Geometric analysis of nonlinear differential-algebraic equations via nonlinear control theory

Yahao Chen ${ }^{\text {a,* }}$, Witold Respondek ${ }^{\text {b }}$
${ }^{\text {a }}$ Bernoulli Institute, University of Groningen, the Netherlands
${ }^{\text {b }}$ Normandie Université, INSA-Rouen, LMI, France

Received 2 May 2021; revised 8 December 2021; accepted 6 January 2022
Available online 19 January 2022

Abstract

For nonlinear differential-algebraic equations (DAEs), we define two kinds of equivalences, namely, the external and internal equivalence. Roughly speaking, the word "external" means that we consider a DAE (locally) everywhere and "internal" means that we consider the DAE on its (locally) maximal invariant submanifold (i.e., where its solutions exist) only. First, we revise the geometric reduction method in DAEs solution theory and formulate an implementable algorithm to realize that method. Then a procedure called explicitation with driving variables is proposed to connect nonlinear DAEs with nonlinear control systems and we show that the driving variables of an explicitation system can be reduced under some involutivity conditions. Finally, due to the explicitation, we use some notions from nonlinear control theory to derive two nonlinear generalizations of the Weierstrass form.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

MSC: 34A09; 93B17; 93B27; 93B10; 93C10
Keywords: Geometric control methods; Nonlinear differential-algebraic equations; Explicitation; Internal equivalence; Invariant submanifolds; Nonlinear Weierstrass form

[^0]
1. Introduction

Consider a nonlinear differential-algebraic equation (DAE) of the form

$$
\begin{equation*}
\Xi: E(x) \dot{x}=F(x) \tag{1}
\end{equation*}
$$

where $x \in X$ is a vector of the generalized states and X is an open subset of \mathbb{R}^{n} (or an n dimensional manifold).

The maps $E: T X \rightarrow \mathbb{R}^{l}$ and $F: X \rightarrow \mathbb{R}^{l}$ (see the above diagram, where $\pi: T X \rightarrow X$ is the canonical projection from the tangent bundle $T X$ onto X) are smooth and the word "smooth" will mean throughout this paper \mathcal{C}^{∞}-smooth. We will denote a DAE of the form (1) by $\Xi_{l, n}=(E, F)$ or, simply, Ξ. Equation (1) is affine with respect to the velocity \dot{x}, so sometimes it is called a quasi-linear DAE (see e.g., $[1,2]$) and can be considered as an affine Pfaffian system since the rows E^{i} of E are actually differential 1-forms on X (for linear Pfaffian systems, see e.g. [3]), so E is an \mathbb{R}^{l}-valued differential 1-form on X. A semi-explicit DAE is of the form

$$
\Xi^{S E}:\left\{\begin{array}{c}
\dot{x}_{1}=F_{1}\left(x_{1}, x_{2}\right), \tag{2}\\
0=F_{2}\left(x_{1}, x_{2}\right),
\end{array}\right.
$$

where $x_{1} \in X_{1}$ is a vector of state variables and $x_{2} \in X_{2}$ is a vector of algebraic or free variables (since there are no differential equations for x_{2}) with X_{1} and X_{2} being open subsets of \mathbb{R}^{q} and \mathbb{R}^{n-q}, respectively (or q - and $\left(n-q\right.$)-dimensional manifolds, respectively), the maps F_{1} : $X_{1} \times X_{2} \rightarrow T X_{1}$ and $F_{2}: X_{1} \times X_{2} \rightarrow \mathbb{R}^{l-q}$ are smooth. A linear DAE of the form

$$
\begin{equation*}
\Delta: E \dot{x}=H x \tag{3}
\end{equation*}
$$

will be denoted by $\Delta_{l, n}=(E, H)$ or, simply, Δ, where $E \in \mathbb{R}^{l \times n}$ and $H \in \mathbb{R}^{l \times n}$. Both the semiexplicit DAE $\Xi^{S E}$ and the linear DAE Δ can be seen as special cases of DAE Ξ. The motivation of studying DAEs is their frequent presence in modeling of practical systems as electrical circuits [2,4], chemical processes [5,6], mechanical systems [7-9], etc.

There are three main results of this paper. The first result (section 2) concerns analyzing a DAE (locally) everywhere (i.e., externally) or considering the restriction of the DAE to a submanifold (i.e., internally), which corresponds to the external equivalence (see Definition 2.10) and the internal equivalence (see Definition 2.17), respectively. The difference between the two equivalences will be illustrated by their relations with the solutions. In order to analyze the existence of solutions, we use a concept called locally maximal invariant submanifold (see Definition 2.2), which is a submanifold where the solutions of a DAE exist and can be constructed via a geometric reduction method shown in section 2.1. Note that the geometric reduction method is not new in the theory of nonlinear DAEs, see e.g., [1,2,10-12] and the recent papers [13-15]. In the
present paper, we will show a practical implementation of this method via an algorithm summarized in section 2.2. In our recent publication [16], the geometric reduction method was applied to DAE control systems, i.e., (1) with additional input variables u. Some results in section 2 can be seen as a special case, i.e., when the inputs u are absent, of the corresponding results in [16], we will address both the connections and differences between section 2 and [16] in Remark 2.22 below.

Note that considering only the restriction of a DAE means that we only care about where and how the solutions of that DAE evolve. However, when a nominal point is not on the maximal invariant submanifold (which is common for practical systems, since an initial point could be anywhere), there are no solutions passing through that point but we still want to steer the solutions to the submanifold and thus we must follow the rules indicated by the "external" form of the DAE, thus considering DAEs everywhere is also important, see [17], where we use external equivalence to study jump solutions of nonlinear DAEs. Hence both the internal and the external analysis play crucial roles for DAEs and one needs to make a suitable choice among them depending on whether the purpose is to study \mathcal{C}^{1}-solutions of DAEs evolving on locally maximal invariant submanifolds only or to study discontinues solutions of DAEs starting from inadmissible initial points.

The second result of this paper (section 3) is a nonlinear counterpart of the results of [18], in which we have shown that one can associate a class of linear control systems to any linear DAE (by the procedure of explicitation for linear DAEs). In the present paper, to any nonlinear DAE, by introducing extra variables (called driving variables), we can attach a class of nonlinear control systems. Moreover, we show that the driving variables in this explicitation procedure can be fully reduced under some involutivity conditions which explains when a DAE Ξ is ex-equivalent to a semi-explicit DAE $\Xi^{S E}$.

It is well-known (see e.g., [19], [20]) that any linear DAE Δ of the form (3) is ex-equivalent (via linear transformations) to the Kronecker canonical form KCF. In particular, if Δ is regular, i.e., the matrices E and H are square $(l=n)$ and $|s E-H| \not \equiv 0, \forall s \in \mathbb{C}$, then Δ is ex-equivalent (also via linear transformations) to the Weierstrass form WF [21] (see (19) below). The studies on normal forms and canonical forms of DAEs can be found in [19,21-24] for the linear case and in $[15,25,26]$ for the nonlinear case. The last result of this paper (section 4) is to use such concepts as zero dynamics, relative degree and invariant distributions of the nonlinear control theory $[27,28]$ to derive nonlinear generalizations of the WF. In the linear case, canonical forms as the KCF and the WF are closely related to a geometric concept named the Wong sequences [29] (see Remark 2.6 below). In [23], relations between the WF and the Wong sequences have been built and in [24], the importance of the Wong sequences for the geometric analysis of linear DAEs is reconfirmed. In the present paper, we propose generalizations of the Wong sequences for nonlinear DAEs and show their importance in analyzing structure properties.

The paper is organized as follows. In section 2.1, we discuss the existence of solutions of DAEs by revising the geometric reduction method. The latter method is implemented via a recursive algorithm in section 2.2. In section 2.3, we compare the notions of external equivalence and internal equivalence. The major contributions in section 2 are Proposition 2.8, which summarizes the results of geometric reduction algorithm, and Theorem 2.20, which gives characterizations for the uniqueness of DAE solutions via two novel notions: internal equivalence and internal regularity. In section 3.1, we propose the explicitation (with driving variables) procedure to connect nonlinear DAEs to nonlinear control systems. In section 3.2, we show when a nonlinear DAE is externally equivalent to a semi-explicit one and how this problem is related to the explicitation procedure. The most important result in section 3 is Theorem 3.6, which relates equivalences of

DAEs and those of their explicitations, this result will be used throughout the paper for applying nonlinear control theory to nonlinear DAEs. Two nonlinear generalizations of the Weierstrass form are given in Theorem 4.1 and Theorem 4.5 in section 4, respectively. The form in Theorem 4.1 is derived via the zero dynamics algorithm and that in Theorem 4.5 is related to relative degree and invariant distributions in nonlinear control theory. Section 5 contains the conclusions and the perspectives of the paper. The proofs of the main results are put into Appendix.

The following notations will be used throughout the paper. We use $\mathbb{R}^{n \times m}$ to denote the set of real valued matrices with n rows and m columns, $G L(n, \mathbb{R})$ to denote the group of invertible matrices of $\mathbb{R}^{n \times n}$ and I_{n} to denote the $n \times n$-identity matrix. For a linear map L, we denote by $\operatorname{rank} L$, $\operatorname{ker} L$ and $\operatorname{Im} L$, the rank, the kernel and the image of L, respectively. Denote by $T_{x} M$ the tangent space of a submanifold M of \mathbb{R}^{n} at $x \in M$ and by \mathcal{C}^{k} the class of functions which are k-times differentiable with continues k-th derivative. For a smooth map $f: X \rightarrow \mathbb{R}$, we denote its differential by $\mathrm{d} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i}=\left[\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$ and for a vector-valued map $f: X \rightarrow \mathbb{R}^{m}$, where $f=\left[f_{1}, \ldots, f_{m}\right]^{T}$, we denote its differential by $\mathrm{D} f=\left[\begin{array}{c}\mathrm{d} f_{1} \\ \vdots \\ \mathrm{~d} f_{m}\end{array}\right]$. For two column vectors $v_{1} \in \mathbb{R}^{m}$ and $v_{2} \in \mathbb{R}^{n}$, we write $\left(v_{1}, v_{2}\right)=\left[v_{1}^{T}, v_{2}^{T}\right]^{T} \in \mathbb{R}^{m+n}$.

2. Solutions and equivalences of nonlinear DAEs

2.1. The geometric reduction method revisited

In this section, we revise the geometric reduction method in the DAEs solution theory, other formulations of this method can be consulted in section 3.4 of [2], Chapter IV of [1] and [13] for DAEs and $[14,16]$ for DAE control systems. We start from the definition of a solution for a DAE.

Definition 2.1. A solution of a DAE $\Xi_{l, n}=(E, F)$ is a \mathcal{C}^{1}-curve $x: I \rightarrow X$ defined on an open interval I such that for all $t \in I$, the curve $x(\cdot)$ satisfies $E(x(t)) \dot{x}(t)=F(x(t))$.

Throughout this paper, we will be interested only in solutions of Ξ that are at least \mathcal{C}^{1}. A given point x_{0} is called consistent (or admissible) if there exists at least one solution $x(\cdot)$ of Ξ satisfying $x\left(t_{0}\right)=x_{0}$ (i.e., $E\left(x_{0}\right) \dot{x}\left(t_{0}\right)=F\left(x_{0}\right)$) for a certain $t_{0} \in I$; we will denote by S_{c} the consistency set, i.e., the set of all consistent points.

Definition 2.2 (invariant and locally invariant submanifolds). Consider a DAE $\Xi_{l, n}=(E, F)$ defined on X. A smooth connected embedded submanifold M of X is called invariant if for any point $x_{0} \in M$, there exists a solution $x: I \rightarrow X$ of Ξ such that $x\left(t_{0}\right)=x_{0}$ for a certain $t_{0} \in I$ and $x(t) \in M$ for all $t \in I$. Given a point $x_{p} \in X$, we will say that a submanifold M containing x_{p} is locally invariant (around x_{p}) if there exists an open neighborhood $U \subseteq X$ of x_{p} such that $M \cap U$ is invariant.

