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a b s t r a c t

In this paper, we propose a novel notion called impulse-free jump solution for nonlinear
differential–algebraic equations (DAEs) of the form E(x)ẋ = F (x) with inconsistent initial
values. The term ‘‘impulse-free’’ means that there are no Dirac impulses caused by jumps
from inconsistent initial values, i.e., the directions of the jumps stay in ker E(x). We show
that our proposed impulse-free jump rule is a coordinate-free concept, meaning that the
calculation of the impulse-free jump does not depend on the coordinates of the DAE,
which is a main advantage compared to some existing jump rules for nonlinear DAEs. We
find that the existence and uniqueness of impulse-free jumps are closely related to the
notion of geometric index-1 and the involutivity of the distribution defined by ker E(x).
Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs;
we show that solutions of the perturbed system approximate both impulse-free jump
solutions and C1-solutions of nonlinear DAEs. Finally, we show by some examples that
our results of impulse-free jumps are useful for the problems like consistent initialization
of nonlinear DAEs and transient behavior simulations of electric circuits.
© 2023 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Consider a nonlinear differential–algebraic equation (DAE) in quasi-linear form

Ξ : E(x)ẋ = F (x), (1)

where x ∈ X is a vector of the generalized states and (x, ẋ) ∈ TX , where TX is the tangent bundle of the open subset X
in Rn (or an n-dimensional smooth manifold). The maps E : TX → Rl (attaching (x, ẋ) ↦→ E(x)ẋ) and F : X → Rl are
C∞-smooth, and for each x ∈ X , we have that E(x) : Rn

→ Rl is a linear map. We will denote a DAE of the form (1) by
Ξl,n = (E, F ) or, simply, Ξ . A linear DAE of the form

∆ : Eẋ = Hx (2)

will be denoted by ∆l,n = (E,H) or, simply, ∆, where E ∈ Rl×n and H ∈ Rl×n. A linear DAE is called regular if l = n and
det(sE − H) ∈ R[s] \ {0}.

Definition 1.1 (C1-solutions and Consistency Space). The trajectory x : I → X for some open interval I ⊆ R is called a
C1-solution of the DAE Ξl,n = (E, F ) if x is continuously differentiable and satisfies E(x(t))ẋ(t) = F (x(t)) for all t ∈ I.

A point xc ∈ X is called consistent (or admissible [1]) if there exists a C1-solution x : I → X and tc ∈ I such that
x(tc) = xc . The consistency space Sc ⊆ X is the set of all consistent points.
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By re-parameterizing the time variable t , we can always assume I = (0, T ) for some T > 0. For a nonlinear DAE of the
form (1), the initial point x−

0 is usually defined (see e.g. [2,3]) via the right limit of some past trajectory x(t), t < 0 (which
may be or may not be governed by (1)). In the present paper, we are interested in nonlinear DAEs with inconsistent initial
points, i.e., when the initial points x−

0 ̸∈ Sc . Assume that there exists one C1-solution x(·) of Ξ on (0, T ), then we have
+

0 = limt→0+ x(t) = x(0+) ∈ Sc . Thus if x−

0 is not consistent, then there has to be an ‘‘instantaneous’’ change of values for
x(t) at t = 0, i.e., a jump x−

0 → x+

0 to steer the inconsistent point x−

0 towards a consistent one x+

0 .
The jump behaviors in practical DAE systems are not rare phenomenons, e.g., the inconsistent initial values of

electric circuits caused by switching devices (see e.g., [4–6]), the discontinues transient dynamics in hybrid/switched
systems as power systems [7], multi-body dynamics [8] and battery models [9]. Discontinues solutions of a more
general class of system which includes linear differential–algebraic dynamics and complementarity conditions, called
the linear complementary systems, were discussed in [10], where the problem of re-initialization (jump) rules plays
also an important role for the definition of solutions. All the jumps which we consider in the present article, are called
external/exogenous jumps [11], which are different from the jumps happened at the impasse or singular points discussed
in [12–14]. More specifically, we suppose throughout that once the inconsistent initial point x−

0 jumps to a consistent point
x+

0 ∈ Sc , then we will consider only C1-solutions starting from x+

0 , that means, there are no jumps in x(t) for t ∈ (0, T ).
For a linear DAE ∆ = (E,H), given by (2), with an inconsistent initial value x−

0 , the jump behavior at t = 0 can be
described by a vector e0 = x(0+) − x(0−) = x+

0 − x−

0 . To deal with the discontinuity introduced by the jump behavior at
t = 0, the distributional (generalized function)1 solutions theory for linear DAEs were established e.g. in [2,3,15,16].
The distributional derivative of the jump of x at t = 0 is (x+

0 − x−

0 )δ0, where δ0 is the Dirac impulse at t = 0,
i.e., taking distributional derivative of a jump results in a Dirac impulse δ0 whose amplitude is the jump vector e0 [16].
The distributional restriction of ∆ to t = 0 can be represented by Eẋ[0] = Hx[0], where x[0] =

∑k
i=0 αkδ

(i)
0 and

ẋ[0] = e0δ0 +
∑k

i=0 αkδ
(i+1)
0 for some k ≥ 0. It can be deduced that there are no Dirac impulses and their derivatives

δ0, . . . , δ
(k)
0 caused by jumps at t = 0 if and only if E · e0δ0 = 0, i.e., e0 ∈ ker E, and we call a jump satisfies the latter

condition an impulse-free jump of the linear DAE ∆.
The difficulty of studying jump behaviors for DAEs of the form (1) comes from the nonlinearity of the map E, which

makes the distributional (generalized function) solution theory a possible non-suitable setting for our problems. As stated
in Remark 46.2 of [17], ‘‘This does not mean that discontinuous solutions of quasilinear problems cannot be investigated, but
only that their treatment as distribution solutions is inadequate. In other words, discontinuous solutions of general quasilinear
problems must, if possible at all, be introduced by a different process which remains to be determined.’’ An extension of the
notion of impulsive-free jump to nonlinear DAEs of the form (1) was made in Assumption A4 of [18], where it is assumed
that a jump vector e0 = x+

0 − x−

0 should satisfy the jump rule e0 ∈ ker E(x+

0 ). The problem of finding the consistent point
x+

0 for a given inconsistent point x−

0 is called the consistent initialization problem in the numerical analysis of nonlinear
DAEs (see e.g., [19,20]). In particular, the consistent initialization of nonlinear DAEs can be solved by the function decic of
MATLAB (see [21]). We will show below by examples that both the jumps defined by the rule of [18] and that calculated
by decic are not invariant under nonlinear coordinates transformations, meaning that those two consistent initialization
methods in [18,21] are not coordinate-free. A main contribution of this paper is the coordinate-free jump rule introduced
in Definition 4.1, which allows to calculate the desired consistent points in any coordinates. In well-chosen coordinates,
the DAE may be expressed as a simple form (normal form or canonical form), which can be easier for defining jumps,
e.g., the linear consistency projectors [18,22] are constructed with the help of the Weierstrass form (WF) as the consistent
points of the (WF) are straightforward to be found. Thus the coordinate-free property is an important feature for analyzing
the jump behaviors of DAEs. Another main result concerns the existence and uniqueness of the impulse-free jumps, we
use a notion of geometric index (see Definition 3.1) and show that the impulse-free jump always exists for any index-1
nonlinear DAE satisfying certain reachability conditions and the jump is uniquely defined if and only if the distribution
ker E(x) is involutive.

Some other works of studying jump behaviors of DAEs (see e.g., [11–14,17]) mainly focused on semi-explicit (called
also semi-linear) DAEs of the form

Ξ SE
:

{
ẋ1 = f1(x1, x2),
0 = f2(x1, x2),

(3)

i.e., E(x) =
[

I 0
0 0

]
; such DAEs are usually related to the models of electric circuits and singular perturbation theory (see

e.g., [13], Chapter 11 of [23] and Chapter VIII of [17]). A preliminary result of using singular perturbation theory to study
nonlinear DAEs of the form (1) is our conference publication [24], which considers only the case that Ξ is equivalent to
a fully decoupled normal form (see the index-1 nonlinear Weierstrass form (INWF) in Theorem 4.6) without a formal
definition of impulse-free jump. In this paper, we propose a singular perturbed system approximation for nonlinear
DAEs (which are not necessarily equivalent to the (INWF)) and we show that the solutions of the perturbed systems
approximate both the C1-solutions and the impulse-free jump solutions of the DAEs.

1 Note that there are two terminologies called distribution in our paper, one is a generalized function which helps to differentiate functions
whose derivatives do not exist in the classical sense, the other is a subset of the tangent bundle of a manifold in differential geometry.
2



Y. Chen and S. Trenn Nonlinear Analysis: Hybrid Systems 46 (2022) 101238

d

a

s
i

g
a

This paper is organized as follows: We give the notations of the paper and a brief review of the existence and
uniqueness of C1-solutions for nonlinear DAEs in Section 2. We recall the notion of geometric index-1 and give some
characterizations for that notion in Section 3. We introduce the definition of impulse-free jumps for nonlinear DAEs and
study the existence and uniqueness of impulse-free jumps in Section 4. Singular perturbed system approximations of
nonlinear DAEs are discussed in Section 5. The proofs of the main results are given in Section 6. The conclusions and
perspectives of the paper are given in Section 7.

2. Notations and preliminaries on C1-solutions of DAEs

We denote by TxM ⊆ Rn the tangent space at x ∈ M of a submanifold M of Rn and by TM we denote the corresponding
tangent bundle. By Ck the class of k-times differentiable functions is denoted. For a smooth map f : X → R, we denote its
differentials by df =

∑n
i=1

∂ f
∂xi

dxi = [
∂ f
∂x1
, . . . ,

∂ f
∂xn

] and for a vector-valued map f : X → Rm, where f = [f1, . . . , fm]
T , we

enote its differential by Df =

[ df1
...

dfm

]
. For a map A : X → Rn×n, ker A(x), Im A(x) and rank A(x) are the kernel, the image

nd the rank of A at x, respectively. For two column vectors v1 ∈ Rm and v2 ∈ Rn, we write (v1, v2) = [vT1 , v
T
2 ]

T
∈ Rm+n.

We assume familiarity with basic notions of differential geometry such as smooth embedded submanifolds, involutive
distributions and refer the reader e.g. to the book [25] for the formal definitions of such notions.

