[
F ∗(ξ1)
− 1
ε ξ2

]
, (13)

Let ξ̄(t, ε) = (ξ̄1(t, ε), ξ̄2(t, ε)) be the solution of (13)
starting from ξ−0 = (ξ−10, ξ

−
20) = ψ(x−0 ). It is plain that

ξ̄2(t, ε) = e−
1
ε tξ−20. Then consider the following ODE[

ξ̇1
ξ̇2

]
=

[
F ∗(ξ1)

0

]
, (14)

and let ξ(t) = (ξ1(t), ξ2(t)) be its solution of (13) with the
initial point ξ+

0 = (ξ+
10, ξ

+
20) = ψ(x+

0 ) = ψ◦ΩE,F (x−0 ) = π◦
ψ(x−0 ) = (ξ−10, 0). Define γ(t, ε) = ξ̄(t, ε)− ξ(t), we have

γ̇(t, ε) =

[
0

− 1
ε ξ̄2(t, ε)

]
=

[
0

− 1
ε e
− 1
ε tξ−20

]

and γ(0, ε) = ξ−0 − ξ
+
0 = (0, ξ−20). It follows that γ(t, ε) =

(0, e−
1
ε tξ−20). Moreover, it is not hard to deduce that

x̄(t, ε) = ψ−1 ◦ ξ(t, ε) and that x(t) = ψ−1 ◦ ξ(t). Therefore
we have

lim
ε→0
||x̄(t, ε)− x(t)|| = lim

ε→0
||ψ−1 ◦ ξ̄(t, ε)− ψ−1 ◦ ξ(t)||

≤ lim
ε→0

K||ξ̄(t, ε)− ξ(t)|| = lim
ε→0

K||γ(t, ε)|| = 0.

Note that the inequality “≤” holds in the above results
since ψ−1 is a diffeomorphism and thus satisfies the
Lipschitz condition for a Lipschitz constant K.

5. SIMULATION EXAMPLE

Consider the electrical circuit shown in Figure 1 below,
which consists of a capacitor C and a nonlinear resistor N
as the simple circuit discussed in Sastry and Desoer (1981);
Chua and Deng (1989); Rabier and Rheinboldt (2002). A
controlled current source S is additionally connected in
parallel with N in order to generate nonlinear terms in
E(x) of the DAE model. The relations between the current

C

vC=z

S

iS=b(x, y)ẏ

NvN=y

iN=x

Fig. 1. An electrical circuit with a nonlinear resistor and
a controlled current source

iN = x and the voltage vN = y of the nonlinear resistor
N is characterized by the following algebraic equation

0 = a(x, y),

and the current iS of S is equal to b(x, y)ẏ, where a : R2 →
R and b : R2 → R are smooth maps . Using Kirchoff’s law,
we model the circuit as a DAE Ξ = (E,F ):[

0 −b(x,y) C
0 0 0
0 0 0

] [
ẋ
ẏ
ż

]
=
[ x
y+z
a(x,y)

]
.

We consider the following case: C = 1, a(x, y) = x−y2−2y,
b(x, y) = y. Let η = (x, y, z) and ηp = (0, 0, 0), then the
condition (CR) is satisfied on U = {(x, y, z) ∈ R3 | y 6= 1}.
The locally maximal invariant submanifold M∗ (around
ηp) is M∗ =

{
η ∈ R3 | y + z = x− y2 − 2y = 0, y < 1

}
.

Since E = kerE = span{ ∂∂x , y
∂
∂z + ∂

∂y} is involutive and

Ξ is of index-1. Then it is possible to find ψ1 : V → R,
where V =

{
η ∈ R3 | y < 1

}
, such that span{ dψ1} = E⊥;

by solving some first order PDE, we get a solution ψ1(η) =
− 1

2y
2 + z. Let ψ2(η) = y + z and ψ3 = a, then the DAE

Ξ is locally (on V ) ex-equivalent to the following DAE
represented in the (INWF):[

1 0 0
0 0 0
0 0 0

] [ ˙̃z
˙̃y
˙̃x

]
=
[−2z̃

ỹ
x̃

]
. (15)

via Q =
[

1 −2 −1
0 1 0
0 0 1

]
and ψ(x, y, z) = (z̃, ỹ, x̃) = (ψ1, ψ2, ψ3).