Proposition 2.3. Consider a DAE $\Xi_{l, n}=(E, F)$ and fix a point x_{p}. Let M be a smooth connected embedded submanifold containing x_{p}. If M is a locally invariant submanifold around x_{p}, then $F(x) \in E(x) T_{x} M$ for all $x \in M$ around x_{p}. Conversely, assume that there exists an open neighborhood U of x_{p} such that, at all $x \in M \cap U$, we have $F(x) \in E(x) T_{x} M$ and, additionally, $\operatorname{dim} E(x) T_{x} M=$ const., then M is a locally invariant submanifold.

The proof is given in Appendix A.
Remark 2.4. Note that the assumption that $\operatorname{dim} E(x) T_{x} M=$ const. of Proposition 2.3 is not a necessary condition to conclude that M is an invariant submanifold, but it excludes singular points of DAEs and helps to view a DAE as an ordinary differential equation (ODE) defined on the invariant submanifold. Take the following DAE for an example:

$$
\Xi_{1,1}: x \dot{x}=x^{2}
$$

where $x \in X=\mathbb{R}$. Let $M=X$, then clearly, $F(x)=x^{2} \in x \cdot T_{x} X$, at any $x \in M=\mathbb{R}$. We have $\operatorname{dim} E(x) T_{x} M$ equals 1 for $x \neq 0$ and is 0 for $x=0$, so $\operatorname{dim} E(x) T_{x} M \neq$ const., for all $x \in M$. Nevertheless, for any $x_{0} \in M=\mathbb{R}$, there exists a unique solution $x(t)$ satisfying $x(0)=x_{0}$, namely, $x(t)=e^{t} x_{0}$. Therefore $M=\mathbb{R}$ is an invariant submanifold.

A locally invariant submanifold M^{*} (around x_{p}) is called locally maximal, if there exists a neighborhood U of x_{p} such that for any other locally invariant submanifold M, we have $M \cap U \subseteq$ $M^{*} \cap U$. The geometric reduction method for DAEs is the following recursive procedure, which can be used to construct locally maximal invariant submanifold M^{*}.

Definition 2.5 (geometric reduction method). Consider a DAE $\Xi_{l, n}=(E, F)$, fix a point $x_{p} \in X$ and let U_{0} be an open connected subset of X containing x_{p}. Set $M_{0}=X, M_{0}^{c}=U_{0}$. Suppose that there exist an open neighborhood U_{k-1} of x_{p} and a sequence of smooth connected embedded submanifolds $M_{k-1}^{c} \subsetneq \cdots \subsetneq M_{0}^{c}$ of U_{k-1} for a certain $k \geq 1$, has been constructed. Define recursively

$$
\begin{equation*}
M_{k}:=\left\{x \in M_{k-1}^{c}: F(x) \in E(x) T_{x} M_{k-1}^{c}\right\} . \tag{4}
\end{equation*}
$$

Then either $x_{p} \notin M_{k}$ or $x_{p} \in M_{k}$, and in the latter case, assume that there exists a neighborhood U_{k} of x_{p} such that $M_{k}^{c}=M_{k} \cap U_{k}$ is a smooth embedded submanifold (which can always be assumed connected by taking U_{k} sufficiently small).

Remark 2.6. For a linear DAE $\Delta=(E, H)$ of the form (3), define a sequence of subspaces (one of the Wong sequences [29]) by

$$
\mathscr{V}_{0}=\mathbb{R}^{n}, \quad \mathscr{V}_{k}=H^{-1} E \mathscr{V}_{k-1}, \quad k \geq 1 .
$$

If we apply the iterative construction of M_{k} by (4) to the DAE Δ, we get $M_{k}^{c}=\mathscr{V}_{k}, \forall k \geq 0$. Thus the sequence of submanifolds M_{k} can be seen as a nonlinear generalization of the sequence \mathscr{V}_{k}.

The following proposition shows that the geometric reduction method above can be used to construct locally maximal invariant submanifold M^{*} and to deduce that the consistency set S_{c}, on which the solutions exist, coincides locally with M^{*}.

Proposition 2.7. In the geometric reduction method of Definition 2.5, there always exists $k^{*} \leq n$ such that either k^{*} is the smallest integer for which $x_{p} \notin M_{k^{*}+1}$ or k^{*} is the smallest integer such that $x_{p} \in M_{k^{*}+1}^{c}$ and $M_{k^{*}+1}^{c} \cap U_{k^{*}+1}=M_{k^{*}}^{c} \cap U_{k^{*}+1}$. In the latter case, we assume that $\operatorname{dim} E(x) T_{x} M_{k^{*}+1}^{c}=$ const. in a neighborhood $U^{*} \subseteq U_{k^{*}+1}$ of x_{p} in X and then
(i) x_{p} is consistent and $M^{*}=M_{k^{*}+1}^{c}$ is a locally maximal invariant submanifold around x_{p}.
(ii) M^{*} coincides locally with the consistency set S_{c}, i.e., $M^{*} \cap U=S_{c} \cap U^{*}$ (take a smaller U^{*} if necessary).

We omit the proof of Proposition 2.7 because it can be seen as a special case (i.e., the control input u is absent) of Proposition 2 of [16] for constructing locally controlled invariant submanifolds of DAE control systems, the reader can consult the proof therein.

2.2. An algorithm for the geometric reduction method

Now we present an algorithm which implements in practice the geometric reduction method. Note that the results of Proposition 2.8 and Theorem 4.1 below will be based on the algorithm.

In what follows, we use the algorithm to show that any DAE Ξ has isomorphic solutions with an "internal" DAE Ξ^{*} defined on its locally maximal invariant submanifold M^{*}, which is a practical application (via the algorithm) of Proposition 2.7. In the statement of Proposition 2.8 below, we refer to the submanifold $M^{*}=M_{k+1}^{*}$, the neighborhood $U^{*}=U_{k+1}^{*}$, the coordinates $\left(z^{*}, \bar{z}_{1}, \ldots, \bar{z}_{k^{*}}\right)$ on U^{*}, and the DAE $\Xi_{r^{*}, n^{*}}^{*}=\left(E^{*}, F^{*}\right)$ defined on M^{*} by the algorithm, where $E^{*}=E_{k^{*}+1}: M^{*} \rightarrow \mathbb{R}^{r^{*} \times n^{*}}, F^{*}=F_{k^{*}+1}: M^{*} \rightarrow \mathbb{R}^{r^{*}}, n^{*}=n_{k^{*}}=n_{k^{*}+1}, r^{*}=r_{k^{*}+1}$ come from Step $k^{*}+1$ of the algorithm.

Proposition 2.8 (isomorphic solutions). Consider a DAE $\Xi_{l, n}=(E, F)$ and fix a point $x_{p} \in X$. Suppose for each Step $k\left(1 \leq k \leq k^{*}+1\right)$ of the algorithm that there exists a neighborhood $U_{k} \subseteq U_{k-1} \subseteq X$ of x_{p} such that
Assumption 1: rank $\tilde{E}_{k}\left(z_{k-1}\right)=$ const. $=r_{k}, \forall z_{k-1} \in W_{k}=U_{k} \cap M_{k-1}^{c}$;
Assumption 2: $x_{p} \in M_{k}$ and rank $\mathrm{D} \tilde{F}_{k}^{2}\left(z_{k-1}\right)=$ const. $=n_{k-1}-n_{k}$ for $z_{k-1} \in M_{k} \cap U_{k}$.
Then M_{k}^{c}, for $k=0, \ldots, k^{*}+1$, given by (4), are smooth connected embedded submanifolds and $\operatorname{dim} E(x) T_{x} M^{*}=$ const. for all $x \in M^{*} \cap U^{*}$. Thus by Proposition 2.7, $x_{p} \in M^{*}$ is a consistent point and M^{*} is a locally maximal invariant submanifold around x_{p}, given by $M^{*}=\left\{x \mid \bar{z}_{1}(x)=0, \ldots, \bar{z}_{k^{*}}(x)=0\right\}$. Furthermore, for the DAE $\Xi_{r^{*}, n^{*}}^{*}=\left(E^{*}, F^{*}\right)$, given on M^{*} by

$$
\begin{equation*}
\Xi^{*}: E^{*}\left(z^{*}\right) \dot{z}^{*}=F^{*}\left(z^{*}\right), \tag{6}
\end{equation*}
$$

where $z^{*}=z_{k^{*}+1}=z_{k^{*}}$ are local coordinates on M^{*}, we have $\operatorname{rank} E^{*}\left(z^{*}\right)=r^{*}, \forall z^{*} \in M^{*}$, i.e., $E^{*}\left(z^{*}\right)$ is of full row rank.

Moreover, the DAE Ξ^{*} has isomorphic solutions with $\Xi_{l, n}$, i.e., there exists a local diffeomorphism $\Psi: U^{*} \rightarrow \Psi\left(U^{*}\right), \Psi(x)=\hat{z}=\left(z^{*}, \bar{z}\right)=\left(z^{*}, \bar{z}_{1}, \ldots, \bar{z}_{k^{*}}\right)$, transforming the set of all solutions of $\Xi_{l, n}$ on U^{*} into that of $\hat{\Xi}_{\hat{l}, \hat{n}}=(\hat{E}, \hat{F})$ on $\Psi\left(U^{*}\right)$, where $\hat{l}=r^{*}+\left(n-n^{*}\right), \hat{n}=n$, given by

$$
\hat{\boldsymbol{E}}:\left\{\begin{array}{l}
E^{*}\left(z^{*}\right) \dot{z}^{*}=F^{*}\left(z^{*}\right) \tag{7}\\
\bar{z}_{1}=0, \ldots, \bar{z}_{k^{*}}=0
\end{array}\right.
$$

We omit the proof of Proposition 2.8 because it can be derived from that of Theorem 2(i) in [16].

Algorithm Geometric reduction algorithm for nonlinear DAEs.
Initiatlization: Consider $\Xi_{l, n}=(E, F)$, fix $x_{p} \in X$ and let $U_{0} \subseteq X$ be an open connected subset containing x_{p}. Set $z_{0}=x, E_{0}\left(z_{0}\right)=E(x), F_{0}\left(z_{0}\right)=F(x), M_{0}^{c}=U_{0}, r_{0}=l, n_{0}=n$, and $\Xi_{0}=\left(E_{0}, F_{0}\right)$. Below all sets U_{k} are open in X and W_{k} are open in M_{k-1}^{c}.
Step k : Suppose that we have defined at Step $k-1$: an open neighborhood $U_{k-1} \subseteq X$ of x_{p}, a smooth embedded connected submanifold M_{k-1}^{c} of U_{k-1} and a DAE $\Xi_{k-1}=\left(E_{k-1}, F_{k-1}\right)$ given by smooth matrix-valued maps

$$
E_{k-1}: M_{k-1}^{c} \rightarrow \mathbb{R}^{r_{k-1} \times n_{k-1}}, \quad F_{k-1}: M_{k-1}^{c} \rightarrow \mathbb{R}^{r_{k-1}}
$$