We now recall some basic notions and results from the geometric analysis of the existence and uniqueness of
C1-solutions for nonlinear DAEs (see e.g., [1,17,26–29]).

Definition 2.1 (Invariant and Locally Invariant Submanifold). For a DAE Ξl,n = (E, F ), a smooth connected embedded
submanifold M is called invariant if for any x0 ∈ M , there exists a C1-solution x : I → X such that x(t0) = x0 for
ome t0 ∈ I and x(t) ∈ M , ∀ t ∈ I. Fix a point xp ∈ X , a smooth embedded submanifold M containing xp is called locally
nvariant if there exists a neighborhood Uxp of xp such that M ∩ Uxp is invariant.

A locally invariant submanifold M∗, around a point xp, is called locally maximal, if there exists a neighborhood U of xp
such that for any other locally invariant submanifold M , we have M ∩ U ⊆ M∗

∩ U . The following procedure is called the
eometric reduction method [17,27,28], which is used to construct the locally maximal invariant submanifold M∗ around
consistent point xp = xc (see item (i) of Proposition 2.3).

Definition 2.2 (Geometric Reduction Method). Consider a DAE Ξl,n and fix a point xp ∈ X . Let U0 be a connected subset
of X containing xp. Step 0: Mc

0 = U0. Step k: Suppose that a sequence of smooth connected embedded submanifolds
Mc

k−1 ⊊ · · · ⊊ Mc
0 of Uk−1 for a certain k − 1, have been constructed. Define recursively

Mk :=
{
x ∈ Mc

k−1 | F (x) ∈ E(x)TxMc
k−1

}
. (4)

As long as xp ∈ Mk let Mc
k = Mk ∩ Uk be a smooth embedded connected submanifold for some neighborhood Uk ⊆ Uk−1.

Proposition 2.3 ([28,30]). In the above geometric reduction method, there always exists a smallest k such that either xp /∈ Mk
or Mc

k+1 = Mc
k in Uk+1. In the latter case, denote k∗

= k and M∗
= Mc

k∗+1 and assume that there exists an open neighborhood
U∗

⊆ Uk∗+1 of xp such that dim E(x)TxM∗
= const. for x ∈ M∗

∩ U∗, then

(i) xp is a consistent point, i.e., xp = xc , and M∗ is a locally maximal invariant submanifold around xp;
(ii) M∗ coincides locally with the consistency space Sc , i.e., M∗

∩ U∗
= Sc ∩ U∗.

Notice that by item (ii) of Proposition 2.3, the consistency space Sc locally coincides with M∗ on the neighborhood
U∗ of xp. So any point x−

0 ∈ U∗
\M∗ is not consistent and there exist no C1-solutions starting from x−

0 . The uniqueness of
C1-solutions is characterized via the following notion of local internal regularity. We call a C1-solution x : I → (U ⊆)X
maximal (in U) if there is no other solution x̃ : Ĩ → (U ⊆)X with I ⊊ Ĩ and x(t) = x̃(t) for all t ∈ I.

Definition 2.4 (Local Internal Regularity). Consider a DAE Ξ and let M∗ be the locally maximal invariant submanifold
around a consistent point xc ∈ M∗. Then Ξ is called locally internally regular (around xc) if there exists neighborhood
U ⊆ X of xc such that for any t0 ∈ R and any point x0 ∈ M∗

∩ U , there exists only one maximal solution x : I → U with
t0 ∈ I and x(t0) = x0.

Proposition 2.5 ([1,28]). Given a DAE Ξ and its locally maximal invariant submanifold M∗ around a consistent point xc ∈ X,
suppose that there exists an open neighborhood U of xc such that dim E(x)TxM∗

= const. for x ∈ M∗
∩ U. Then Ξ is locally

internally regular around xc if and only if

dim E(x)TxM∗
= dimM∗, ∀x ∈ M∗

∩ U . (5)

Two linear DAEs ∆ = (E,H) and ∆̃ = (Ẽ, H̃) are called strictly equivalent or externally equivalent (see [31]) if there
exist invertible matrices Q and P such that Ẽ = QEP−1 and H̃ = QHP−1. The same notion can be extended to nonlinear
DAEs.
3
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efinition 2.6 (External Equivalence). Two DAEs Ξl,n = (E, F ) and Ξ̃l,n = (Ẽ, F̃ ) defined on X and X̃ , respectively, are called
externally equivalent, shortly ex-equivalent, if there exist a diffeomorphism ψ : X → X̃ and Q : X → GL(l,R) such that

Ẽ(ψ(x)) = Q (x)E(x)
(
∂ψ(x)
∂x

)−1

and F̃ (ψ(x)) = Q (x)F (x). (6)

Fix a point xp ∈ X , if ψ and Q is defined locally around xp, we will speak about local ex-equivalence.

Remark 2.7. In the above definition of ex-equivalence, Q combines equations but does not change C1-solutions of the
DAE; ψ defines new coordinates and maps C1-solutions to C1-solutions, i.e., a curve x : I → X is a C1-solution of Ξ if
and only if ψ ◦ x is a C1-solution of Ξ̃ .

3. Geometric index-1 nonlinear DAEs

There are various notions of index for nonlinear DAEs, see our recent paper [30] and the references therein. In the
present paper, we will use only the notion of geometric index, which is defined via the sequence of submanifolds
Mc

0 ⊊ · · · ⊊ Mc
k constructed by the geometric reduction method in Section 2.

Definition 3.1 (Geometric Index [28,30]). Consider the sequence Mc
k constructed via Definition 2.2 around some consistent

point xc ∈ Sc , then the (local) geometric index, or shortly, the index, of a DAE Ξ is defined by

νg := min
{
k ≥ 0 | Mc

k+1 = Mc
k

}
.

Clearly, the geometric index νg is the least integer k such that the sequence of submanifolds Mc
k gets stabilized, which

is also the smallest number of steps that has to be performed in order to construct the maximal invariant submanifold
M∗ and to solve the DAE.

Remark 3.2. A regular linear DAE ∆n,n = (E,H) is always ex-equivalent, via two constant invertible matrices Q and P , to
the Weierstrass form (WF)

∆̃ = (QEP−1,QHP−1) :

{
ẋ1 = A1x1,

Nẋ2 = x2,
(7)

where A1 ∈ Rn1×n1 and N is a nilpotent matrix. The index ν of ∆ is defined by the nilpotency of N , i.e., Nν−1
̸= 0 and

Nν = 0 (where ν = 0 means that the x2-variables vanish, see [32]). The geometric index νg is a nonlinear generalization
of the index ν of linear DAEs [30]. Indeed, the index ν of ∆ can be alternatively defined as: ν := min {k ≥ 0 | Vk+1 = Vk},
where the sequence Vk (called the Wong sequence [33]) is a linear counterpart of Mc

k and is given by

V0 = Rn, Vk+1 = H−1EVk, k ≥ 0. (8)

Now for a DAE Ξl,n = (E, F ) and a consistent point xc ∈ X , we introduce the following regularity and constant rank
conditions:

RE) l = n and Ξ is locally internally regular;
CR) there exists a neighborhood U of xc such that Mc

1 = M1 ∩ U and the following ranks are constant: rank E(x) =

const. = r for x ∈ U; dim E(x)TxMc
1 = const . and dimDF2(x) = const . for x ∈ Mc

1 , where F2 := F\Im E := Q2F , where
Q2 : U → R(n−r)×n is full row rank and Q2E = 0.

A linear DAE ∆l,n = (E,H), given by (2), is regular if and only if l = n and ∆ is internally regular (see [31,32]). So condition
(RE) is a nonlinear version of the regularity of linear DAEs. The condition rank E(x) = const. = r (throughout we denote
this rank by r) ensures that there exists Q : U → GL(n,R) such that E1 : U → Rr×n of QE =

[ E1
0

]
is of full row rank r .

The assumption rankDF2(x) = const . guarantees that the zero-level set Mc
1 = {x ∈ U | F2(x) = 0} is a smooth embedded

submanifold (by taking a smaller U , we can always assume Mc
1 is connected) and the condition dim E(x)TxMc

1 = const .
excludes singular/impasses points (see [14]) and helps to view the DAE as a differential equation defined on its maximal
invariant submanifold [1,28].

Proposition 3.3 (Geometric Index-1). Consider a DAE Ξ = (E, F ) and a consistent point xc ∈ Sc . Assume that conditions (RE),
(CR) are satisfied in an open neighborhood U of xc . Then the following statements are equivalent around xc :

(i) The DAE Ξ is of geometric index νg = 1.
(ii) The locally maximal invariant submanifold satisfies M∗

= Mc
1 .

(iii) rank E(x) = dim E(x)TxMc
1 or, equivalently, ker E(x) ∩ TxMc

1 = 0, ∀x ∈ Mc
1 .

(iv) Let Z : U → Rn×(n−r) be any smooth map such that Im Z(x) = ker E(x), ∀x ∈ U. Then A(x) = DF2(x) · Z(x) is invertible
or, equivalently, B(x) =

[
E1(x)

]
is invertible, ∀x ∈ Mc .
DF2(x) 1

4
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(v) There exists an open neighborhood V ⊆ U of xc such that Ξ is locally (on V) ex-equivalent to[
Ir E2(ξ1, ξ2)
0 0

][
ξ̇1
ξ̇2

]
=

[
F∗(ξ1, ξ2)

ξ2

]
, (9)

where M∗
∩ V = {ξ ∈ V | ξ2 = 0}, ξ = (ξ1, ξ2) and ξ1 is a system of coordinates on M∗

∩ V .

The proof is given in Section 6.

Remark 3.4.