Following (11) of Definition 10, we construct a singular
perturbed system Ξε:

Q−1
[

1 0 0
0 −ε 0
0 0 −ε

]
∂ψ

∂η

[
ẋ
ẏ
ż

]
=

[ x
y+z

x−y2−2y

]
⇒ Ξε :

[
ẋ
ẏ
ż

]
=

[
f1(η,ε)
f2(η,ε)
f3(η,ε)

]
,



where f1(η, ε) = −−x+y(2+y)−2ε(y2−2z)−2(y+z)
ε , f2(η, ε) =

−y+εy2−2εz+z
ε+εy , f3(η, ε) = ε(y2−2z)−y(y+z)

ε(1+y) . Consider an

inconsistent initial point η−0 = (0, 0, 0.1) ∈ V \M∗, then
find the nonlinear consistency projector ΩE,F to have

η+
0 =ΩE,F (η−0 )=ψ−1◦π◦ψ(η−0 )=(−0.2,−0.1056, 0.1056),

which defines a jump η−0 → η+
0 of Ξ. Now we use

MATLAB ode45 solver to simulate the solution η̄(t, ε) =
(x̄(t, ε), ȳ(t, ε), z̄(t, ε)) starting from η−0 of the perturbed
system Ξε for different values of the perturbation param-
eter ε and the C1-solution η(t) = (x(t), y(t), z(t)) of Ξ
starting from η+

0 . It can be seen from Figure 2 that the

−0.2
0

0.2
−0.1

0
0

0.1

0.2
η−0

η+0

(0, 0, 0)

x

y

z

M∗

ε = 0.1
ε = 0.05
ε = 0.005

η(t)

(a) Trajectories η̄(t, ε) for dif-
ferent ε and η(t) in (x, y, z)-
coordinates.

0 1 2 3
−0.2

−0.15

−0.1

−5 · 10−2

0

t

x

ε = 0.1
ε = 0.05
ε = 0.005

x(t)

(b) Trajectories x̄(t, ε) for
different ε and x(t) in (t, x)-
coordinates.

0 1 2 3
−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

t

y

ε = 0.1
ε = 0.05
ε = 0.005

y(t)

(c) Trajectories ȳ(t, ε) for
different ε and y(t) in (t, y)-
coordinates.

0 1 2 3
0

5 · 10−2

0.1

t

z

ε = 0.1
ε = 0.05
ε = 0.005

z(t)

(d) Trajectories z̄(t, ε) for
different ε and z(t) in (t, z)-
coordinates.

Fig. 2. The solutions η̄(t, ε) of Ξε for different ε and the
solution η(t) of Ξ

proposed perturbed system indeed approximates the DAE
both for the jump η−0 → η+

0 and for the C1-solution η(t)
starting from η+

0 and evolving on M∗.

6. CONCLUSIONS

In this paper, we discuss the C1-solutions and the jumps
from inconsistent initial points for nonlinear DAEs. First,
we propose a normal form called the index-1 nonlinear
Weierstrass form (INWF), which has a simple and de-
coupled system structure. We show that a nonlinear DAE
is locally externally equivalent to the (INWF) if and only
if the DAE is index-1 and the distribution defined by kerE
is involutive. Then we use the (INWF) to generalize the
consistency projector of linear DAEs to the nonlinear case.
The generalized nonlinear consistency projector offers a
way to solve the consistent initialization problem for non-
linear DAEs. Finally, we propose a system approximation
for nonlinear DAEs with jumps via the singular perturba-
tion theory. The results of this paper could be a nice tool to
study hybrid DAE systems involving with switchings since
the consistent initialization is a fundamental problem for
the solutions of switched nonlinear DAEs.
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