whose arguments are denoted $z_{k-1} \in M_{k-1}^{c}$.
1: Rename the maps as $\tilde{E}_{k}=E_{k-1}, \tilde{F}_{k}=F_{k-1}$ and define $\tilde{\Xi}_{k}:=\left(\tilde{E}_{k}, \tilde{F}_{k}\right)$.
Assumption 1: There exists an open neighborhood $U_{k} \subseteq U_{k-1} \subseteq X$ of x_{p} such that rank $\tilde{E}_{k}\left(z_{k-1}\right)=$ const. $=r_{k}, \forall z_{k-1} \in W_{k}=U_{k} \cap M_{k-1}^{c}$.
2: Find a smooth map $Q_{k}: W_{k} \rightarrow G L\left(r_{k-1}, \mathbb{R}\right)$, such that \tilde{E}_{k}^{1} of $Q_{k} \tilde{E}_{k}=\left[\begin{array}{c}\tilde{E}_{k}^{1} \\ 0\end{array}\right]$ is of full row rank and denote $Q_{k} \tilde{F}_{k}=\left[\begin{array}{c}\tilde{F}_{k}^{1} \\ \tilde{F}_{k}^{2}\end{array}\right]$, where $\tilde{E}_{k}^{1}: W_{k} \rightarrow \mathbb{R}^{r_{k} \times n_{k-1}}, \tilde{F}_{k}^{2}: W_{k} \rightarrow \mathbb{R}^{r_{k-1}-r_{k}}$ (so all the matrices depend on z_{k-1}); such a map Q_{k} exists by Dolezal's theorem [30], see also [31].
3: Following (4), define $M_{k}=\left\{z_{k-1} \in W_{k} \mid \tilde{F}_{k}^{2}\left(z_{k-1}\right)=0\right\}$.
Assumption 2: $x_{p} \in M_{k}$ and rank $\mathrm{D} \tilde{F}_{k}^{2}\left(z_{k-1}\right)=$ const. $=n_{k-1}-n_{k}$ for $z_{k-1} \in M_{k} \cap U_{k}$.
4: By Assumption 2, $M_{k} \cap U_{k}$ is a smooth embedded submanifold and by taking again a smaller U_{k}, we may assume that $M_{k}^{c}=M_{k} \cap U_{k}$ is connected and choose new coordinates $\left(z_{k}, \bar{z}_{k}\right)=\psi_{k}\left(z_{k-1}\right)$ on W_{k}, where $\bar{z}_{k}=\bar{\varphi}_{k}\left(z_{k-1}\right)=\left(\bar{\varphi}_{k}^{1}\left(z_{k-1}\right), \ldots, \bar{\varphi}_{k}^{n_{k-1}-n_{k}}\left(z_{k-1}\right)\right)$, with $\mathrm{d} \bar{\varphi}_{k}^{1}\left(z_{k-1}\right), \ldots, \mathrm{d} \bar{\varphi}_{k}^{n_{k-1}-n_{k}}\left(z_{k-1}\right)$ being all independent rows of $\mathrm{D} \tilde{F}_{k}^{2}\left(z_{k-1}\right)$, and $z_{k}=\varphi_{k}\left(z_{k-1}\right)=\left(\varphi_{k}^{1}\left(z_{k-1}\right), \ldots, \varphi_{k}^{n_{k-1}}\left(z_{k-1}\right)\right)$ are any complementary coordinates such that $\psi_{k}=\left(\varphi_{k}, \bar{\varphi}_{k}\right)$ is a local diffeomorphism.
5: Set $\hat{E}_{k}=Q_{k} \tilde{E}_{k}\left(\frac{\partial \bar{\varphi}_{k}}{\partial z_{k-1}}\right)^{-1}, \hat{F}_{k}=Q_{k} \tilde{F}_{k}$. By Definition 2.10, $\tilde{\Xi}_{k} \stackrel{e x}{\sim} \hat{\Xi}_{k}=\left(\hat{E}_{k}, \hat{F}_{k}\right)$ via Q_{k} and ψ_{k}, where

$$
\hat{\Xi}_{k}:\left[\begin{array}{cc}
\hat{E}_{k}^{1}\left(z_{k}, \bar{z}_{k}\right) & \bar{E}_{k}^{1}\left(z_{k}, \bar{z}_{k}\right) \tag{5}\\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{k} \\
\bar{z}_{k}
\end{array}\right]=\left[\begin{array}{c}
\hat{F}_{k}^{1}\left(z_{k}, \bar{z}_{k}\right) \\
\hat{F}_{k}^{2}\left(z_{k}, \bar{z}_{k}\right)
\end{array}\right]
$$

with $\hat{E}_{k}^{1}: W_{k} \rightarrow \mathbb{R}^{r_{k} \times n_{k}}, \hat{F}_{k}^{1} \circ \psi_{k}=\tilde{F}_{k}^{1}, \hat{F}_{k}^{2} \circ \psi_{k}=\tilde{F}_{k}^{2}$ and $\left[\hat{E}_{k}^{1} \circ \psi_{k} \quad \bar{E}_{k}^{1} \circ \psi_{k}\right]=\tilde{E}_{k}^{1}\left(\frac{\partial \psi_{k}}{\partial z_{k-1}}\right)^{-1}$.
6: Set $\bar{z}_{k}=0$ to define the following reduced and restricted DAE on $M_{k}^{c}=\left\{z_{k-1} \in W_{k} \mid \bar{z}_{k}=0\right\}$ by

$$
\Xi_{k}: E_{k}\left(z_{k}\right) \dot{z}_{k}=F_{k}\left(z_{k}\right)
$$

where $E_{k}\left(z_{k}\right)=\hat{E}_{k}^{1}\left(z_{k}, 0\right), F_{k}\left(z_{k}\right)=\hat{F}_{k}^{1}\left(z_{k}, 0\right)$ are matrix-valued maps and $E_{k}: M_{k}^{c} \rightarrow \mathbb{R}^{r_{k} \times n_{k}}, \quad F_{k}$: $M_{k}^{c} \rightarrow \mathbb{R}^{r_{k}}$.
Repeat: Step k for $k=1,2,3, \ldots$, until $n_{k+1}=n_{k}$, and set $k^{*}=k$.
Result: Set $n^{*}=n_{k^{*}}=n_{k^{*}+1}, r^{*}=r_{k^{*}+1}, M^{*}=M_{k^{*}+1}^{c}, U^{*}=U_{k^{*}+1}, z^{*}=z_{k^{*}+1}=z_{k^{*}}$ and $\Xi^{*}=$ $\left(E^{*}, F^{*}\right)$ with $E^{*}=E_{k^{*}+1}, F^{*}=F_{k^{*}+1}$.

Remark 2.9. (i) The geometric reduction algorithm is a constructive application of Proposition 2.7 but with more assumptions. Assumption 1 is made to produce the full row rank matrices \tilde{E}_{k}^{1} and the zero-level set $M_{k}=\left\{z_{k-1} \in W_{k} \mid \tilde{F}_{k}^{2}\left(z_{k-1}\right)=0\right\}$. Assumption 2 assures that $M_{k} \cap U_{k}$ is a smooth embedded submanifold and makes it possible to use the components of \tilde{F}_{k}^{2}, with
linearly independent differentials, as a part of new local coordinates. Note that these two assumptions are mild constant rank assumptions made in a neighborhood U_{k} of the point x_{p}. In some cases (see Example 2.23 below), the neighborhood U_{k} can be the whole generalized state space $U_{k}=X$. While in other cases, we may need to take a smaller neighborhood $U_{k} \subsetneq U_{k-1}$ such that both assumptions hold on U_{k} for each Step k, which may result in obtaining a small neighborhood $U^{*}=U_{k^{*}+1} \subseteq U_{k}$ at Step $k^{*}+1$.
(ii) The integers r_{k}, n_{k} of the geometric reduction algorithm, satisfy, for each $k \geq 1$,

$$
\left\{\begin{array}{lr}
l=r_{0} \geq r_{1} \geq \ldots \geq r_{k} \geq \ldots \geq 0, & n=n_{0} \geq n_{1} \geq \ldots \geq n_{k} \geq \ldots \geq 0, \\
n_{k-1} \geq r_{k}, & r_{k-1}-r_{k} \geq n_{k-1}-n_{k}
\end{array}\right.
$$

2.3. External equivalence, internal equivalence and internal regularity

Two linear DAEs $E \dot{x}=H x$ and $\tilde{E} \dot{\tilde{x}}=\tilde{H} \tilde{x}$ are called externally equivalent [18] or strictly equivalent [20], if there exist constant invertible matrices Q and P such that $Q E P^{-1}=\tilde{E}$ and $Q H P^{-1}=\tilde{H}$. Analogously, we define the external equivalence of two nonlinear DAEs as follows.

Definition 2.10 (external equivalence). Two DAEs $\Xi_{l, n}=(E, F)$ and $\tilde{\Xi}_{l, n}=(\tilde{E}, \tilde{F})$ defined on X and \tilde{X}, respectively, are called externally equivalent, shortly ex-equivalent, if there exist a diffeomorphism $\psi: X \rightarrow \tilde{X}$ and a smooth map $Q: X \rightarrow G L(l, \mathbb{R})$ such that

$$
\psi^{*} \tilde{E}=Q E \quad \text { and } \quad \psi^{*} \tilde{F}=Q F
$$

where $\psi^{*} \tilde{E}$ and $\psi^{*} \tilde{F}$ denote the pull-back [3] of the \mathbb{R}^{l}-valued differential 1-form \tilde{E} on \tilde{X} and \mathbb{R}^{l}-valued function \tilde{F} (0 -form) on \tilde{X}, respectively, that is,

$$
\begin{equation*}
\tilde{E}(\psi(x))=Q(x) E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1} \text { and } \tilde{F}(\psi(x))=Q(x) F(x) \tag{8}
\end{equation*}
$$

The ex-equivalence of two DAEs will be denoted by $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$. If $\psi: U \rightarrow \tilde{U}$ is a local diffeomorphism between neighborhoods U of x_{p} and \tilde{U} of \tilde{x}_{p}, and $Q(x)$ is defined on U, we will speak about local ex-equivalence.

Note that the map Q and the diffeomorphism ψ above should be smooth maps in order to guarantee the smoothness of \tilde{E} and \tilde{F} for the DAE $\tilde{\Xi}$. The following observation relates exequivalence with solutions.

Remark 2.11. The ex-equivalence preserves trajectories, i.e., for two DAEs $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$, if a \mathcal{C}^{1}-curve $x(\cdot)$ is a solution of Ξ passing through $x_{0}=x\left(t_{0}\right)$, then $\tilde{x}=\psi \circ x$ is a solution of $\tilde{\Xi}$ passing through $\tilde{x}_{0}=\psi\left(x_{0}\right)$; but even if we can smoothly conjugate all trajectories of two DAEs, they are not necessarily ex-equivalent. For example, consider $\Xi_{1}=\left(E_{1}, F_{1}\right)$ and $\Xi_{2}=\left(E_{2}, F_{2}\right)$, where $E_{1}(x)=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], F_{1}(x)=\left[\begin{array}{l}x_{3}^{2} \\ x_{1} \\ x_{2}\end{array}\right], E_{2}(x)=\left[\begin{array}{ccc}0 & x_{1} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], F_{2}(x)=\left[\begin{array}{l}x_{3}^{2} \\ x_{1} \\ x_{2}\end{array}\right]$. Then for both DAEs Ξ_{1} and Ξ_{2}, the maximal invariant submanifold is $M^{*}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{2}=x_{3}=0\right\}$ and for any $\left(x_{10}, x_{20}, x_{30}\right)=\left(0,0, x_{30}\right) \in M^{*}$, the unique solution of both systems is $x_{1}(t)=x_{2}(t)=0$,
$x_{3}(t)=\frac{x_{30}}{1-x_{30} t}$. Nevertheless, the DAEs are not ex-equivalent since the distribution ker E_{1} is involutive but the distribution $\operatorname{ker} E_{2}$ is not (clearly, the ex-equivalence of two DAEs preserves the involutivity of $\operatorname{ker} E_{1}$ and ker E_{2} since if $\Xi_{1} \stackrel{e x}{\sim} \Xi_{2}$, via Q and ψ, then $\operatorname{ker} E_{2}=\frac{\partial \psi}{\partial x} \operatorname{ker} E_{1}$).

The results of Proposition 2.8 above show clearly the reason behind Remark 2.11: if we assume two DAEs Ξ and $\tilde{\Xi}$ to have corresponding solutions, this assumption only gives the information that the two internal DAE Ξ^{*} and $\tilde{\Xi}^{*}$, which have isomorphic solutions with Ξ and $\tilde{\Xi}$, respectively, are ex-equivalent when restricted to M^{*} and \tilde{M}^{*}, respectively, i.e., via a diffeomorphism between the submanifolds M^{*} and \tilde{M}^{*} and an invertible map Q defined on the invariant submanifold M^{*}. We do not know, however, whether the diffeomorphism and the map Q can be extended outside the submanifold M^{*}. In fact, outside the manifolds M^{*} and \tilde{M}^{*}, the two DAEs may have completely different behaviors or even different size of system matrices. This analysis gives a motivation to introduce the concept of internal equivalence of two DAEs (see the formal Definition 2.17), which is defined by the ex-equivalence of two internal DAEs. In Proposition 2.8, the internal DAE Ξ^{*} is defined with the help of the geometric reduction algorithm. Now we introduce two notions: local restriction and full row rank reduction, which can be used to define the internal DAE Ξ^{*} of a DAE Ξ (which we call the reduction of local M^{*} restriction of Ξ, see Proposition 2.16) without going through the algorithm when the invariant submanifold M^{*} is a priori given. The local restriction of a DAE to a submanifold N (invariant or not) is defined as follows.