(i) By the constant rank assumption (CR), we only need to check whether the item (iii) or (iv) of Proposition 3.3 holds
at the point x = xc (or at any point x0 of Mc

1) in order to conclude that Ξ is of geometric index-1 or not.
(ii) The map F2 = F\Im E in Proposition 3.3(iv) is not uniquely defined. More specifically, we may choose another

invertible map Q̃ : U → GL(n,R) such that Ẽ1 of Q̃ E =

[
Ẽ1
0

]
is of full row rank. Then F̃2 of Q̃ F =

[
F̃1
F̃2

]
is different

from F2, but there always exists Q̄ : U → GL(n − r,R) such that Q̄ F2 = F̃2. Then by F2(x) = 0 on Mc
1 , it is seen that

DF2(x) = D(Q̄ F2(x)) =
∑n−r

i=1 F i
2(x)DQ̄i(x) + Q̄ (x)DF2(x) = Q̄ (x)DF2(x), for all x ∈ Mc

1 , where Q̄i are the columns of Q̄
and F i

2 are the rows of F2. Therefore, item (iv) of Proposition 3.3 still holds even for any other choice of Q̃ since for
all x ∈ Mc

1 , Ã(x) = DF̃2(x) · Z(x) = Q̄ (x)DF2(x) · Z(x) = Q̄ (x)A(x) is invertible if and only if A(x) is invertible.
(iii) For a linear regular DAE ∆n,n = (E,H), consider its index ν and the sequence Vi of (8). Then the following is

equivalent: (i)′ ν = 1; (ii)′ V1 is the largest subspace such that AV1 ⊆ EV1; (iii)′ rank E = dim EV1 or ker E ∩ V1 = 0;
(iv)′ For any invertible matrices Q and P such that QEP−1

=
[
Ir 0
0 0

]
, where r = rank E, we have that A4 of

QAP−1
=

[
A1 A2
A3 A4

]
is invertible; (v)′ ∆ is ex-equivalent to the DAE ξ̇1 = A∗ξ1, 0 = ξ2. Observe that item (iv)′

is also equivalent to rank [E, AZ] = n, where Z is a full column rank matrix such that Im Z = ker E, or to
rank

[
E 0
A E

]
= n + dim ker E. The later two conditions are known (see e.g., [34]) to be characterizations of the

impulse-freeness of linear DAEs.

4. Impulse-free jump solutions of nonlinear DAEs

We introduce the following definition of an impulse-free jump for a nonlinear DAE.

Definition 4.1 (Impulse-free Jump). Consider a DAE Ξ = (E, F ), let Sc be the consistency space of Ξ , fix an inconsistent
initial point x−

0 ∈ X/Sc . An impulse-free jump solution (trajectory), shortly, an IFJ solution, of Ξ starting from x−

0 is a
C1-curve J : [0, a] → X satisfying

J(0) = x−

0 /∈ Sc, J(a) = x+

0 ∈ Sc, ∀τ ∈ [0, a] : E(J(τ ))
dJ(τ )
dτ

= 0. (10)

jump x−

0 → x+

0 associated with an IFJ trajectory J(·) is called an impulse-free jump of Ξ .

It is worth to remark that the parametrization variable τ of the differentiable curve J(τ ) is, in general, not a time variable
unless we connect it with the time-variable t , see Section 4). In Definition 4.1, only the direction of the tangent vector dJ(τ )

dτ
is required to stay in ker E(J(τ )) while there are no other requirements on how fast the trajectory J(τ ) should evolve with
espect to τ (i.e, the magnitude of dJ(τ )

dτ ). Moreover, even if the curve which we want to parameterize is possibly unique
(indicating that there exists a unique impulse-free jump x−

0 → x+

0 ), the IFJ trajectory is always non-unique since there are
infinitely many parameterizations of a curve. Indeed, by defining τ̃ = ϕ(τ ) and J̃(ϕ(τ )) = J(τ ), where ϕ : [0, a] → [0, ã]
s diffeomorphism, we get J(0) = x−

0 , J(ã) = x+

0 and E(J̃(τ̃ )) dJ̃(τ̃ )dτ̃ = E(J(τ )) dτdτ̃
dJ(τ )
dτ =

dτ
dτ̃ E(J(τ ))

dJ(τ )
dτ = 0, ∀τ ∈ [0, ã], which

implies that J̃(τ̃ ) is another IFJ trajectory of Ξ . The upper bound a of the domain of J(τ ) is not fixed since it can always
be scaled by ϕ into any α̃ > 0, including α̃ = +∞.

Remark 4.2. We can regard the notion of IFJ trajectory as a nonlinear generalization of that of jump vector e0 = x+

0 −x−

0 of
linear DAEs. The impulse-free jump rule E ·e0δ0 = 0 of linear DAEs is generalized into Ee0u(τ ) = 0 for some u : [0, a] → R
with

∫ a
0 u(τ )dτ = 1. With other words we can consider the term dJ(τ )

dτ in (10) as a linear control system (see also (15)
below)

dJ(τ )
dτ

= e0u(τ ), ∀τ ∈ [0, a], e0 ∈ ker E, J(0) = x−

0 , J(a) = x+

0 . (11)

In the following example, we will show an important feature i.e., the coordinate-freeness of our jump rule defined by
(10) by comparing it with two existing jump rules: one is

+ − +
x0 − x0 ∈ ker E(x0 ) (12)

5
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T
t
i

Fig. 1. The jumps calculated by (10), (12) and MATLAB decic function, respectively, shown in different coordinates. The red quiver plot illustrates
the direction of ker E(x) and ker Ẽ(z), the blue solid lines with arrows represent the evolution of C1 solutions and the dash-dotted magenta lines
depicts the sets of singular/impasses points.

introduced in [18] and another is given by the MATLAB function decic [21], which calculates consistent initial values for
DAEs via a numerical searching method [20].

Example 4.3. Consider a DAE Ξ2,2 = (E, F ), given by

Ξ :

[
1 3x22 − 1
0 0

][
ẋ1
ẋ2

]
=

[
−x2
x1

]
. (13)

Fix a point xp = (x1p, x2p) = (0, 1), it is clear that M∗
= Mc

1 =

{
x ∈ R2

| x1 = 0, x2 >
√
3
3

}
(note that M∗ should be

connected) and that dim E(x)TxM∗
= 1, ∀x ∈ M∗

∩ U∗, where U∗
=

{
x ∈ R2

| x2 >
√
3
3

}
. By Proposition 2.3, xp = xc is

consistent, andM∗ is the locally maximal invariant submanifold (around xc) and coincides with the consistency space Sc on
U∗. The inconsistent initial point which we consider is x−

0 = (x−

10, x
−

20) = (1, 1) ∈ U∗
\M∗. For an IFJ solution J : [0, a] → X

we make the following choice

dJ(τ )
dτ

=

[
dx1
dτ
dx2
dτ

]
=

[
1 − 3x22

1

]
, J(0) = x−

0 . (14)

he solution of (14) is J(τ ) = (τ + 2 − (τ + 1)3, τ + 1) on the interval [0, a] with a ≈ 0.3247, which is indeed an IFJ
rajectory of Ξ since J(a) = x+

0 ≈ (0, 1.3247) ∈ M∗
∩ U∗ and

[
1−3x22

1

]
∈ ker

[
1 3x22−1
0 0

]
. Hence x−

0 = J(0) → x+

0 = J(a) is an
mpulse-free jump in the sense of Definition 4.1. Secondly, we follow the jump rule x̃+

0 −x−

0 ∈ ker E(x̃+

0 ) of (12) to get three
possible jumps x−

0 → x̃+

0 with either x̃+

0 = (0, 0), x̃+

0 = (0, 1+
√
7/3

2 ) ≈ (0, 1.2638) or x̃+

0 = (0, 1−
√
7/3

2 ) ≈ (0,−0.2638), but
only the second is contained in U∗.

Thirdly, we calculate the consistent initial point for Ξ by MATLAB using decic function, the result is x̄+

0 = (0, 1). We
draw those three different jumps reaching at the consistent points

x+

0 = (0, 1.3247), x̃+

0 = (0, 1.2638), x̄+

0 = (0, 1),

in Fig. 1(a).
Now choose new coordinates z = (z1, z2) = (x1 + x32 − x2, x2), then the DAE Ξ is ex-equivalent (on V = U∗), via the

diffeomorphism ψ(x) = z(x), to Ξ̃ = (Ẽ, F̃ ) given by

Ξ̃ :

[
1 0
0 0

][
ż1
ż2

]
=

[
−z2

z1 − z32 + z2

]
.

Note that the DAE Ξ̃ is a degenerate form of the van der Pol oscillator equation, which was a well-studied case (see
e.g., [13,17,23]) for analyzing discontinue solutions of semi-explicit DAEs. Under the new z-coordinates, the inconsistent
initial point is z−

0 = ψ(x−

0 ) = (1, 1) and all three jump rules agree on the jump from z−

0 to z+

0 ≈ (1, 1.3247). However,
the transformed consistent points are given by, see also Fig. 1(b),

z+

0 = ψ(x+

0 ) = (1, 1.3247), z̃+

0 = ψ(x̃+

0 ) = (0.7547, 1.2638), z̄+

0 = ψ(x̄+

0 ) = (0, 1).

Clearly, z̃+

0 and z̄+

0 do not coincide with the ‘‘correct’’ value z+

0 , which shows that the jump rule from [18] and MATLAB’s
decic jump rule are not invariant under coordinates transformations.
6
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Fig. 2. Semi-global impulse-free jump solutions of the DAE of Example 4.3 in different coordinates. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Remark 4.4.

(i) Recall from Remark 2.7 that the ex-equivalence preserves C1-solutions of DAEs. Now we show that for two ex-
equivalent (via Q and ψ) DAEs Ξ and Ξ̃ , there exists a one-to-one correspondence between any IFJ trajectory of Ξ
and that of Ξ̃ . More specifically, any IFJ trajectory J(τ ) of Ξ is mapped via ψ into an IFJ trajectory J̃(τ ) = ψ(J(τ )) of
Ξ̃ (and vice versa) since by (6) and (10), we have

Q (J(τ ))E(J(τ ))
(
∂ψ

∂x
(J(τ ))

)−1
∂ψ

∂x
(J(τ )) ·

dJ(τ )
dτ

= 0 ⇒ Ẽ(ψ(J(τ )))
dψ(J(τ ))

dτ
= 0.

As a result, the impulse-jump x−

0 → x+

0 is mapped via ψ into z−

0 = ψ(x−

0 ) → z+

0 = ψ(x+

0 ).
(ii) As the jumps defined by the rule (10) are invariant under coordinates transformations, we can choose suitable

new coordinates such that the structure of the DAE is simplified in order to calculate IFJs. The DAE Ξ̃ in the new
z-coordinates of Example 4.3 is easier for the analysis of IFJs since the distribution E = ker E is rectified into
span

{
∂
∂z2

}
such that only z2-variables are allowed to change. Observe in Fig. 1(b) that for any inconsistent initial

point z−

0 = (z−

10, z
−

20) ∈ ψ(U∗) such that z−

10 < −
2
√
3

9 , there does not exist an impulse free jump on ψ(U∗) since we
cannot steer z−

0 into ψ(M∗) on ψ(U∗) without changing z1-variables.
(iii) Note that although the analysis in Example 4.3 are local results as we consider local coordinates transformations

defined on the neighborhood U∗
⊆ R2 only, we show below that those results can be extended to an open and

dense subset of R2. Observe that the two DAE Ξ and Ξ̃ are locally ex-equivalent not only on V1 = U∗, but also
on the other two connected subsets V2 =

{
x ∈ R2

| −

√
3
3 < x2 <

√
3
3

}
and V3 =

{
x ∈ R2

| x2 < −

√
3
3

}
. Observe that

X = R2
=
⋃3

i=1 cl(Vi), by an analysis for the inconsistent initial points on V2 and V3, we get a semi-global result of the
existence of impulse-free jump solutions for almost all points of R2 (except for the singular set

{
x ∈ R2

| x2 = ±

√
3
3

}
).