Definition 2.12 (local restriction). Consider a DAE $\Xi_{l, n}=(E, F)$ and a smooth connected embedded submanifold $N \subseteq X$ containing a point x_{p}. Let $\psi(x)=z=\left(z_{1}, z_{2}\right)$ be local coordinates on a neighborhood U of x_{p} such that $N \cap U=\left\{z_{2}=0\right\}$ and z_{1} are thus coordinates on $N \cap U$. The restriction of Ξ to $N \cap U$, called local N-restriction of Ξ and denoted $\left.\Xi\right|_{N}$, is

$$
\left.\Xi\right|_{N}: \tilde{E}\left(z_{1}, 0\right)\left[\begin{array}{c}
\dot{z}_{1} \tag{9}\\
0
\end{array}\right]=\tilde{F}\left(z_{1}, 0\right)
$$

where $\tilde{E} \circ \psi=E\left(\frac{\partial \psi}{\partial x}\right)^{-1}, \tilde{F} \circ \psi=F$.
For any DAE $\Xi_{l, n}=(E, F)$, there may exist some redundant equations (in particular, some trivial algebraic equations $0=0$ and some dependent equations). In the linear case, we have defined the full rank reduction of a linear DAE (see Definition 6.4 of [18]). We now generalize this notion of reduction to nonlinear DAEs to get rid of their redundant equations.

Definition 2.13 (reduction). For a $\operatorname{DAE} \Xi_{l, n}=(E, F)$, assume rank $E(x)=$ const. $=q$. Then there exists a smooth map $Q: X \rightarrow G L(l, \mathbb{R})$ such that E_{1} of $Q E=\left[\begin{array}{c}E_{1} \\ 0\end{array}\right]$ is of full row rank q, denote $Q F=\left[\begin{array}{l}F_{1} \\ F_{2}\end{array}\right]$. Assume that $\operatorname{rank} \mathrm{D} F_{2}(x)=$ const. $=\hat{l}-q \leq l-q$. Then the full row rank reduction, shortly reduction, of Ξ, denoted by $\Xi^{\text {red }}$, is the DAE

$$
\Xi^{\text {red }}:\left[\begin{array}{c}
E_{1}(x) \\
0
\end{array}\right] \dot{x}=\left[\begin{array}{l}
F_{1}(x) \\
\hat{F}_{2}(x)
\end{array}\right]
$$

where $\hat{F}_{2}: X \rightarrow \mathbb{R}^{\hat{l}-q}$ with $\mathrm{D} \hat{F}_{2}$ being all independent rows of $\mathrm{D} F_{2}$.

Remark 2.14. Note that the existence of smooth map Q in Definition 2.13 is guaranteed by Dolezal's theorem [30] and also its generalization [31] under the constant rank assumption of E. Since the choice of $Q(x)$ is not unique, the reduction of Ξ is not unique either. Nevertheless, since $Q(x)$ preserves the solutions, each reduction $\Xi^{\text {red }}$ has the same solutions as the original DAE Ξ.

For a locally invariant submanifold M, we consider the local M-restriction $\left.\Xi\right|_{M}$ of Ξ, and then we construct a reduction of $\left.\Xi\right|_{M}$ and denote it by $\left.\Xi\right|_{M} ^{r e d}$. Notice that the order matters: to construct $\left.\Xi\right|_{M} ^{\text {red }}$, we first restrict and then reduce while reducing first and then restricting will not give $\left.\Xi\right|_{M} ^{\text {red }}$ but another DAE $\left.\Xi^{\text {red }}\right|_{M}$, which may have redundant equations as seen from the following example.

Example 2.15. Consider the following nonlinear DAE $\Xi:\left[\begin{array}{cc}1 & 1 \\ x & 0 \\ 0 & 0 \\ e^{y} & e^{y}\end{array}\right]\left[\begin{array}{c}\dot{x} \\ \dot{y}\end{array}\right]=\left[\begin{array}{c}x^{2} \\ x^{3} \\ x y \\ e^{y} x^{2}\end{array}\right]$ defined on $X=\mathbb{R}^{2}$. Fix a point $\left(x_{p}, y_{p}\right)=(1,0)$, then it is clear that $M^{*}=\left\{(x, y) \in \mathbb{R}^{2}: x>0, y=0\right\}$ is a locally maximal invariant submanifold around x_{p}. Set $\psi(x, y)=\left(z_{1}, z_{2}\right)=(x, y)$ as coordinates on X. Then the M^{*}-restriction of Ξ, by Definition 2.12, is $\left.\Xi\right|_{M^{*}}:\left[\begin{array}{c}1 \\ z_{1} \\ 0 \\ 1\end{array}\right] \dot{z}_{1}=\left[\begin{array}{c}z_{1}^{2} \\ z_{1}^{3} \\ 0 \\ z_{1}^{2}\end{array}\right]$ and the reduction of $\left.\Xi\right|_{M^{*}}$ is $\left.\Xi\right|_{M^{*}} ^{r e d}: q\left(z_{1}\right) \dot{z}_{1}=q\left(z_{1}\right) z_{1}^{2}$, where $q\left(z_{1}\right)$ can be any non-zero function (illustrating that the reduction is not unique). On the other hand, $\left.\Xi^{\text {red }}\right|_{M^{*}}$ is $\left[\begin{array}{c}1 \\ z_{1} \\ 0\end{array}\right] \dot{z}_{1}=\left[\begin{array}{c}z_{1}^{2} \\ z_{1}^{3} \\ 0\end{array}\right]$, and clearly, has redundant equations.

Proposition 2.16. Consider a DAE $\Xi_{l, n}=(E, F)$ and fix a point x_{p}. Let M be an \bar{n}-dimensional locally invariant submanifold of Ξ around x_{p}. Assume that $\operatorname{dim} E(x) T_{x} M=$ const. $=\bar{r}$ for all $x \in M$ around x_{p}. Then any reduction $\left.\Xi\right|_{M} ^{r e d}$ of the local M-restriction of Ξ is a DAE of the form (1) and the dimensions related to $\left.\Xi\right|_{M} ^{\text {red }}$ are \bar{r} and \bar{n}, i.e., $\left.\Xi\right|_{M} ^{\text {red }}=\bar{\Xi}_{\bar{r}, \bar{n}}$. Moreover, the matrix \bar{E} of $\bar{\Xi}_{\bar{r}, \bar{n}}=(\bar{E}, \bar{F})$ is of full row rank \bar{r}.

Proof. We skip the proof since we have already constructed $\left.\Xi\right|_{M} ^{\text {red }}$ for M being an invariant submanifold, see (29) in the proof of Proposition 2.3; it is clear that $\bar{E}=\left[\begin{array}{l}\bar{E}_{1}^{1} \\ \bar{E}_{1}^{2}\end{array}\right], \bar{F}=\bar{F}_{1}$ and $\operatorname{rank} \bar{E}=\bar{r}$.

The definition of the internal equivalence of two DAEs is given as follows.
Definition 2.17. (internal equivalence) Consider two DAEs $\Xi=(E, F)$ and $\tilde{\Xi}=(\tilde{E}, \tilde{F})$, and fix two points $x_{p} \in X$ and $\tilde{x}_{p} \in \tilde{X}$. Let M^{*} and \tilde{M}^{*} be two locally maximal invariant submanifolds of Ξ and $\tilde{\Xi}$, around x_{p} and \tilde{x}_{p}, respectively. Assume that $\operatorname{dim} E(x) T_{x} M^{*}=$ const. for $x \in M^{*}$ around x_{p} and $\operatorname{dim} \tilde{E}(\tilde{x}) T_{\tilde{x}} \tilde{M}^{*}=$ const. for $\tilde{x} \in \tilde{M}^{*}$ around \tilde{x}_{p}. Then, Ξ and $\tilde{\Xi}$ are called locally internally equivalent, shortly in-equivalent, if $\left.\Xi\right|_{M^{*}} ^{r e d}$ and $\left.\tilde{\Xi}\right|_{\tilde{M}^{*}} ^{r e d}$ are ex-equivalent, locally around x_{p} and \tilde{x}_{p}, respectively. Denote the in-equivalence of two DAEs by $\Xi \stackrel{i n}{\sim} \tilde{\Xi}$.

Remark 2.18. Note that under the assumption that $\operatorname{dim} E(x) T_{x} M^{*}$ and $\operatorname{dim} \tilde{E}(\tilde{x}) T_{\tilde{x}} \tilde{M}^{*}$ are constant, by Proposition 2.16 applied to M^{*}, we have $\left.\Xi\right|_{M^{*}} ^{r e d}=\Xi_{r^{*}, n^{*}}^{*}$ and $\left.\tilde{\Xi}\right|_{M^{*}} ^{r e d}=\tilde{\Xi}_{\tilde{r}^{*}, \tilde{n}^{*}}^{*}$, where $r^{*}=\operatorname{dim} E(x) T_{x} M^{*}, n^{*}=\operatorname{dim} M^{*}$ and $\tilde{r}^{*}=\operatorname{dim} \tilde{E}(x) T_{\tilde{x}} \tilde{M}^{*}, \tilde{n}^{*}=\operatorname{dim} \tilde{M}^{*}$. The dimensions l and n, related to Ξ, and \tilde{l} and \tilde{n} related to $\tilde{\Xi}$ are not required to be the same. However, if Ξ and $\tilde{\Xi}$ are in-equivalent, then by definition, $\left.\Xi\right|_{M^{*}} ^{r e d}=\Xi_{r^{*}, n^{*}}^{*}$ and $\left.\tilde{\Xi}\right|_{\tilde{M}^{*}} ^{r e d}=\tilde{\Xi}_{\tilde{r}^{*}, \tilde{n}^{*}}^{*}$ are locally exequivalent and thus the dimensions related to them have to be the same, i.e., $r^{*}=\tilde{r}^{*}$ and $n^{*}=\tilde{n}^{*}$ (and $l^{*}=r^{*}=\tilde{r}^{*}=\tilde{l}^{*}$ since all reductions of Ξ and $\tilde{\Xi}$ are of full row rank).

Now we will study the uniqueness of solutions of DAEs with the help of the notion of internal equivalence (some other results of uniqueness of DAE solutions can be consulted in e.g., [11,12]). We will say that a solution $x: I \rightarrow M^{*}$ of a DAE Ξ satisfying $x\left(t_{0}\right)=x_{0}$, where $t_{0} \in I$ and $x_{0} \in M^{*}$, is maximal if for any solution $\tilde{x}: \tilde{I} \rightarrow M^{*}$ such that $t_{0} \in \tilde{I}, \tilde{x}\left(t_{0}\right)=x_{0}$ and $x(t)=\tilde{x}(t)$, $\forall t \in I \cap \tilde{I}$, we have $\tilde{I} \subseteq I$.

Definition 2.19. (internal regularity) Consider a DAE $\Xi_{l, n}=(E, F)$ and let M^{*} be a locally maximal invariant submanifold around a point $x_{p} \in M^{*}$. Then Ξ is called locally internally regular (around x_{p}) if there exists a neighborhood $U \subseteq X$ of x_{p} such that for any point $x_{0} \in$ $M^{*} \cap U$, there exists only one maximal solution $x: I \rightarrow M^{*} \cap U$ satisfying $x\left(t_{0}\right)=x_{0}$ for a certain $t_{0} \in I$.

Theorem 2.20. Consider a DAE $\Xi_{l, n}=(E, F)$ and let M^{*} be an n^{*}-dimensional locally maximal invariant submanifold around a point $x_{p} \in M^{*}$. Assume that $\operatorname{dim} E(x) T_{x} M^{*}=$ const.$=r^{*}$ for all $x \in M^{*}$ around x_{p}. Then the following conditions are equivalent:
(i) Ξ is internally regular around x_{p};
(ii) $\operatorname{dim} M^{*}=\operatorname{dim} E(x) T_{x} M^{*}$, i.e., $n^{*}=r^{*}$, for all $x \in M^{*}$ around x_{p};
(iii) Ξ is locally internally equivalent to

$$
\begin{equation*}
\dot{z}^{*}=f^{*}\left(z^{*}\right), \tag{10}
\end{equation*}
$$

for $z^{*} \in M^{*} \cap U$, where U is a neighborhood of x_{p} and f^{*} is a smooth vector field on $M^{*} \cap U$.

The proof is given in Appendix A.
Remark 2.21. Theorem 2.20 is a nonlinear generalization of the results on the internal regularity of linear DAEs in [18] (see also [32], where the internal regularity is called autonomy). As stated in Theorem 6.11 of [18], a linear DAE $\Delta=(E, H)$, given by (3), is internally regular if and only if the maximal invariant subspace \mathscr{M}^{*} of Δ (i.e., the largest subspace such that $\left.H \mathscr{M}^{*} \subseteq E \mathscr{M}^{*}\right)$ satisfies $\operatorname{dim} \mathscr{M}^{*}=\operatorname{dim} E \mathscr{M}^{*}$. A nonlinear counterpart of the last condition is (ii) of Theorem 2.20 and thus M^{*} is a natural nonlinear generalization of \mathscr{M}^{*}. Observe that M^{*} is the limit of M_{k} as \mathscr{V}^{*} is the limit of \mathscr{V}_{k}, defined in Remark 2.6. Moreover, we have shown in [18] that the maximal invariant subspace $\mathscr{M}^{*}=\mathscr{V}^{*}$, where \mathscr{V}^{*} coincides with the limit of the Wong sequence \mathscr{V}_{k} defined in Remark 2.6.

For a DAE control system of the form $E(x) \dot{x}=F(x)+G(x) u$, the internal regularization problem, i.e., to find a feedback law $u=\gamma(x)$ such that the DAE $E(x) \dot{x}=F(x)+G(x) \gamma(x)$ is
internally regular, was discussed in [16], via the geometric reduction method. The connections and differences between section 2 and [16] are summarized in the following remark.

Remark 2.22. Note that the algorithm in section 2.2, Propositions 2.7 and 2.8, Remark 2.9 of the present paper are the special cases of, respectively, Algorithm 1, Proposition 2, Theorem 2(i) and Remark 6 in [16] with inputs u been absent. There are, however, essential differences between results of section 2 and those of [16]. Firstly, the main contribution of section 2 is not to discuss geometric reduction method but is to analyze the differences between external equivalence and internal equivalence for DAEs, the notions of restriction $\left.\Xi\right|_{M}$ and reduction $\left.\Xi\right|_{M} ^{\text {red }}$ (essential for internal equivalence and formalized in Definitions 2.12 and 2.13, respectively) are novel, while the internal feedback equivalence of DAE control systems was not discussed in [16]. Secondly, Proposition 2.3 is different from the special case of Proposition 1 in [16] because the latter is a necessary and sufficient condition under a suitable constant rank assumption, while, as shown in Proposition 2.3, such constant rank assumption is actually not required for proving one direction, i.e., for proving that if M is locally invariant, then $F(x) \in E(x) T_{x} M$ for all x around M. Thirdly, Assumption 1 of algorithm, that is, $\operatorname{rank} \tilde{E}_{k}(\cdot)=$ const., is replaced by rank $\left[\tilde{E}_{k}(\cdot), \tilde{G}_{k}(\cdot)\right]$ in algorithm of [16]. It means that in the latter some singularities can be compensated by the control u while algorithm of section 2.2 detects intrinsic singularities of the pair (E, F). At last, more detailed explanations on the assumptions of geometric reduction method, such as the requirements $x_{p} \in M_{k}$, the connectivity of M_{k} in Definition 2.5, the necessity of using $U_{k^{*}+1}$ rather than $U_{k^{*}}$ in Proposition 2.7, can be consulted in Remark 1(iii) and (iv) of [16].

Example 2.23. Consider a DAE $\Xi_{6,6}=(E, F)$ with the generalized state $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right.$, $\left.x_{5}, x_{6}\right) \in X$, where $X=\left\{x \in \mathbb{R}^{6}: x_{1} \neq x_{6}, x_{6}>0\right\}$,

$$
\left[\begin{array}{cccccc}
-\ln x_{6} & x_{6}\left(x_{3}+x_{5}\right) & \frac{x_{1} x_{5} \ln x_{6}}{x_{1}-x_{6}} & 0 & 0 & 0 \tag{11}\\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1-\frac{x_{1}}{x_{6}} & 0 \\
0 & 0 & 0 & 0 & x_{5} & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{c}
\left(x_{1}-x_{6}\right)\left(x_{3}+x_{5}\right)-\left(x_{2} x_{6}-x_{6}^{2}-x_{1}\right) \ln x_{6} \\
x_{5}-x_{2}+x_{6} \\
\left(1-\frac{x_{1}}{x_{6}}\right)\left(x_{6}^{2}-x_{6} x_{2}+x_{4}\right) \\
x_{6}+x_{5}\left(x_{6}^{2}-x_{6} x_{2}+x_{4}\right) \\
\frac{x_{1}}{x_{6}} \\
x_{3}+x_{5}
\end{array}\right] .
$$

We consider Ξ around a point $x_{p}=(0,1,0,0,0,1)$ and apply to Ξ the algorithm given in section 2.2.

Step 1: We have $\operatorname{rank} E(x)=r_{1}=4$ on $U_{1}=X$. Since E is already in the desired form, set $Q_{1}=I_{6}$ to get

$$
M_{1}=\left\{x \in X: Q_{1} F(x) \in \operatorname{Im} Q_{1} E(x)\right\}=\left\{x \in X: \frac{x_{1}}{x_{6}}=0, x_{3}+x_{5}=0\right\} .
$$

It is clear that $x_{p} \in M_{1}$ and $M_{1}^{c}=M_{1} \cap U_{1}=M_{1}$ is a locally smooth connected embedded submanifold and $n_{1}=\operatorname{dim} M_{1}^{c}=4$. Then choose new coordinates $\bar{z}_{1}=\left(\bar{x}_{1}, \bar{x}_{3}\right)=\left(\frac{x_{1}}{x_{6}}, x_{3}+x_{5}\right)$ and keep the remaining coordinates $z_{1}=\left(x_{2}, x_{4}, x_{5}, x_{6}\right)$ unchanged. The system in new coordinates, denoted $\hat{\Xi}_{1}$, takes the form

$$
\hat{\Xi}_{1}:\left[\begin{array}{ccccc}
x_{5} \bar{x}_{3} & 0 & \frac{-\bar{x}_{1} x_{5} \ln x_{6}}{\bar{x}_{1}-1} & \frac{-\bar{x}_{1} \ln x_{6}}{x_{6}} & -x_{6} \ln x_{6} \\
0 & 1 & 0 & \frac{\bar{x}_{1} x_{5} \ln x_{6}}{\tilde{x}_{1}-1} \\
0 & 0 & -\bar{x}_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & x_{5} & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

By setting $\bar{z}_{1}=\left(\bar{x}_{1}, \bar{x}_{3}\right)=0$, we get the reduction of M_{1}^{c}-restriction of $\hat{\Xi}_{1}$ (see Definition 2.12 and 2.13) as

$$
\Xi_{1}=\left.\hat{\Xi}_{1}\right|_{M_{1}^{c}} ^{r e d}:\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & x_{5} & -1
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{2} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{c}
-x_{6} \ln x_{6}\left(x_{2}-x_{6}\right) \\
x_{5}-x_{2}+x_{6} \\
\left(x_{6}^{2}-x_{6} x_{2}+x_{4}\right) \\
x_{6}+x_{5}\left(x_{6}^{2}-x_{6} x_{2}+x_{4}\right)
\end{array}\right]
$$

Step 2: Consider the DAE $\Xi_{1}=\left(E_{1}, F_{1}\right)$. We have $\operatorname{dim} E(x) T_{x} M_{1}^{c}=\operatorname{rank} E_{1}\left(z_{1}\right)=r_{2}=2$ around x_{p} (on $W_{2}=M_{1}^{c} \cap U_{2}=M_{1}^{c}$, where $U_{2}=U_{1}=X$). Set $Q_{1}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and define M_{2} by

$$
M_{2}=\left\{z_{1}: Q_{1} F_{1}\left(\bar{z}_{1}\right) \in \operatorname{Im} Q_{1} E_{1}\left(z_{1}\right)\right\}=\left\{z_{1}: x_{2}-x_{6}=0, x_{6}^{2}-x_{6} x_{2}+x_{4}=0\right\}
$$

It is clear that $x_{p} \in M_{2}, M_{2}^{c}=M_{2} \cap U_{2}=M_{2}$ and $n_{2}=\operatorname{dim} M_{2}^{c}=2$. Then choose new coordinates $\bar{z}_{2}=\left(\bar{x}_{2}, \bar{x}_{4}\right)=\left(x_{2}-x_{6}, x_{6}^{2}-x_{6} x_{2}+x_{4}\right)$ and keep the remaining coordinates $z_{2}=\left(x_{5}, x_{6}\right)$ unchanged. For the system in new coordinates, denoted $\hat{\Xi}_{2}$, by a similar procedure as in Step 1, we can define the reduction of M_{1}^{c}-restriction of $\hat{\Xi}_{2}$ as

$$
\Xi_{2}=\left.\hat{\Xi}_{2}\right|_{M_{2}^{c}} ^{\text {red }}:\left[\begin{array}{cc}
0 & 0 \\
x_{5} & -1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{l}
x_{5} \\
x_{6}
\end{array}\right]
$$

Step 3: For $\Xi_{2}=\left(E_{2}, F_{2}\right)$, we have $\operatorname{dim} E(x) T_{x} M_{2}^{c}=\operatorname{rank} E_{2}\left(z_{2}\right)=r_{2}=1$ in $W_{3}=M_{2}^{c}$. By definition, $M_{3}^{c}=M_{3}=\left\{z_{2}: x_{5}=0\right\}$. It can be observed that $\operatorname{dim} M_{3}^{c}=n_{3}=1$ and by a similar construction as at former steps, we have

$$
\Xi_{3}=\left.\bar{\Xi}_{2}\right|_{M 3} ^{r e d}:-\dot{x}_{6}=x_{6}
$$

Step 4: We have $M_{4}^{c}=M_{3}^{c}\left(\operatorname{dim} M_{4}^{c}=n_{4}=n_{3}=1\right)$ and $\operatorname{dim} E(x) T_{x} M_{4}^{c}=r_{4}=1$, thus $k^{*}=3$ and the algorithm stops at Step $k^{*}+1=4$. Therefore, by Proposition 2.8,

$$
\begin{aligned}
M^{*}=M_{4}^{c} & =\left\{x \in \mathbb{R}^{6}: x_{1}=x_{3}=x_{4}=x_{5}=0, x_{2}=x_{6}, x_{6}>0\right\} \\
& =\left\{x \in \mathbb{R}^{6}: \bar{x}_{1}=\cdots=\bar{x}_{5}=0, \bar{x}_{6}>0\right\}
\end{aligned}
$$

is locally maximal invariant and $x_{p} \in M^{*}$ is a consistent point. Moreover, since $x_{6}(t)=e^{-t} x_{60}$ is the unique maximal solution of $\Xi^{*}=\Xi_{3}$ passing through $x_{0} \in M^{*}$, we have that $x(t)=$ $\Psi^{-1}\left(x_{6}(t), 0,0,0,0,0\right)=\left(0, e^{-t} x_{60}, 0,0,0, e^{-t} x_{60}\right)$ is the unique maximal solution of Ξ passing through $x_{0}=\Psi^{-1}\left(x_{60}, 0,0,0,0,0\right) \in M^{*}$, where $\Psi(x)=\left(x_{6}, \frac{x_{1}}{x_{6}}, x_{2}-x_{6}, x_{3}+x_{5}, x_{6}^{2}-\right.$ $x_{2} x_{6}+x_{4}, x_{5}$) is a local diffeomorphism (actually, $z^{*}=x_{6}$). Hence the DAE Ξ is internally
regular around x_{p} by definition, which illustrates the results of Theorem 2.20 since $\operatorname{dim} M^{*}=$ $n_{4}=\operatorname{dim} E(x) T_{x} M^{*}=r_{4}=1$, and Ξ is in-equivalent to the ODE: $\dot{x}_{6}=-x_{6}$.

3. Analysis of nonlinear DAEs via explicitation

3.1. Explicitation with driving variables of nonlinear DAEs

The explicitation (with driving variables) of a DAE Ξ is the following procedure.