We draw the results of analysis in Fig. 2, where the shadow area depicts the set of inconsistent initial points which
admits an impulse-free jump. Note that if we allow impulse-free jumps to cross the singular set, then we may find
impulse-free jumps for the inconsistent points in the white area in Fig. 2, e.g., an inconsistent point z−

0 = (1, 0)
on Fig. 2(b) can then jump upwards to z+

0 ≈ (1, 1.3247), nevertheless, we may loss the uniqueness of impulse-free
jumps, e.g., for any point (0, z−

20) with 0 < z−

20 < 1, it may jump upwards to (0, 1) or downwards to (0, 0) or (0,−1)
along z2-axis.

In the following discussions, we will focus on impulse-free jumps in a neighborhood of a consistent point xc to
study their existence and uniqueness. Consider the jump rule (10) in Definition 4.1, the collection of all dJ(τ )

dτ satisfying
E(J(τ )) dJ(τ )dτ = 0 is given by the differential inclusion dJ(τ )

dτ ∈ ker E(J(τ )). Assume that rank E(x) = const. = r , then
dim ker E = const. = n − r , we can choose locally m = n − r independent vector fields g1, . . . , gm such that

span {g1, . . . , gm} = ker E.

By introducing extra variables ui, i = 1, . . . ,m, we parameterize the distribution ker E and thus all solutions of the
differential inclusion dJ(τ )

dτ ∈ ker E(J(τ )) are given by all solutions of the drift-less control system (corresponding to all
controls ui(τ ) ∈ R):

Σ :
dJ(τ )
dτ

=

m∑
gi(J(τ ))ui(τ ), x(0) = x−

0 . (15)

i=1

7
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o the existence of an IFJ solution of Ξ is equivalent to that of an input u(·) such that the solution J(·) of Σ staring from x−

0
an reach a consistent point x+

0 ∈ M∗; such a problem is related to the reachability analysis of nonlinear control systems.

emark 4.5. In practice, we may interpret the u-variables in the control system Σ as some unknown forces steering the
nconsistent initial value x−

0 into the consistency set Sc of the DAE Ξ . The u-variables can be seen as an analog of the
irac impulse δ in the distributional solutions of linear DAEs (compare Remark 4.2). Note that we may solve the linear
DE (11) with u = δ0 in the sense of distribution (generalized function) while it is hard to solve Σδ :

dx
dτ =

∑m
i=1 gi(x)δ,

hich is a nonlinear ODE with distributions (generalized function) in coefficients (see some discussions on its solutions
n Chapter 3 of [35]), or a control system with impulsive/measure inputs (see e.g. [36,37]).

In order to prove the existence and uniqueness of an impulse-free jump, let us first recall some notions as integral
anifolds, involutivity, invariant distributions from differential geometry and the reachability analysis in nonlinear control

heory (see e.g. Chapter 2 of [38] and Chapter 1 of [39]). A distribution D is said to be invariant under a vector field f if the
ie brackets [f , g] ∈ D, ∀g ∈ D. For a DAE Ξ = (E, F ), fix a consistent point xc ∈ X , let E = ker E = span {g1, . . . , gm} and
denote by ⟨g1, . . . , gm|E⟩ the smallest invariant distribution under g1, . . . gm which contains E = ker E. Then we introduce
the following assumption:

DS) there exists a neighborhood U of xc such that the distribution D := ⟨g1, . . . , gm|E⟩ is nonsingular, i.e., dimD(x) =

const. = k ≥ m for all x ∈ U .

Note that if (DS) is satisfied, then the distribution D is involutive (see Lemma 1.8.5 of [39]) and by Frobenius theorem, for
any point x−

0 ∈ U , we can find a neighborhood V ⊆ U of x−

0 and a coordinate transformation z = Φ(x) = (φ1(x), . . . , φn(x))
such that span {dφ1, . . . , dφn−k} = D⊥, where D⊥ denotes the co-distribution annihilating D. The integral submanifold of
the distribution D passing through x−

0 is given by

Nx−0
=
{
x ∈ V | φ1(x) = φ1(x−

0 ), . . . , φn−k(x) = φn−k(x−

0 )
}
.

Note that Nx−0
⊆ V coincides with the local reachable space RV (x−

0 ) of Σ from x−

0 (see Propositions 3.12 and 3.15 of [38]).
Now we are ready to present our results of the existence and uniqueness of local impulse-free jumps in a neighborhood
V of a consistent point xc ∈ X for index-1 nonlinear DAEs.

Theorem 4.6. Consider a DAE Ξ = (E, F ) and a consistent point xc ∈ X. Assume that conditions (RE), (CR), (DS) are satisfied
in a neighborhood U of xc . Suppose that Ξ is index-1, implying (by Proposition 3.3) that M∗

= Mc
1 ⊊ U is a locally maximal

invariant submanifold around xc . Then for any point x−

0 ∈ V\M∗ satisfying Nx−0
∩ M∗

̸= ∅ in a neighborhood V ⊆ U of xc ,
there exists an IFJ solution J(τ ) of Ξ with

J(0) = x−

0 and J(a) = x+

0 ∈ M∗
∩ Nx−0

,

where Nx−0
⊆ V is the integral submanifold of the distribution D = ⟨g1, . . . , gm| ker E⟩. Moreover, the following statements are

equivalent around xc :

(i) The impulse-free jump x−

0 → x+

0 is unique.
(ii) The distribution E = ker E is involutive.
(iii) Ξ is locally on V ex-equivalent to the following index-1 nonlinear Weierstrass form

(INWF) :

[
Ir 0
0 0

][
ξ̇1
ξ̇2

]
=

[
F∗(ξ1)
ξ2

]
, (16)

where M∗
∩ V = {ξ ∈ V | ξ2 = 0}, ξ = (ξ1, ξ2) and ξ1 is a system of coordinates on M∗

∩ V .

The proof is given in Section 6. Note that for DAE Ξ in Theorem 4.6, the reachability condition Nx−0
∩ M∗

̸= ∅ is
necessary for the existence of the impulse-free jumps, we will discuss it in details in the following remark.

Remark 4.7.

(i) For a linear index-1 regular DAE ∆ = (E,H), the submanifold M∗ is the flat manifold passing through x = 0 with
its tangent space being V ∗ (i.e., the limit of Wong sequence Vi, see (8)) and Nx−0

is the flat manifold passing through
x−

0 with its tangent space being ker E. Note that we always have V ∗
⊕ ker E = Rn as ∆ is index-1 and regular. Thus

the intersection Nx−0
∩ M∗ is non-empty and dim(V ∗

∩ ker E) = dim(Nx−0
∩ M∗) = 0 proves that Nx−0

∩ M∗ is a point.
Moreover, the subspace ker E of ∆ is clearly involutive and ∆ is always ex-equivalent to the index-1 (WF) on Rn.

(ii) The set Nx−0
∩M∗ could be empty in the nonlinear case due to the existence of singular points, e.g., any inconsistent

initial point x−

0 in the white area of Fig. 2 cannot reach/jump impulse-freely to the blue line M∗
= Sc (unless it

is allowed to cross the singular points) because on each Vi, i = 1, 2, 3, the local reachable set Nx−0
⊆ Vi has no

intersections with Sc . So the set of points from which there exists an impulse-free jump is a subset of Vi (e.g., the

shadow area in Fig. 2), which we will call the local admissible impulse-free jump set in Vi.

8
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(iii) For a DAE Ξ , being index-1 is not a necessary condition for the existence of impulse-free jumps. Take the following
DAE for example: Ξ :

[
0 x 1
0 0 0
0 0 0

] [ ẋ
ẏ
ż

]
=

[
y
x
z

]
, which is of geometric index-2 since M∗

= Mc
2 = {x = y = z = 0}. The

corresponding IFJ control system is

[ dx
dτ
dy
dτ
dz
dτ

]
=

[
1 0
0 1
0 −x

]
u, which for any (x−

0 , y
−

0 , z
−

0 ) /∈ M∗ with x−

0 ̸= 0 is controllable to

(x+

0 , y
+

0 , z
+

0 ) = (0, 0, 0), i.e. there exists a > 0 and an input u(·) such that the solution J(τ ) = (x(τ ), y(τ ), z(τ )) satisfies
J(0) = (x−

0 , y
−

0 , z
−

0 ) and (x(a), y(a), z(a)) = (0, 0, 0). Clearly, J(·) is an IFJ trajectory of Ξ and (x−

0 , y
−

0 , z
−

0 ) → (0, 0, 0)
is an impulse-free jump.

For a linear regular DAE ∆n,n = (E,H), its consistency projector [18,22] is defined by

ΠE,H := P−1
[
In1 0
0 0

]
P,

where the dimension n1 and the matrix P come from the (WF) of ∆, given by (7). We now generalize the above notion
f consistency projector to nonlinear DAEs with the help of the (INWF), given by (16).

efinition 4.8 (Nonlinear Consistency Projector). Consider a DAE Ξl,n = (E, F ) and a consistent point xc ∈ X . Assume that
here exists a neighborhood V of xc such thatΞ is locally (on V ) ex-equivalent to the (INWF) of (16) via a Q -transformation
and a local diffeomorphism ψ . The nonlinear (local) consistency projector ΩE,F : V\M∗

→ V ∩M∗ of Ξ is then defined by

ΩE,F := ψ−1
◦ π ◦ ψ,

where π : Rn
→ Rn is the canonical projection (ξ1, ξ2) ↦→ (ξ1, 0).

For a linear DAE ∆, any inconsistent initial value x−

0 of ∆ jumps to x+

0 = Πx−

0 and the jump x−

0 → x+

0 is impulse-free,
i.e., e0 = x+

0 − x−

0 , if and only if E(I − Π ) = 0 (compare Theorem 3.8 of [18]), which actually is equivalent to that ∆ is
index-1. For a nonlinear DAE, in order that the existence and uniqueness of impulse-free jumps are satisfied, we need
both that Ξ is index-1 and that ker E is involutive, as seen from the following corollary.

Corollary 4.9. Consider a DAE Ξ = (E, F ) and a consistent point xc ∈ X. Assume that the conditions (RE) and (CR) are satisfied
in an open neighborhood U of xc . Then there exists a neighborhood V ⊆ U of xc such that for any inconsistent initial point
x−

0 ∈ V/M∗ satisfying Nx−0
∩ M∗

̸= ∅, there exists a unique impulse-free jump x−

0 → x+

0 if and only if Ξ is index-1 and
E = ker E is involutive. Let ΩE,F be the consistency projector of Ξ defined on V , the unique impulse-free jump is given by

x−

0 → x+

0 = ΩE,F (x−

0 ) ∈ M∗
∩ Nx−0

.

Proof. ‘‘Only if.’’ Suppose that x−

0 → x+

0 is unique, that is, Nx−0
∩ M∗ is a unique point x+

0 on M∗. It follows that
dim(M∗

∩ Nx−0
) = 0, which implies that

Tx+0 M
∗
∩ Tx+0 Nx−0

= Tx+0 M
∗
∩ ker E(x+

0 ) = 0. (17)

hus we have that Ξ is index-1 by Proposition 3.3. Hence by Theorem 4.6, the impulse-free jump is unique implies that
= ker E is involutive.
‘‘If.’’ Suppose that the distribution E = ker E is involutive, then the condition rank E(x) = const . of (CR) implies

that D = ⟨g1, . . . , gm|E⟩ = E = ker E is nonsingular (i.e., (DS) holds). Suppose additionally that Ξ is index-1, then
by Theorem 4.6, Ξ is ex-equivalent to the (INWF), given by (16), and there exists a unique impulse-free jump

x−

0 = ψ−1(ξ−

0 ) → x+

0 = ψ−1(ξ+

0 ) ∈ M∗
∩ Nx−0

,

where ξ+

0 = π (ξ−

0 ) since for the (INWF), only ξ2-variables are allowed to jump. It follows that x+

0 = ψ−1
◦ π ◦ ψ(x−

0 ) =

Ω(x−

0 ). □

Remark 4.10. A similar definition of nonlinear consistency projector can be found in [40], where index-1 DAEs are studied
and it is assumed that they are global equivalent (actually ex-equivalent using Definition 2.6) to a semi-explicit form.
Such an assumption is equivalent to the involutivity assumption of ker E (see Theorem 3.13 of [28]) when the singular
points are not considered. But it can be seen from Remarks 4.4(iii) and 4.7(iii) above, those singular points actually play
important roles for the existence of impulse-free jumps. Note that under an additional Q -transformation, we can always
transform the semi-explicit form in [40] into our (INWF). Moreover, we have shown a way of constructing the (Q , ψ)-
transformations to obtain the (INWF) and to define the nonlinear consistency projector in the proof of Theorem 4.6, those
results are not discussed in [40].

Example 4.11. We reconsider the DAE Ξ , given by (13), of Example 4.3. It is clear that Ξ is of index-1 and that the
−
istribution E = ker E = is involutive. We have that Ξ with the initial point x0 = (1, 1) is locally ex-equivalent to its

9
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NWF represented by[
1 0
0 0

][
ξ̇1
ξ̇2

]
=

[
−f (ξ1, 0)

ξ2

]
, ξ−

0 = ψ(x−

0 ) = (1, 1), (18)

n V = U∗
=

{
x ∈ R2

| x1 = 0, x2 >
√
3
3

}
, via ψ = ξ = (ξ1, ξ2) = (x1 + x32 − x2, x1) and Q =

[
1 f ′
0 1

]
, where

f (ξ ) = f (ξ1, 0) + f ′(ξ )ξ2 and

f =
1
3

(
a +

√
a2 −

1
27

)−
1
3

+

(
a +

√
a2 −

1
27

) 1
3

, a(ξ1, ξ2) =
ξ1 − ξ2

2
.

hus the nonlinear (local) consistency projector of Ξ is

Ω = ψ−1
◦ π ◦ ψ =

[
0

f (x1 + x22 − x2, 0)

]
.

ence x+

0 = Ω(x−

0 ) ≈ (0, 1.3247), which agrees with the result of Example 4.3.

. A singular perturbed system approximation of nonlinear DAEs

Singular perturbation theory was frequently used (see e.g., [7,13,17,23]) to approximate DAEs of the semi-explicit
orm (3), the main idea is to regularize a DAE Ξ SE of the form (3) by replacing the algebraic constraint 0 = f2(x1, x2) with
εẋ2 = f2(x1, x2), where ε represents some ignored small modeling parameters (e.g., the small inductance of an inductor,
see the electric circuits on page 367 of [17]). Then by rescaling time t to τ such that dτ

dt =
1
ε
, we get a perturbed system

n the time-scale τ as shown on the right-hand side of the following equations:

Ξ SE
ε :

{
ẋ1 = f1(x1, x2),
εẋ2 = f2(x1, x2).

ε= dt
dτ

⇔

⎧⎪⎨⎪⎩
dx1
dτ

= εf1(x1, x2),

dx2
dτ

= f2(x1, x2).

Note that additionally to the requirement that f1, f2 are sufficiently smooth, there are, in general, two assumptions in
the above approximation method of DAEs: (a) there exists a unique solution (x1(t), x2(t)) of Ξ SE on the finite interval
[a, b] starting from a consistent initial point (x+

10, x
+

20); (b) the Jacobian matrix ∂ f2
∂x2

(x1(t), x2(t)) has all its eigenvalues λ(t)
satisfying Re λ(t) ≤ 0 for all t ∈ [a, b]. Assumption (a) means that the DAE Ξ SE is internally regular, and assumption (b)
implies that Ξ SE is (locally) index-1 and the origin is asymptotically stable equilibrium point of the so-called boundary
layer model dy

dτ = f2(x1(t), y+ h(x1(t))), where x2 = h(x1) is the unique solution of 0 = f2(x1, x2). Then under assumptions
(a),(b), the well-known Tihkonov’s theorem (see e.g., [23] and its infinite time interval extension in [41]) for sufficient
small ε > 0 and for any (x−

10, x
−

20) satisfying x−

10 = x+

10 and y−

0 = x−

20 −h(x+

10) contained in a compact subset of the region of
attraction of the boundary layer model, there exists a solution (x̄1(t, ε), x̄2(t, ε)) of Ξ SE

ε starting from (x−

10, x
−

20) such that

lim
ε→0

∥x1(t) − x̄1(t, ε)∥ = 0, and lim
ε→0

∥x2(t) − x̄2(t, ε)∥ = 0,

for all a < c ≤ t ≤ b. In this section, we will propose a singular perturbed system approximation for index-1 nonlinear
DAEs Ξ with the help of the results in Proposition 3.3 and Theorem 4.6.

Definition 5.1 (Singular Perturbed System). Consider a DAE Ξl,n = (E, F ) and fix a consistent point xc . Assume that there
exists a neighborhood V of xc such that Ξ is locally (on V ) ex-equivalent to the DAE (9) (or in particular, the (INWF) of
(16)) via a Q -transformation and a local diffeomorphism ψ . Define the following singular perturbed system on V :

Ξε : ẋ = E−1
W (x, ε)F (x) with EW (x, ε) = E(x) + Q−1(x)

[
0 0
0 εW−1

]
∂ψ(x)
∂x

, (19)

here W ∈ Rm×m a Hurwitz matrix. Then by rescaling time t to τ , where dτ
dt =

1
ε
, we define

Σε :
dx
dτ

= f (x, ε), (20)

where f (x, ε) = εE−1
W (x, ε)F (x) =

(
∂ψ(x)
∂x

)−1 [
εF∗

◦ξ1◦ψ(x)−E2◦ψ ·W ·ξ2◦ψ(x)
Wξ2◦ψ(x)

]
.

emark 5.2. Any linear index-1 regular DAE ∆ = (E,H) of the form (2) is always ex-equivalent, via two constant matrices
Q and P , to the (WF) of (7) with N = 0, i.e., QEP−1

=

[
In1 0
0 0

]
and QHP−1

=

[
A1 0
0 In2

]
. Applying the construction of (19) to

∆ and setting W = −In2 , we get the following singular perturbed system:

∆ε : ẋ = E−1(ε)Hx = P−1
[ In1 0

1

]
QHx = P−1

[
A1 0

1

]
Px,
0 − ε In2 0 − ε In2

10
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Fig. 3. An electric circuit with nonlinear resistor and controlled current source.

where E(ε) = Q−1
[

In1 0
0 −εIn2

]
P . Note that the above perturbed linear system ∆ε is proposed in Section 4 of [42] as an

ODE approximation of a linear DAE ∆.

The following theorem shows that the solution x̄(t) of the proposed perturbed system Ξε , given by (19), coincides with
the C1-solution x(t) of Ξ when staring from a consistent point x+

0 and that the solution x̄W (τ , ε) of Σε in the rescaled
time τ , given by (20), converges to an impulse-free jump trajectory JW (τ ) of Ξ when staring from an inconsistent point
x−

0 .

Theorem 5.3. Consider a DAE Ξ = (E, F ) and the singular perturbed systems (19) and (20) constructed in Definition 5.1.
ssume that

(SP) for a certain compact subset V ⊆ V and any inconsistent initial point x−

0 ∈ V\M∗, the system Σε , given by (20), has a
unique solution JW : [0,+∞) → V for ε = 0 and a unique solution x̄W (·, ε) : [0,+∞) → V for all 0 < ε ≤ ε∗ with
ε∗

∈ R+ sufficiently small.

Then we have

lim
ε→0

∥x̄W (τ , ε) − JW (τ )∥ = 0, ∀τ ∈ [0,+∞). (21)

Suppose additionally that JW (+∞) := limτ→∞ JW (τ ) is well defined, then JW (τ ) is an IFJ solution of Ξ and x+

0 := JW (+∞)
is consistent and in general depends on the choice of the Hurwitz matrix W. However, if Ξ is locally (on V) ex-equivalent to
the (INWF) of (16), then the consistent point x+

0 = JW (+∞) is independent of the choice of W (actually x+

0 = ΩE,F (x−

0 ) by
Corollary 4.9).