- For a DAE $\Xi_{l, n}=(E, F)$, assume that rank $E(x)=$ const. $=q$ in a neighborhood $U \subseteq X$ of a point $x_{p} \in X$. Then by Dolezal's theorem [30] (see also [31]), there exists a smooth map Q : $U \rightarrow G L(l, \mathbb{R})$ such that $Q(x) E(x)=\left[\begin{array}{c}E_{1}(x) \\ 0\end{array}\right]$, where $E_{1}: U \rightarrow \mathbb{R}^{q \times n}$, and rank $E_{1}(x)=q$. Thus Ξ is, locally on U, ex-equivalent via $Q(x)$ to

$$
\left\{\begin{align*}
E_{1}(x) \dot{x} & =F_{1}(x), \tag{12}\\
0 & =F_{2}(x),
\end{align*}\right.
$$

where $Q(x) F(x)=\left[\begin{array}{c}F_{1}(x) \\ F_{2}(x)\end{array}\right]$, and where $F_{1}: U \rightarrow \mathbb{R}^{q}, F_{2}: U \rightarrow \mathbb{R}^{l-q}$.

- The matrix $E_{1}(x)$ is of full row rank q, choose its right inverse $E_{1}^{\dagger}(x)$, i.e., $E_{1} E_{1}^{\dagger}=I_{q}$ and set $f(x)=E_{1}^{\dagger}(x) F_{1}(x)$. The collection of all \dot{x} satisfying $E_{1}(x) \dot{x}=F_{1}(x)$ of (12) is given by the differential inclusion:

$$
\begin{equation*}
\dot{x} \in f(x)+\operatorname{ker} E_{1}(x)=f(x)+\operatorname{ker} E(x), \tag{13}
\end{equation*}
$$

where $f(x)$ is a smooth vector field on X.

- Since $\operatorname{ker} E(x)$ is a distribution of constant rank $n-q$, choose locally $m=n-q$ independent vector fields g_{1}, \ldots, g_{m} on X such that ker $E(x)=\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}(x)$. Then by introducing driving variables $v_{i}, i=1, \ldots, m$, we parametrize the affine distribution $f(x)+\operatorname{ker} E_{1}(x)$ and thus all solutions of (13) are given by all solutions (corresponding to all controls $\left.v_{i}(t) \in \mathbb{R}\right)$ of

$$
\begin{equation*}
\dot{x}=f(x)+\sum_{i=1}^{m} g_{i}(x) v_{i} \tag{14}
\end{equation*}
$$

- Form a matrix $g(x)=\left[g_{1}(x), \ldots, g_{m}(x)\right]$. Then, we rewrite equation (14) as $\dot{x}=f(x)+$ $g(x) v$, where $v=\left(v_{1}, \ldots, v_{m}\right)$, and set $h(x)=F_{2}(x)$. We claim, see Proposition 3.5 below, that all solutions of DAE (12) (and thus of the original DAE Ξ) are in one-to-one correspondence with all solutions (corresponding to all \mathcal{C}^{0}-controls $v(t)$) of

$$
\left\{\begin{array}{l}
\dot{x}=f(x)+g(x) v, \tag{15}\\
0=h(x) .
\end{array}\right.
$$

- To (15), we attach the control system $\Sigma=\Sigma_{n, m, p}=(f, g, h)$, given by

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}=f(x)+g(x) v, \tag{16}\\
y=h(x),
\end{array}\right.
$$

where $n=\operatorname{dim} x, m=\operatorname{dim} v, p=\operatorname{dim} y$. Clearly, $m=n-q$ and $p=l-q$ (we will use these dimensional relations in the following discussion). In the above way, we attach a control system Σ to a DAE Ξ (actually, a class of control systems, see Proposition 3.2 below).

Definition 3.1. (explicitation with driving variables) Given a DAE $\Xi_{l, n}=(E, F)$, fix a point $x_{p} \in X$ and assume that rank $E(x)=$ const. locally around x_{p}. Then, by a (Q, v)-explicitation we will call any control system $\Sigma=\Sigma_{n, m, p}=(f, g, h)$ given by (16) with

$$
f(x)=E_{1}^{\dagger} F_{1}(x), \quad \operatorname{Im} g(x)=\operatorname{ker} E(x), \quad h(x)=F_{2}(x),
$$

where $Q E(x)=\left[\begin{array}{c}E_{1}(x) \\ 0\end{array}\right], Q F(x)=\left[\begin{array}{l}F_{1}(x) \\ F_{2}(x)\end{array}\right]$. The class of all (Q, v)-explicitations will be called shortly the explicitation class. If a particular control system Σ belongs to the explicitation class of Ξ, we will write $\Sigma \in \operatorname{Expl}(\Xi)$.

Notice that a given Ξ has many (Q, v)-explicitations since the construction of $\Sigma \in \operatorname{Expl}(\Xi)$ is not unique: there is a freedom in choosing $Q(x), E_{1}^{\dagger}(x)$, and $g(x)$. As a consequence of this non-uniqueness of construction, the explicitation Σ of Ξ is a system defined up to a feedback transformation, an output multiplication and a generalized output injection (or, equivalently, a class of systems).

Proposition 3.2. Assume that a control system $\Sigma_{n, m, p}=(f, g, h)$ is a (Q, v)-explicitation of a DAE $\Xi_{l, n}=(E, F)$ corresponding to a choice of invertible matrix $Q(x)$, right inverse $E_{1}^{\dagger}(x)$, and matrix $g(x)$. Then a control system $\tilde{\Sigma}_{n, m, p}=(\tilde{f}, \tilde{g}, \tilde{h})$ is a (\tilde{Q}, \tilde{v})-explicitation of $\Xi_{l, n}$ corresponding to a choice of invertible matrix $\tilde{Q}(x)$, right inverse $\tilde{E}_{1}^{\dagger}(x)$, and matrix $\tilde{g}(x)$ if and only if Σ and $\tilde{\Sigma}$ are equivalent via a v-feedback transformation of the form $v=\alpha(x)+\beta(x) \tilde{v}$, a generalized output injection $\gamma(x) y=\gamma(x) h(x)$ and an output multiplication $\tilde{y}=\eta(x) y$, which map

$$
\begin{equation*}
f \mapsto \tilde{f}=f+\gamma h+g \alpha, \quad g \mapsto \tilde{g}=g \beta, \quad h \mapsto \tilde{h}=\eta h, \tag{17}
\end{equation*}
$$

where α, β and η are smooth matrix-valued functions of appropriate sizes, $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$ is a p-tuple of smooth vector fields on X, and β and η are invertible.

The proof is given in Appendix B. Since the explicitation of a DAE is a class of control systems, we will propose now an equivalence relation for control systems. An equivalence of two nonlinear control systems is usually defined by state coordinates transformations and feedback transformations (e.g. see [27,28]), and sometimes output coordinates transformations [33]. In the present paper, we define a more general system equivalence of two control systems as follows.

Definition 3.3. (system equivalence) Consider two control systems $\Sigma_{n, m, p}=(f, g, h)$ and $\tilde{\Sigma}_{n, m, p}=(\tilde{f}, \tilde{g}, \tilde{h})$ defined on X and \tilde{X}, respectively. The systems Σ and $\tilde{\Sigma}$ are called system equivalent, or shortly sys-equivalent, denoted by $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$, if there exist a diffeomorphism $\psi: X \rightarrow \tilde{X}$, matrix-valued functions $\alpha: X \rightarrow \mathbb{R}^{m}, \beta: X \rightarrow G L(m, \mathbb{R}), \eta: X \rightarrow G L(p, \mathbb{R})$, and a p-tuple of vector fields $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$ on X such that

$$
\tilde{f} \circ \psi=\frac{\partial \psi}{\partial x}(f+\gamma h+g \alpha), \quad \tilde{g} \circ \psi=\frac{\partial \psi}{\partial x} g \beta, \quad \tilde{h} \circ \psi=\eta h .
$$

If $\psi: U \rightarrow \tilde{U}$ is a local diffeomorphism between neighborhoods U of x_{p} and \tilde{U} of \tilde{x}_{p}, and α, β, γ, η are defined locally on U, we will speak about local sys-equivalence.

Remark 3.4. The above defined sys-equivalence of two nonlinear control systems generalizes the Morse equivalence of two linear control systems (see [18,34]).

The following proposition shows that solutions of any DAE are in a one-to-one correspondence with solutions of its (Q, v)-explicitation.

Proposition 3.5. Consider a DAE $\Xi_{l, n}=(E, F)$ and let a control system $\Sigma_{n, m, p}=(f, g, h)$ be $a(Q, v)$-explicitation of Ξ, i.e., $\Sigma \in \operatorname{Expl}(\Xi)$. Then a \mathcal{C}^{1}-curve $x(\cdot)$ is a solution of Ξ if and only if there exists $v(\cdot) \in \mathcal{C}^{0}$ such that $(x(\cdot), v(\cdot))$ is a solution of Σ respecting the output constraints $y=0$, i.e., a solution of (15).

The proof is given in Appendix B. The following theorem is a fundamental result of the present paper, which shows that sys-equivalence for explicitation systems (control systems) is a true counterpart of the ex-equivalence for DAEs.

Theorem 3.6. Consider two DAEs $\Xi_{l, n}=(E, F)$ and $\tilde{\Xi}_{l, n}=(\tilde{E}, \tilde{F})$. Assume that $\operatorname{rank} E(x)$ and $\operatorname{rank} \tilde{E}(\tilde{x})$ are constant around two points x_{p} and \tilde{x}_{p}, respectively. Then for any two control systems $\Sigma_{n, m, p}=(f, g, h) \in \operatorname{Expl}(\Xi)$ and $\tilde{\Sigma}_{n, m, p}=(\tilde{f}, \tilde{g}, \tilde{h}) \in \operatorname{Expl}(\tilde{\Xi})$, we have that locally $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$ if and only if $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$.

Fig. 1. Ex-equivalence of DAEs and sys-equivalence of control systems.

The proof is given in Appendix B. We use Fig. 1 to illustrate the results of Theorem 3.6. In order to show how the explicitation can be useful in the DAEs theory, we discuss below how the analysis of DAEs of sections 2.1 and 2.3 is related to the notion of zero dynamics of nonlinear control theory. For a nonlinear control system $\Sigma_{n, m, p}=(f, g, h)$ and a nominal point x_{p}, assume $h\left(x_{p}\right)=0$. Recall its zero dynamics algorithm [27,28].

Step 1: set $N_{1}=h^{-1}(0)$. Step $k(k>1)$: assume for some neighborhood $U_{k-1} \subseteq X$ of x_{p}, $N_{k-1}^{c}=N_{k-1} \cap U_{k-1}$ is a smooth embedded and connected submanifold such that $x_{p} \in N_{k-1}^{c}$. Set

$$
\begin{equation*}
N_{k}=\left\{x \in N_{k-1}^{c}: f(x) \in T_{x} N_{k-1}^{c}+\operatorname{span}\left\{g_{1}(x), \ldots, g_{m}(x)\right\}\right\} . \tag{18}
\end{equation*}
$$

For a control system $\Sigma=(f, g, h)$, a smooth embedded connected submanifold N containing a point x_{p} is called output zeroing if (i) $h(x)=0, \forall x \in N$; (ii) N is locally controlled invariant around x_{p} (i.e., $\exists u: N \rightarrow \mathbb{R}^{m}$ and a neighborhood U_{p} of x_{p} such that $f(x)+g(x) u(x) \in$ $T_{x} N, \forall x \in N \cap U_{p}$). An output zeroing submanifold N^{*} is locally maximal if for some neighborhood U of x_{p}, any other output zeroing submanifold N^{\prime} satisfies $N^{\prime} \cap U \subseteq N^{*} \cap U$.

Remark 3.7. (i) It is shown in [27] that N_{k} is invariant under feedback transformations. Then consider a control system $\tilde{\Sigma}=(\tilde{f}, \tilde{g}, \tilde{h})$, given by applying a generalized output injection and an output multiplication to Σ, i.e., $\tilde{f}=f+\gamma h, \tilde{g}=g, \tilde{h}=\eta h$, where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right), \gamma_{i}: X \rightarrow$ $T X$ and $\eta: X \rightarrow G L(p, \mathbb{R})$. By $\tilde{N}_{0}=\tilde{h}^{-1}(0)=h^{-1}(0)$ (since $\eta(x)$ is invertible) and for

$$
\begin{aligned}
\tilde{N}_{k} & =\left\{x \in \tilde{N}_{k-1}^{c}: f(x)+\gamma h(x) \in T_{x} \tilde{N}_{k-1}^{c}+\operatorname{span}\left\{\tilde{g}_{1}, \ldots, \tilde{g}_{m}\right\}(x)\right\} \\
& =\left\{x \in \tilde{N}_{k-1}^{c}: f(x)+0 \in T_{x} \tilde{N}_{k-1}^{c}+\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}(x)\right\},
\end{aligned}
$$

we have $\tilde{N}_{k}=N_{k}$ for $k \geq 0$, which means that N_{k} of the zero dynamics algorithm is invariant under generalized output injection and output multiplication.
(ii) The sequence of submanifolds N_{k}^{c} of the zero dynamics algorithm is well-defined for the class $\operatorname{Expl}(\Xi)$, i.e., does not depend on the choice of $\Sigma \in \operatorname{Expl}(\Xi)$. Indeed, since by Proposition 3.2 any two systems $\Sigma, \Sigma^{\prime} \in \operatorname{Expl}(\Xi)$ are equivalent via a v-feedback, a generalized output injection, and an output multiplication, then by the argument in item (i) above, we have $\tilde{N}_{k}=N_{k}$.

Proposition 3.8. Consider a DAE $\Xi_{l, n}=(E, F)$ satisfying rank $E(x)=q=$ const. around a point x_{p} and a control system $\Sigma=(f, g, h) \in \operatorname{Expl}(\Xi)$. Denote $\mathcal{G}(x)=\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}(x)$, where the vector fields $g_{i}, 1 \leq i \leq m$, are the columns of g. The following conditions
(A1) for Ξ, the submanifold M_{k}^{c} of the geometric reduction method of section 2.1 is smooth, embedded, connected and $\operatorname{dim} E(x) T_{x} M_{k^{*}}^{c}=$ const. for all $x \in M_{k^{*}}^{c}$ around x_{p},
(A2) for Σ, the submanifold N_{k}^{c} of the zero dynamics algorithm above is smooth, embedded, connected and $\operatorname{dim} \mathcal{G}(x) \cap T_{x} N_{k^{*}}^{c}=$ const. for all $x \in N_{k^{*}}^{c}$ around x_{p} (see Proposition 6.1.1 in [27]),
are equivalent for each $k \geq 1$. Assume that either (A1) or (A2) holds, then the maximal invariant submanifold $M^{*}=M_{k^{*}}^{c}$ of Ξ coincides with the maximal output zeroing submanifold $N^{*}=N_{k^{*}}^{c}$ of Σ. Moreover, Ξ is internally regular (around x_{p}) if and only if $\mathcal{G}\left(x_{p}\right) \cap T_{x_{p}} N^{*}=0$ (equation (6.4) of [27]).

The proof is given in Appendix B.
Remark 3.9. By Proposition 3.8, if there exists a unique $u=u(x)$ that renders N^{*} output zeroing and locally maximal control invariant for a control system $\Sigma \in \operatorname{Expl}(\Xi)$, then the original DAE Ξ is internally regular. Since the zero dynamics do not depend on the choice of explicitation, the internal regularity of Ξ corresponds to the fact that the zero output constraint $y(t)=0$ of any control system $\Sigma \in \operatorname{Expl}(\Xi)$ can be achieved by a unique control $u(t)$ or, equivalently, the zero dynamics of Σ is a unique vector field on N^{*}.

The explicitation can be also used to characterize solutions of DAEs which are not necessarily internally regular, that is, the restricted DAE Ξ^{*}, given by (6), has non-unique maximal solutions (recall that Ξ^{*} has isomorphic solutions with the original DAE Ξ by Proposition 2.8). We now apply the explicitation method to Ξ^{*} to have the following result.

Proposition 3.10. Consider a DAE $\Xi=(E, F)$ and fix a point $x_{p} \in X$. Assume that the locally maximal invariant submanifold M^{*} around x_{p} exists and can be constructed via the algorithm in section 2.2. Then the reduction of local M^{*}-restriction of Ξ, denoted by $\left.\Xi\right|_{M^{*}} ^{\text {red }}$, coincides with the DAE $\Xi^{*}: E^{*}\left(z^{*}\right) \dot{z}^{*}=F^{*}\left(z^{*}\right)$ of Proposition 2.8 with $E^{*}\left(z^{*}\right)$ being of full row rank r^{*}. We have
(i) A curve $z^{*}: I \rightarrow M^{*}$ is a solution of Ξ^{*} if and only if it is an integral curve of the affine distribution $\mathcal{A}\left(z^{*}\right)=f^{*}\left(z^{*}\right)+\operatorname{ker} E\left(z^{*}\right)$, i.e., $\dot{z}^{*}(\cdot) \in \mathcal{A}\left(z^{*}(\cdot)\right)$, where $f^{*}=\left(E^{*}\right)^{\dagger} F^{*}$.
(ii) \mathcal{C}^{1}-solutions of Ξ^{*} are in one-to-one correspondence with those of any (Q, v)-explicitation $\Sigma^{*} \in \operatorname{Expl}\left(\Xi^{*}\right)$ of the form

$$
\Sigma^{*}: z^{*}=f^{*}\left(z^{*}\right)+g^{*}\left(z^{*}\right) v
$$

which is a control system without outputs, where $\operatorname{Im} g^{*}=\operatorname{ker} E, g^{*}=\left(g_{1}^{*}, \ldots, g_{m^{*}}^{*}\right)$ and $v=\left(v_{1}, \ldots, v_{m^{*}}\right)$, and $v(t) \in \mathcal{C}^{0}$.
(iii) If $\operatorname{ker} E=\operatorname{ker} E^{*}$ is involutive, then Ξ^{*} is ex-equivalent (that is, the original DAE Ξ is in-equivalent) to a semi-explicit DAE of the form

$$
\dot{z}_{1}^{*}=F_{1}\left(z_{1}^{*}, z_{2}^{*}\right),
$$

which can be seen as a control system that is not affine with respect to the control z_{2}^{*}.
Proof. We omit the proof since item (i) is clear, and items (ii) and (iii) can be easily deduced by applying, respectively, the results of Proposition 3.5 and that of Theorem 3.13 (see below) to Ξ^{*}.

3.2. Driving variable reducing and semi-explicit DAEs

Now we will show by an example that sometimes we can reduce some of driving variables of a (Q, v)-explicitation.

Example 3.11. Consider a DAE $\Xi=(E, F)$, given by

$$
\left[\begin{array}{ccc}
\sin x_{3}-\cos x_{3} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
F_{1}(x) \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right],
$$

where $F_{1}: X \rightarrow \mathbb{R}$ is smooth. By rank $E(x)=1$, the explicitation class $\operatorname{Expl}(\Xi)$ is not empty. A control system $\Sigma \in \operatorname{Expl}(\boldsymbol{\Xi})$ is:

$$
\Sigma:\left\{\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{c}
\sin x_{3} \\
-\cos x_{3}
\end{array}\right] F_{1}(x)+\left[\begin{array}{cc}
0 & \cos x_{3} \\
0 & -\sin x_{3} \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right], \\
y & =x_{1}^{2}+x_{2}^{2}-1,
\end{aligned}\right.
$$

where $\left[\sin x_{3}-\cos x_{3} 0\right]^{T}$ is a right inverse of $E_{1}(x)=\left[\sin x_{3}-\cos x_{3} 0\right]$. Now consider the last equation in the dynamics of Σ, which is $\dot{x}_{3}=v_{1}$. Observe that v_{1} acts on \dot{x}_{3} only, which implies that v_{1} is decoupled from the other part of the dynamics. Thus, we may get rid of v_{1} and regard x_{3} as a new control. Thus the dynamics of Σ become:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\sin x_{3} F_{1}(x) \\
-\cos x_{3} F_{1}(x)
\end{array}\right]+\left[\begin{array}{c}
\cos x_{3} \\
-\sin x_{3}
\end{array}\right] v_{2},
$$

where x_{1} and x_{2} are new states, x_{3} and v_{2} are the new control inputs. By rectifying the vector field $g_{2}=\cos x_{3} \frac{\partial}{\partial x_{1}}-\sin x_{3} \frac{\partial}{\partial x_{2}}$, we can reduce v_{2} in a similar way. We are, however, not able to reduce v_{1} and v_{2} simultaneously.

Before giving the main result of this subsection, we formally define what we mean by "reducing" variables of a control system Σ.

Definition 3.12 (driving variable reduction). For a control system $\Sigma_{n, m, p}=(f, g, h)$, let $\mathcal{G}^{\text {red }}$ be an involutive sub-distribution of constant rank k of the distribution $\mathcal{G}=\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}$. There exists a feedback transformation and a coordinates change such that, locally, $\mathcal{G}^{\text {red }}=$ $\operatorname{span}\left\{\frac{\partial}{\partial x_{2}^{1}}, \ldots, \frac{\partial}{\partial x_{2}^{k}}\right\}$ and Σ takes the form

$$
\left\{\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right)+\sum_{i=1}^{m-k} g_{1}^{i}\left(x_{1}, x_{2}\right) v_{1}^{i}, \\
\dot{x}_{2} & =v_{2} \\
y & =h\left(x_{1}, x_{2}\right),
\end{aligned}\right.
$$

where $v_{2}=\left(v_{2}^{1}, \ldots, v_{2}^{k}\right)$. We will say that Σ can be $\mathcal{G}^{\text {red }}$-reduced to the following control system

$$
\left\{\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right)+\sum_{i=1}^{m-k} g_{1}^{i}\left(x_{1}, x_{2}\right) v_{1}^{i} \\
y & =h\left(x_{1}, x_{2}\right)
\end{aligned}\right.
$$

where x_{2} is a new control and the reduced state x_{1} is of dimension $n-k$. We say that Σ can be fully reduced if $\mathcal{G}^{\text {red }}=\mathcal{G}$.

Now we connect reducing of control systems with semi-explicit DAEs.

Theorem 3.13. For a $D A E \Xi_{l, n}=(E, F)$, the following statements are equivalent around a point $x_{p} \in X$:
(i) $\operatorname{rank} E(x)=$ const. and the distribution $\operatorname{ker} E(x)$ is involutive.
(ii) Ξ is locally ex-equivalent to a semi-explicit DAE $\Xi^{S E}:\left\{\begin{aligned} \dot{x}_{1} & =F_{1}\left(x_{1}, x_{2}\right), \\ 0 & =F_{2}\left(x_{1}, x_{2}\right) .\end{aligned}\right.$
(iii) Any control system $\Sigma=(f, g, h) \in \operatorname{Expl}(\Xi)$ can be fully reduced.

The proof is given in Appendix B.

Remark 3.14. (i) Observe that if Ξ is ex-equivalent to $\Xi^{S E}$, then by rewriting $x_{2}=w$ and choosing the output $y=F_{2}\left(x_{1}, w\right)$, we get the following control system Σ^{w} with an input w,

$$
\Sigma^{w}:\left\{\begin{array}{c}
\dot{x}_{1}=F_{1}\left(x_{1}, w\right), \\
y=F_{2}\left(x_{1}, w\right) .
\end{array}\right.
$$

The above system Σ^{w} has the same number of variables as Ξ. Thus Σ^{w} is an explicitation without driving variables of Ξ. So there are two kinds of explicitation for nonlinear DAEs, namely, explicitation with, or without, driving variables (the latter is possible if and only if $\operatorname{ker} E$ is involutive).
(ii) A linear DAE $\Delta=(E, H)$, given by (3), has always two kinds of explicitations, since the rank of E is always constant and the distribution $\mathcal{G}=\operatorname{ker} E$ is always involutive. The relations and differences of the two explicitations for linear DAEs are discussed in [35] and Chapter 3 of [36] (note that the explicitation without driving variables for linear DAEs is called the (Q, P)explicitation there).