Furthermore, the solution x̄(t) : I → M∗ of the perturbed system Ξε , given by (19), starting from any consistent initial
point on M∗ coincides with the C1-solution x(t) of Ξ , which does not depend on ε and W.

The proof is given is Section 6.

Remark 5.4. (i) Assumption (SP) is not only an existence and uniqueness condition for the solutions JW (τ ) and x̄w(τ ) on
the interval [0,∞), but also a stability assumption since we require the solutions lie entirely in the compact set V. Indeed,
if the solutions are not stable, they will leave any compact set in finite time. Note that in classical singular perturbation
theory with infinite time interval, one can find similar stability assumptions (see assumptions (VI) and (VII) in [41]) to
guarantee the convergence of the difference of solutions. Actually, assumption (SP) automatically holds if there exists an
asymptotically stable equilibrium x+

0 ∈ M∗
∩ Nx−0

for Σ0, i.e., (20) with ε = 0, which can be proved by constructing a
Lyapunov function V (x) for Σ0 and show that ∂V (x)

∂x f (x, ε) < 0 for sufficient small ε (cf. the proof in [41]).
(ii) A simple choice of the Hurwitz matrix W is W = diag {−w1, . . . ,−wm} with wi ∈ R+. The parameters wi are

eight coefficients indicating the rate of convergence of J(τ ) → x+

0 as τ → ∞. As seen from (31) below, the solution of
he ξ i2-subsystem from ξ i−20 is ξ i2(τ ) = e−wiτ ξ i−20 , so wi is the rate of convergence for ξ i2(τ ) → 0. Recall that an IFJ solution
f Ξ can be seen as a solution of a control system dJ(τ )

dτ =
∑m

i=1 gi(J(τ ))ui(τ ) = g(J(τ ))u(τ ) (see (15)), thus the choice of wi

an be regarded as some particular choices of the inputs ui, e.g., we have that g =
[ E2
Im

]
and u(τ ) = Wξ2(τ ) for (31), so u(τ )

s a particular feedback which stabilizes the ξ2-subsystem. As a consequence, the solutions x̄W (τ , ε) corresponding to all
-matrices may not approximate all the possible impulse-free jumps, meaning that the set of all x+

0 = limε→0 x̄W (+∞, ε)
orresponding to all W -matrices is a subset of M∗

∩Nx−0
, the latter is the set of all points which can be jumped into from

−

0 , see Theorem 4.6.

xample 5.5. Inspired by the simple circuit discussed in [13,14,17], consider the electrical circuit shown in Fig. 3, which
onsists of a capacitor C and a nonlinear resistor N . A controlled current source S is additionally connected in parallel
ith N in order to generate nonlinear terms in E(x) of the DAE model. Note that controlled current sources have been
sed in [43] for electric circuits analog of mechanical systems under non-holonomic constraints.
11
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Fig. 4. The solutions η̄W (t, ε) of Ξε with different parameters and the solution η(t) of Ξ .

The relation between the current iN = x and the voltage vn = y of the nonlinear resistor N is characterized by the
ollowing algebraic equation

0 = a(x, y),

nd the current iS of S is equal to b(x, y)ẏ, where a : R2
→ R and b : R2

→ R are smooth maps . Using Kirchoff’s law, we
odel the circuit as a DAE Ξ3,3 = (E, F ):[ 0 −b(x,y) C

0 0 0
0 0 0

] [ ẋ
ẏ
ż

]
=

[ x
y+z
a(x,y)

]
.

et η = (x, y, z) and ηc = (0, 0, 0), we consider two different cases, for which the distribution E = ker E is involutive in
ase 1 but is not in Case 2.
Case 1: Consider a(x, y) = x − y2 − 2y, b(x, y) = y, C = 1, conditions (RE), (CR) are satisfied on U = {η ∈ R3

| y < 1}
note that dim E(η)TηMc

1 = 0 for y = 1). The locally maximal invariant submanifold M∗ (around ηc) is

M∗
= Mc

1 =
{
η ∈ U | y + z = x − y2 − 2y = 0

}
.

ince E = ker E = span{
∂
∂x , y

∂
∂z +

∂
∂y } is involutive and Ξ is of index-1, the DAE Ξ is locally (on V = U) ex-equivalent to

the following DAE represented in (INWF):[
1 0 0
0 0 0
0 0 0

] [ ˙̃z
˙̃y
˙̃x

]
=

[
−2z̃
ỹ
x̃

]
. (22)

via

Q =

[
1 −2 −1
0 1 0
0 0 1

]
and ψ = η̃ = (z̃, ỹ, x̃) = (−

1
2
y2 + z, y + z, x − y2 − 2y).

ollowing (19) of Definition 5.1, we construct a singular perturbed system Ξε (we choose W =

[
−w1 0
0 −w2

]
):

Q−1

[
1 0 0
0 −

ε
w1

0

0 0 −
ε
w2

]
∂ψ

∂η

[ ẋ
ẏ
ż

]
=

[ x
y+z

x−y2−2y

]
⇒ Ξε :

[ ẋ
ẏ
ż

]
=

[
f1(η,ε,w1,w2)
f2(η,ε,w1,w2)
f3(η,ε,w1,w2)

]
,

where f1 = −
−w2x+w2y(2+y)−2ε(y2−2z)−2w1(y+z)

ε
, f2 = −

w1y+εy2−2εz+w1z
ε+εy , f3 =

ε(y2−2z)−w1y(y+z)
ε(1+y) . Consider an inconsistent initial

point η−

0 = (0, 0, 0.1) ∈ V\M∗, by Corollary 4.9, we get

η+

0 = ΩE,F (η−

0 ) = ψ−1
◦ π ◦ ψ(η−

0 ) = (−0.2,−0.1056, 0.1056),

which defines the unique impulse-free jump η−

0 → η+

0 of Ξ . Now we use MATLAB ode45 solver to simulate the solutions
η̄W (t, ε) of the perturbed system Ξε for different ε, w1 and w2. First, we fix w1 = 1 and w2 = 1, and change ε from 0.1
to 0.05 and 0.005; as seen from Fig. 4(a), the solution η̄W (t, ε) of Ξε approaches the impulse-free jump η−

0 → η+

0 of Ξ
closer as the perturbation parameter ε gets smaller, which agrees with the result (21) of Theorem 5.3. Then we fix w2 = 1
and ε = 0.001, and change w1 from 0.1 to 1 and 10; it is seen from Fig. 4(b) that η̄W (t, ε) approaches the same jump

−

0 → η+

0 independently from the choice of w1, which also agrees with the results of Theorem 5.3. Note that η̄W (t, ε)
oincides with the C1-solution η(t) of Ξ on M∗, which converges to (0, 0, 0) indicating that the origin is an asymptotically
stable point for C1-solutions of Ξ .

Case 2: Consider a(x, y) = x − y3, b(x, y) = x, C = 1, then conditions (RE), (CR), (DS) are satisfied on U = {η ∈ R3
|

x > −1}. The locally maximal invariant submanifold M∗ (around ηc) is

M∗
= Mc

=
{
η ∈ U | y + z = x − y3 = 0

}
.
1

12
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Fig. 5. Trajectories ηW (t, ε) of the perturbed system Ξε with different values of parameters.

The distribution E = ker E is not involutive but the DAE Ξ is index-1. By Proposition 3.3, Ξ is locally (on V = U)
ex-equivalent to the following DAE of the form (9):[

1 −
x

1+x 0
0 0 0
0 0 0

][
˙̃z
˙̃y
˙̃x

]
=

[ x
1+x
ỹ
x̃

]
, (23)

here x = x̃ + ỹ(ỹ2 − 3ỹz̃ + 3z̃2). Then we construct the singular perturbed system Ξε by Definition 5.1 (we choose
=

[
−w1 0
0 −w2

]
) to get

Ξε :

[ ẋ
ẏ
ż

]
=

[
f1(η,ε,w1,w2)
f2(η,ε,w1,w2)
f3(η,ε,w1,w2)

]
,

here f1 =
w2(−x2+(x+1)(y3−1))−3y2(εx+w1(y+z))

ε(1+x) , f2 = −
w1y+εx+w1z

ε(1+x) , f3 =
x(ε−w1(y+z))

ε(1+x) . Consider an inconsistent initial point
−

0 = (0.5, 0, 0.5) ∈ V\M∗, by Theorem 4.6, the impulse-free jump η−

0 → η+

0 is not unique and η+

0 ∈ M∗
∩ Nη−

0
, where

Nη−

0
is the integral submanifold of the distribution D = ⟨g1, . . . , gm|E⟩. In this example, E = ker E = span {g1, . . . , gm},

where g1 =
∂
∂x , g2 =

∂
∂y + x ∂

∂z and thus

D = span {g1, g2, [g1, g2]} = TηU,

t follows that Nη−

0
= U and that η+

0 ∈ M∗
∩ Nη−

0
can be any point on M∗. Then we implement a similar simulation for

the solution η̄W (t, ε) of Ξε as in Case 1 to get Fig. 5. Fig. 5(a) contains similar messages as Fig. 4(a): the solution η̄W (t, τ )
approaches closer to an impulse-free jump of Ξ as ε → 0. Nevertheless, as seen Fig. 5(b), the impulse-free jump η−

0 → η+

0
approximated by η̄W (t, ε) is not unique and depends on w1 (and thus on W ), which verifies the results of Theorem 5.3 for
DAEs with non-involutive ker E. Observe that the ex-equivalent DAE (23) restricted to ψ(M∗) =

{
η̃ | x̃ = ỹ = 0

}
is ˙̃z = 0,

o the C1-solution of Ξ is the initial consistent point η(t) = η(0) = η+

0 . Hence the solution η̄W (t, τ ) of the perturbed
system Ξε on M∗ will become a fixed point as ε → 0.

6. Proofs of the results

Proof of Proposition 3.3. Note that our DAE Ξ is square by l = n of (RE). Following (4), we have (notice that E1(x) is of
full row rank r)

Mc
1 = M1 ∩ U := {x ∈ U | QF (x) ∈ ImQE(x)} =

{
x ∈ U

⏐⏐⏐[ F1(x)
F2(x)

]
∈ Im

[ E1(x)
0

]}
= {x ∈ U | F2(x) = 0} .

(24)

(i) ⇒ (ii): It is a direct consequence of Definition 3.1 and Proposition 2.3.
(ii) ⇔ (iii): Suppose that M∗

= Mc
1 is locally maximal invariant. Since Ξ is locally internally regular (condition (RE)),

we have that dim E(x)TxMc
1 = dimMc

1 , ∀x ∈ Mc
1 by (5). Observe that F2 : U → Rn−r and rankDF2(x) = const. ≤ n − r ,

∀x ∈ Mc
1 . It follows that dimMc

1 = n−rankDF2 ≥ n− (n− r) = r = rank E(x). We conclude that rank E(x) = dim E(x)TxMc
1 ,

∀x ∈ Mc
1 by

rank E(x) = r ≤ dimMc
1 = dim E(x)TxMc

1 ≤ rank E(x), ∀x ∈ Mc
1 . (25)

Conversely, suppose that rank E(x) = dim E(x)TxMc
1 , ∀x ∈ Mc

1 , which implies that dim E1(x)TxMc
1 = rank E1(x), where E1

omes from (24). It follows that F1(x) ∈ E1(x)TxMc
1 , ∀x ∈ Mc

1 . Observe that F2(x) = 0, ∀x ∈ Mc
1 , thus

Mc
= M ∩ U =

{
x ∈ Mc

⏐⏐⏐ [ F1(x)
]

∈
[ E1(x)

]
T Mc

}
= Mc .
2 2 1 F2(x) 0 x 1 1

13
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hen we conclude that M∗
= Mc

1 is a locally maximal invariant submanifold by Proposition 2.3. Notice that the inequality
imMc

1 = dim TxMc
1 ≥ rank E(x) always holds for x ∈ Mc

1 (since rankDF2(x) ≤ n − r), hence ker E(x) ∩ TxMc
1 = 0 if and

only if rank E(x) = dim E(x)TxMc
1 .

(iii) ⇒ (iv): Suppose that item (iii) holds. The equivalence of (ii) and (iii) implies that dimMc
1 = rank E(x) = r , ∀x ∈ Mc

1 .
Thus rankDF2(x) = n − dimMc

1 = n − r , i.e., DF2(x) is of full row rank for all x ∈ Mc
1 . Now by ker DF2(x) = TxMc

1

and ker E(x) ∩ TxMc
1 = 0, ∀x ∈ Mc

1 , it follows that rankDF2(x)Z(x) = rankDF2(x) = n − r and rank
[

E1(x)
DF2(x)

]
=

rank E1(x) + rankDF2(x) = n, ∀x ∈ Mc
1 . Hence DF2(x)Z(x) and

[
E1(x)
DF2(x)

]
are invertible for all x ∈ Mc

1 .

(iv) ⇒ (v): Suppose that the matrix A(x) = DF2(x)Z(x) or B(x) =

[
E1(x)
DF2(x)

]
is invertible for all x ∈ Mc

1 . It follows that
DF2(x) is of full row rank, i.e., rankDF2(x) = n− r = m, ∀x ∈ U . Let ξ2 = F2, then there exist a neighborhood U1 ⊆ U of xc
and a smooth map ξ1 : U1 → Rr such that ψ(x) = (ξ1(x), ξ2(x)) is a local diffeomorphism on U1. Thus Ξ is ex-equivalent
(via Q and ψ) to

Q (x)E(x)
(
∂ψ(x)
∂x

)−1
∂ψ(x)
∂x

ẋ = Q (x)F (x) ⇔

[
E1
1 (ξ ) E2

1 (ξ )
0 0

][
ξ̇1
ξ̇2

]
=

[
F̃1(ξ )
ξ2

]
where E1

1 : U1 → Rr×r , [E1
1 ◦ ψ E2

1 ◦ ψ] = E1 and F̃1 ◦ ψ = F1. Observe that A(x) or B(x) is invertible implies
ker E(xc) ∩ TxcM

c
1 = 0 since ker E(xc) = Im Z(xc) and ker DF2(xc) = TxcM

c
1 . Thus rank E1

1 (ψ(xc)) = dim E(xc)TxcM
c
1 = r ,

.e., E1
1 (ψ(xc)) is invertible. Then by the smoothness of E1

1 , there exists a neighborhood U2 ⊆ U1 such that E1
1 (ψ(x)) is

nvertible ∀x ∈ U2. Define Q1 :=

[
(E11 )

−1 0
0 Im

]
, then via the Q1Q -transformation and the diffeomorphism ξ = (ξ1, ξ2) = ψ(x),

Ξ is locally (on V = U2) ex-equivalent to (9) with E2 = (E1
1 )

−1E2
1 and F∗

= (E1
1 )

−1F̃1.
(v) ⇒ (i): Note that the sequence of submanifolds Mc

k constructed by (4) is invariant under the ex-equivalence, i.e., for
two ex-equivalent DAEs Ξ and Ξ̃ , the submanifolds Mc

k of Ξ and M̃c
k of Ξ̃ satisfies M̃c

k = ψ(Mc
k ). Thus the geometric

index νg , which depends only on the sequence Mc
k , is also invariant under the ex-equivalence. By a direct calculation of

the submanifolds Mc
1 and Mc

2 for (9), it is seen that (9) is index-1. Hence, the DAE Ξ , being ex-equivalent to (9), is also
index-1. □

Proof of Theorem 4.6. As Ξ is of index-1, there exists a neighborhood V ⊆ U of xc such that Ξ is locally ex-equivalent
(via a diffeomorphism ψ and a Q -transformation) to the DAE (9) on V . Note that for any point x−

0 ∈ V\M∗, we have that
ξ−

0 = (ξ−

10, ξ
−

20) = ψ(x−

0 ) satisfies ξ
−

20 ̸= 0 since M∗
∩ V = {ξ ∈ V | ξ2 = 0}. Then consider the following control system

defined on V with a vector of inputs u ∈ C0,[
dξ1
dτ
dξ2
dτ

]
=

m∑
i=1

g̃i(ξ )ui =

[
−E2(ξ )

Im

]
u, ξ (0) = ξ−

0 = (ξ−

10, ξ
−

20), (26)

here span
{
g̃1 ◦ ψ, . . . , g̃m ◦ ψ

}
= ker(Ẽ ◦ ψ) =

∂ψ

∂x ker E. By condition (DS), the k-dimensional distribution D̃ =⟨
g̃1, . . . , g̃m| ker Ẽ

⟩
is involutive, thus there exist φ̃i : V → R, i = 1, . . . , n − k, such that span

{
dφ̃1, . . . , dφ̃n−k

}
= D̃⊥.

Then let ξ̃1 = (φ̃1, . . . , φ̃n−k), it is directly seen from (26) that span {dξ2} ∩ D̃⊥
= 0 and thus dξ̃1 and dξ2 are linearly

independent. By taking a smaller V , if necessary, we can choose new local coordinates ξ̄ = (ξ̃1, ξ̄1, ξ2) on V , where
ξ̄1 = (φ̃n−k+1, . . . , φ̃n−m) is chosen such that Φ̃(ξ ) = (φ̃1(ξ ), . . . , φ̃n−m(ξ ), ξ2) is a local diffeomorphism. Then under the
new local ξ̄ -coordinates, the control system (26) becomes⎡⎢⎢⎣

dξ̃1
dτ
dξ̄1
dτ
dξ2
dτ

⎤⎥⎥⎦ =

⎡⎣ 0
Ē1(ξ̄ )
Im

⎤⎦ u, ξ̄ (0) = Φ̃(ξ−

0 ) = (ξ̃−

10, ξ̄
−

10, ξ
−

20) ∈ V\M∗, (27)

here Ē1 : V → R(k−m)×m. Note that by Propositions 3.12 and 3.15 of [38], system (27) restricted to Nξ̄−

0
={

ξ̄ ∈ V | ξ̃1 = ξ̃−

10

}
is controllable. It follows that for any ξ̄−

0 = (ξ̃−

10, ξ̄
−

10, ξ
−

20) ∈ V\M∗ with Nξ̄−

0
∩M∗

=
{
ξ̄ ∈ V | ξ̃1 = ξ̃−

10,

ξ2 = 0} ̸= ∅, there exist u = u(τ ) and a > 0 such that the C1-solution ξ̄ (τ ) of (27) under the input u = u(τ ) satisfies
ξ̄ (0) = ξ̄−

0 and ξ̄ (a) = ξ̄+

0 = (ξ̃+

10, ξ̄
+

10, ξ
+

20) ∈ M∗
∩Nx−0

, i.e., ξ̃+

10 = ξ̃−

10, ξ
+

20 = 0 and ξ̄+

10 being arbitrary. Then by Definition 4.1,
ξ (τ ) = Φ̃−1(ξ̄ (τ )) is an IFJ trajectory of (9) since ξ (0) = ξ−

0 = Φ̃−1(ξ̄−

0 ) ∈ V\M∗, ξ (a) = ξ+

0 = Φ̃−1(ξ̄+

0 ) ∈ M∗
∩ V and[ I E2(ξ (τ ))

0 0

] dξ (τ )
dτ = 0 for τ ∈ [0, a] (recall that M∗ locally coincides with the consistency space Sc on V by Proposition 2.3).

Since Ξ and (9) are ex-equivalent (via Q and ψ), we conclude that (see Remark 4.4(i)) for any inconsistent initial value
x−

0 = ψ−1(ξ−

0 ) ∈ V/M∗ satisfying M∗
∩ Nx−0

̸= ∅, there exists an IFJ trajectory J(τ ) = ψ−1(ξ (τ )) satisfying that J(0) = x−

0

nd J(a) = x+

0 = ψ−1(ξ+

0 ) = ψ−1
◦ Φ̃−1(ξ̄+

0 ) ∈ Nx−0
∩ M∗.

(i) ⇒ (ii): Suppose that for a fixed x−

0 ∈ V\M∗, the impulse-free jump x−

0 → x+

0 of Ξ is unique. It follows that the
impulse-free jump ξ−

→ ξ+ of (9) is unique and so is the point ξ̄+
= (ξ̃+ , ξ̄+ , ξ− ) = Φ̃(ξ+). Thus ξ̄ -variables is not
0 0 0 10 10 20 0 1

14
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resent in (27) since ξ̃+

10 = ξ̃−

10 and ξ−

20 = 0 are fixed but ξ̄+

10 is arbitrary. Hence, we have dim ker E = m = k = dimD,
hich means that the distribution ker E(x) is involutive.
(ii) ⇒ (iii): Suppose that the distribution ker E(x) is involutive. Choose Q : U → GL(n,R) such that E1 : U → Rr×n

f QE =
[ E1

0

]
is of full row rank r and denote QF =

[
F1
F2

]
. Because Ξ is index-1, we have that

[
E1(xc )
DF2(xc )

]
is invertible

y Proposition 3.3. Since the distribution Ξ = ker E is involutive, by Frobenius theorem (see e.g., [25]), there exist a
eighborhood U1 ⊆ U and a smooth map ξ1 : U1 → Rr such that span

{
dξ 11 , . . . , dξ

r
1

}
= E⊥, where dξ i1 are independent

ows of Dξ1 and E = ker E = ker E1, i.e., Dξ1(x) ker E1(x) = 0, ∀x ∈ U1. It follows that there exists Q1 : U1 → GL(r,R) such
hat Dξ1(x) = Q1(x)E1(x). Set ξ2 = F2, then we have ψ(x) = (ξ1(x), ξ2(x)) is a local diffeomorphism on a neighborhood
2 ⊆ U1 of xc since

∂ψ(xc)
∂x

=

[
Dξ1(xc )
DF2(xc )

]
=
[ Q1(xc ) 0

0 I

] [ E1(xc )
DF2(xc )

]
is invertible. Define the new local coordinates ξ = ψ = (ξ1, ξ2) on U2, we get[

E1(x)
0

](
∂ψ(x)
∂x

)−1
∂ψ(x)
∂x

ẋ =

[
F1(x)
F2(x)

]
⇔

[
E1
1 (ξ1, ξ2) 0

0 0

][
ξ̇1
ξ̇2

]
=

[
F̃1(ξ1, ξ2)

ξ2

]
, (28)

where E1
1 : U2 → Rr×r , [E1

1 ◦ ψ, E2
1 ◦ ψ] = E1(

∂ψ

∂x )
−1 with E2

1 ≡ 0, F̃1 ◦ ψ = F1. Notice that E2
1 ≡ 0 because

Im E2
1 (x) = E1(x) ker Dξ1(x) = 0 and that E1

1 (x) is invertible for x ∈ U2 since rank E(x) = const. = r , ∀x ∈ U2. Let
F̄1 = (E1

1 )
−1F̃1, we can always find F̄ ′

1 : U2 → Rr×m such that F̄1(ξ1, ξ2) = F̄1(ξ1, 0)+ F̄ ′

1(ξ1, ξ2)ξ2. Then via Q̃ =

[
(E11 )

−1
−F̄ ′

1
0 I

]
,

he DAE (28) is ex-equivalent to the (INWF) with F∗(ξ1) = F̄1(ξ1, 0). Finally, it is seen that Ξ is locally (on V = U2)
x-equivalent to the (INWF) via the Q̃ Q -transformation and the diffeomorphism ψ .
(iii) ⇒ (i): Suppose that Ξ is locally ex-equivalent to (16). Then via a similar analysis as the beginning of the present

proof (we use now (INWF) rather than the form (9)), we can deduce that the ξ̄1-variables of (27) is absent, which implies
that the impulse-free jump ξ−

0 → ξ+

0 (and thus x−

0 → x+

0 ) is unique. □

Proof of Theorem 5.3. Suppose thatΞ is locally (on V ) ex-equivalent to (9) via Q and ψ . Consider the following perturbed
system for (9),[

ξ̇1
ξ̇2

]
=

[
Ir E2(ξ1, ξ2)
0 εW−1

]−1 [
F∗(ξ1, ξ2)

ξ2

]
=

[
F∗(ξ1, ξ2) −

1
ε
WE2(ξ1, ξ2)ξ2

1
ε
Wξ2

]
, (29)

hich is ex-equivalent (via
[

I E2
0 εW−1

]
Q and ψ) to Ξε of (19). By rescaling t to τ such that dτ

dt =
1
ε
, we get

Σ̃ε :

[
dξ1
dτ
dξ2
dτ

]
=

[
εF∗(ξ1, ξ2) − E2(ξ1, ξ2)Wξ2

Wξ2

]
. (30)

hen consider the following system Σ̃0 defined on ψ(V ),

Σ̃0 :

[
dξ1
dτ
dξ2
dτ

]
=

[
−E2(ξ1, ξ2)Wξ2

Wξ2

]
, (31)

y assumption (SP), there exists a compact subset Ṽ ⊆ ψ(V ), such that Σ̃ε has a unique solution ξ̃W (·, ε) : [0,+∞) → Ṽ
nd Σ̃0 has a unique solution J̃W : [0,+∞) → Ṽ, given any inconsistent initial value (ξ−

10, ξ
−

20) ∈ Ṽ\M∗. Let J̃W (τ ) =

(ξ1(τ ), ξ2(τ )) = (ξ1(τ ), eWτ ξ−

20) be the solution of Σ̃0 starting from (ξ−

10, ξ
−

20). Define γW (τ , ε) := ξ̃W (τ , ε) − J̃W (τ ), it
follows that γ ′

W (τ , ε) =
dγW (τ ,ε)

dτ =
[
εF∗(ξ1(τ ),ξ2(τ ))

0

]
. Then because (ξ1(τ ), ξ2(τ )) ∈ Ṽ, ∀τ ∈ [0,∞) and F∗ is continues, we

ave F∗(ξ1(τ ), ξ2(τ )) is bounded for all τ ∈ [0,∞). So γ ′

W (τ ∗, ε) → 0 as ε → 0 uniformly for all τ ∗
∈ [0, τ ]. For each

∈ (0, ε∗
] there exists by the mean value theorem a τ ∗

ε ∈ [0, τ ] such that γW (τ , ε) = γ ′

W (τ ∗
ε , ε)τ (because γW (0, ε) = 0)

nd hence we have

lim
ε→0

∥ξ̃W (τ , ε) − J̃W (τ )∥ = lim
ε→0

∥γW (τ , ε)∥= lim
ε→0

∥γ ′

W (τ ∗

ε , ε)τ∥ = 0.

t is clear that JW (τ ) = ψ−1
◦ J̃W (τ ) and x̄W (τ , ε) = ψ−1

◦ ξ̃W (τ , ε) are the solutions of Σ0 and Σε starting from x−

0 ,
espectively. Therefore, by Lipschitz condition of ψ−1 on the compact set Ṽ,

lim
ε→0

∥x̄W (τ , ε) − JW (τ )∥ = lim
ε→0

∥ψ−1
◦ ξ̃W (τ , ε) − ψ−1

◦ J̃W (τ )∥ ≤ lim
ε→0

K∥ξ̃W (τ , ε) − J̃W (τ )∥ = 0,

here K is a Lipschitz constant.
Furthermore, if J̃W (+∞) = ψ ◦ JW (+∞) is well defined, by W is Hurwitz, we then have

J̃W (+∞) = lim (ξ1(τ ), ξ2(τ )) = (ξ+ , ξ+ ) = (ξ+ , 0) ∈ M∗
∩ Ṽ
τ→∞
10 20 10

15
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recall that M∗
∩Ṽ = {(ξ2, ξ2) ∈ Ṽ | ξ2 = 0}). By definition, J̃W (τ ) is an IFJ trajectory of (9) since J̃W (0) = (ξ−

10, ξ
−

20) ∈ Ṽ\M∗,
˜W (+∞) = (ξ+

10, ξ
+

20) ∈ Ṽ ∩ M∗ and [ Ir E2(J̄W (τ )) ] dJ̃W (τ )
dτ = 0, ∀τ ∈ [0,+∞). Since the ex-equivalence preserves jump

trajectories (see Remark 4.4(ii)), we have that JW (τ ) = ψ−1(J̃W (τ )) is an IFJ trajectory ofΞ starting from x−

0 = ψ−1(ξ−

10, ξ
−

20)
and ending at x+

0 = ψ−1(ξ+

10, 0). Note that the consistent point x+

0 = ψ−1(ξ+

10, 0) depends on the choice of W since (ξ+

10, 0)
is the converging point of the solution JW (τ ) (actually an equilibrium point of Σ0), which depends on the choice W . If Ξ
is locally (on V ) ex-equivalent to the (INWF) of (16) via Q and ψ , then the matrix E2(ξ1, ξ2) ≡ 0 of (31), which implies
dξ1
dτ = 0 and ξ1(τ ) = const. = ξ−

10. Therefore, we have limτ→∞ ξ1(τ ) = ξ+

10 = ξ−

10 is unique and does not depend on the
hoice of W , so x+

0 = ψ−1(ξ+

10, 0) = ψ−1
◦ π ◦ ψ(x−

0 ) = ΩE,F (x−

0 ) is unique.
Furthermore, let (ξ1(·, ε), ξ2(·, ε)) : I → V be the solution of (29) starting from any consistent point (ξ+

10, 0). We have
ξ2(t, ε) = 0, ∀t ∈ I (since ξ2(0) = 0 is an equilibrium point of ξ̇2 =

1
ε
Wξ2) and ξ1(t, ε) solves ξ̇1 = F∗(ξ1, 0). Hence both

1(t, ε) and ξ2(t, ε) do not depend on ε and W , and (ξ1(t), 0) is a C1-solution of (9). Since the ex-equivalence preserves
lso C1-solutions, it follows that x(t) = ψ−1(ξ1(t), 0) is the solution of both the DAE Ξ and the perturbed system Ξε
taring from the consistent point x+

0 = ψ−1(ξ+

10, 0). □

. Conclusions and perspectives

In this paper, we study solutions of nonlinear DAEs with inconsistent initial values by regarding jumps as parametrized
urves satisfying certain impulse-free conditions. We show that the impulse-free jump under a new proposed definition
s invariant under the external equivalence of DAEs. We give some characterizations for the notion of geometric index-1.
hen we show that the existence and uniqueness of impulse free jumps are closely related to the notion of geometric
ndex-1 and the involutivity of the distribution defined by ker E. We also generalize the consistency projector of linear
AEs to the nonlinear case by proposing a normal form called the index-1 nonlinear Weierstrass form (INWF). At last,
e propose a singular perturbation system approximation for nonlinear DAEs, the solutions of the perturbed system not
nly approximate the impulse-free jumps but also the C1-solutions of the DAE. Our future research would be extending
r applying our results of impulse-free jumps to problems like consistent initialization of switched nonlinear DAEs [18],
olutions of control systems with impulsive inputs [37].
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