4. Nonlinear generalizations of the Weierstrass form

In this subsection, we will use the explicitation (with driving variables) procedure to transform an internally regular DAE $\Xi_{l, n}=(E, F)$ with $l=n$, into normal forms under the external equivalence. A linear regular DAE is always ex-equivalent (via linear transformations) to the Weierstrass form WF [21], given by

$$
\mathbf{W F}:\left[\begin{array}{cc}
N & 0 \tag{19}\\
0 & I
\end{array}\right]\left[\begin{array}{c}
\dot{z} \\
\dot{z}^{*}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{c}
z \\
z^{*}
\end{array}\right],
$$

where $N=\operatorname{diag}\left(N_{1}, \ldots, N_{m}\right)$, with $N_{i}, i=1, \ldots, m$ being nilpotent matrices of index ρ_{i}, i.e., $N_{i}^{j} \neq 0$ for all $j=1, \ldots, \rho_{i}-1$ and $N_{i}^{\rho_{i}}=0$. The following theorem generalizes that result and shows that any internally regular nonlinear DAE (under the assumption that some ranks are constant) is always ex-equivalent to a nonlinear Weierstrass form NWF1 (see (20) below). Note that $\bar{\phi}_{k}$ in the algorithm in section 2.2, defined on $W_{k} \subseteq M_{k}^{c}$, can be considered as maps on $U_{0} \subseteq X$ by taking $\bar{\Phi}_{k}=\bar{\varphi}_{k} \circ \varphi_{k-1} \circ \cdots \circ \varphi_{1}(x)$. Then for $k \geq 1$, set $H_{k}=\left[\begin{array}{lll}\bar{\Phi}_{1} & \ldots & \bar{\Phi}_{k}\end{array}\right]^{T}$ and H_{0} is empty. Assumption 2 of the algorithm of section 2.2 says that rank $\mathrm{D} \tilde{F}_{k}^{2}\left(z_{k-1}\right)=$ const. for $z_{k-1} \in M_{k} \cap U_{k}$. In (A2) below, we replace it by a stronger rank assumption on a neighborhood $U \subseteq X$ of x_{p}.

Theorem 4.1. Consider a DAE $\Xi_{l, n}=(E, F)$, assume that $\operatorname{rank} E(x)=$ const.$=q$ around a point x_{p}. Also assume in the geometric reduction algorithm in section 2.2 that
(A1) $\operatorname{dim} E(x) T_{x} M_{k}^{c}=$ const. for $x \in M_{k}^{c}$ around $x_{p}, 1 \leq k \leq k^{*}$;
(A2) rank $\left[\begin{array}{c}\mathrm{D} H_{k-1} \\ \mathrm{D} \tilde{F}_{k}^{2}\end{array}\right](x)=$ const. for $1 \leq k \leq k^{*}\left(H_{0}\right.$ is absent) and for all x around x_{p};
(A3) $l=n$ and $\operatorname{dim} M^{*}=\operatorname{dim} E(x) T_{x} M^{*}$, i.e., $r^{*}=n^{*}$, for all $x \in M^{*}$ around x_{p}.
Then Ξ is internally regular and there exists a neighborhood U of x_{p} such that Ξ is locally on U ex-equivalent to the DAE (20), represented by the nonlinear Weierstrass form

NWF1: $\left[\begin{array}{cccc|c}N_{\rho_{1}} & 0 & \cdots & 0 & \\ 0 & N_{\rho_{2}} & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \cdots & 0 & N_{\rho_{m}} & \\ \hline & G\left(z, z^{*}\right) & & I\end{array}\right]\left[\begin{array}{c}\dot{z}_{1} \\ \dot{z}_{2} \\ \vdots \\ \dot{z}_{m} \\ \dot{z}^{*}\end{array}\right]=\left[\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{m} \\ f^{*}\left(z, z^{*}\right)\end{array}\right]+\left[\begin{array}{c}a_{1}+b_{1} \dot{z}^{\rho} \\ a_{2}+b_{2} \dot{z}^{\rho} \\ \vdots \\ a_{m}+b_{m} \dot{z}^{\rho} \\ 0\end{array}\right]$,
where $z_{i}=\left(z_{i}^{1}, \ldots, z_{i}^{\rho_{i}}\right), z=\left(z_{1}, \ldots, z_{m}\right)$, and $\left(z, z^{*}\right)$ are new coordinates, and $\dot{z}^{\rho}=\left(\dot{z}_{1}^{\rho_{1}}, \dot{z}_{2}^{\rho_{2}}\right.$, $\ldots, \dot{z}_{m}^{\rho_{m}}$), with $m=n-q$. The indices $\rho_{i}, 1 \leq i \leq m$, satisfy $\rho_{1} \leq \rho_{2} \leq \ldots \leq \rho_{m}$.

More specifically, for $1 \leq i \leq m$, the $\rho_{i} \times \rho_{i}$ nilpotent matrices $N_{\rho_{i}}$ and the ρ_{i}-dimensional vector-valued functions $a_{i}+b_{i} \dot{z}^{\rho}$ are of the following form

$$
N_{\rho_{i}}=\left[\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right], a_{i}+b_{i} \dot{z}^{\rho}=\left[\begin{array}{c}
a_{i}^{1}+\sum_{s=1}^{m} b_{i, s}^{1} \dot{s}_{s}^{\rho_{s}} \\
\vdots \\
a_{i}^{\rho_{i}-1}+\sum_{s=1}^{m} b_{i, s}^{\rho_{i}-1} \dot{z}_{s}^{\rho_{s}}
\end{array}\right],
$$

where the functions $a_{i}^{k}, b_{i, s}^{k}$ satisfy $\left.a_{i}^{k}\right|_{M_{k}^{c}}=\left.b_{i, s}^{k}\right|_{M_{k}^{c}}=0$, for $1 \leq k \leq \rho_{i}-1$.
The proof of Theorem 4.1 is given in Appendix C. This proof is closely related to the zero dynamics algorithm for nonlinear control systems shown in [27] and the construction procedure of the above normal form is not difficult but quite tedious, so in order to avoid reproducing the zero dynamics algorithm, we will use some results directly from [27] with small modifications.

Remark 4.2. (i) Assumption (A1) of Theorem 4.1 is equivalent to Assumption 1 of the geometric reduction algorithm in section 2.2. By Theorem 2.20, we know that (A3) of Theorem 4.1 implies that Ξ is internally regular around x_{p}.
(ii) A component-wise expression of the above NWF1 is

$$
\text { NWF1: }\left\{\begin{array}{l}
0=z_{i}^{1}, \quad 1 \leq i \leq m \\
\dot{z}_{i}^{k}=z_{i}^{k+1}+a_{i}^{k}+\sum_{s=1}^{m} b_{i, s}^{k} \dot{z}_{s}^{\rho_{s}}, \quad 1 \leq k \leq \rho_{i}-1 \\
\dot{z}^{*}=f^{*}-G \dot{z}
\end{array}\right.
$$

where $a_{i}^{k}, b_{i, s}^{k}, f^{*}$ and G depend on $\left(z, z^{*}\right)$.
(iii) The submanifolds $M_{k}^{c}, k \geq 1$, of the algorithm are given by

$$
M_{k}^{c}=\left\{\left(z, z^{*}\right): z_{i}^{j}=0,1 \leq i \leq m, 1 \leq j \leq k\right\}
$$

and the maximal invariant submanifold M^{*} is given by

$$
M^{*}=\left\{\left(z, z^{*}\right): z_{i}^{j}=0,1 \leq i \leq m, 1 \leq j \leq \rho_{i}\right\} .
$$

Therefore, an equivalent condition for $\left.a_{i}^{k}\right|_{M_{k}^{c}}=\left.b_{i, s}^{k}\right|_{M_{k}^{c}}=0$ is that $a_{i}^{k}, b_{i, s}^{k} \in \mathbf{I}^{k}$, where \mathbf{I}^{k} is the ideal generated by $z_{i}^{j}, 1 \leq i \leq m, 1 \leq j \leq k$ in the ring of smooth functions of z_{b}^{a} and z_{c}^{*}.
(iv) We see that all maximal solutions $\left(z(\cdot), z^{*}(\cdot)\right)$ are unique and of the form $\left(0, z^{*}(\cdot)\right)$, where $z^{*}(\cdot)$ are maximal solutions of the $\mathrm{ODE} \dot{z}^{*}=f^{*}\left(0, z^{*}\right)$ on M^{*}, which agrees with the result of Theorem 2.20(iii).

Example 4.3 (continuation of Example 2.23). Consider the DAE $\Xi_{6,6}=(E, F)$ of (11) around the point $x_{p}=(0,1,0,0,0,1)$. A control system $\Sigma_{6,2,2} \in \operatorname{Expl}(\Xi)$ is

$$
\Sigma:\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{c}
x_{6}\left(x_{2}-x_{6}\right)-x_{1} \\
\frac{x_{1}}{x_{6}}-1 \\
0 \\
x_{5}-x_{2}+x_{6} \\
x_{4}-x_{6}\left(x_{2}-x_{6}\right) \\
-x_{6}
\end{array}\right]+\left[\begin{array}{cc}
x_{6}\left(x_{3}+x_{5}\right) & \frac{x_{1} x_{5}}{x_{6}} \\
\ln x_{6} & 0 \\
0 & \frac{x_{1}}{x_{6}}-1 \\
0 & 0 \\
0 & 1 \\
0 & x_{5}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right], \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{1}}{x_{6}} \\
x_{3}+x_{5}
\end{array}\right] .
$$

It can be observed from Example 2.23 that the assumptions (A1)-(A3) of Theorem 4.1 are satisfied. Now via the following local change of coordinates defined on $U=X=$ $\left\{x \in X: x_{6}>0, x_{1} \neq x_{6}\right\}:$

$$
z_{1}^{1}=\frac{x_{1}}{x_{6}}, \quad z_{1}^{2}=x_{2}-x_{6}, \quad z_{2}^{1}=x_{3}+x_{5}, \quad z_{2}^{2}=x_{4}-x_{2} x_{6}+x_{6}^{2}, \quad z_{2}^{3}=x_{5}, \quad z^{*}=x_{6}
$$

we can bring Σ into the system Σ^{\prime} below, which is of the zero dynamics form (40),

$$
\Sigma^{\prime}:\left\{\begin{array}{l}
y_{1}=z_{1}^{1} \\
\dot{z}_{1}^{1}=z_{1}^{2}+z_{2}^{1} v_{1} \\
\dot{z}_{1}^{2}=z_{1}^{1}+\ln z^{*} \cdot v_{1}-z_{2}^{3} v_{2} \\
y_{2}=z_{2}^{1} \\
\dot{z}_{2}^{1}=z_{2}^{2}+z_{1}^{1} v_{2} \\
\dot{z}_{2}^{2}=z_{2}^{3}+z^{*}\left(z_{1}^{1}+\ln z^{*} \cdot v_{1}-z_{2}^{3} v_{2}\right)-z_{1}^{2} z_{2}^{3} v_{2} \\
\dot{z}_{2}^{3}=z_{2}^{2}+v_{2} \\
\dot{z}^{*}=-z^{*}+z_{2}^{3} v_{2},
\end{array} \Rightarrow \Sigma^{\prime \prime}:\left\{\begin{array}{l}
y_{1}=z_{1}^{1} \\
\dot{z}_{1}^{1}=z_{1}^{2}-\frac{z_{1}^{1} z_{2}^{1}}{\ln z^{*}}+\frac{z_{2}^{1}}{\ln z^{*}} \tilde{v}_{1}+\frac{z_{2}^{1} z_{2}^{3}}{\ln z^{*}} \tilde{v}_{2} \\
\dot{z}_{1}^{2}=\tilde{v}_{1} \\
y_{2}=z_{2}^{1} \\
\dot{z}_{2}^{1}=z_{2}^{2}-z_{1}^{1} z_{2}^{2}+z_{1}^{1} \tilde{v}_{2} \\
\dot{z}_{2}^{2}=z_{2}^{3}+z^{*} \tilde{v}_{1}+z_{1}^{2} z_{2}^{2} z_{2}^{3}-z_{1}^{2} z_{2}^{3} \tilde{v}_{2} \\
\dot{z}_{2}^{3}=\tilde{v}_{2} \\
\dot{z}^{*}=-z^{*}-z_{2}^{2} z_{2}^{3}+z_{2}^{3} \tilde{v}_{2},
\end{array}\right.\right.
$$

where the feedback transformation

$$
\left[\begin{array}{l}
\tilde{v}_{1} \\
\tilde{v}_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{1}}{x_{6}} \\
x_{4}-x_{2} x_{6}+x_{6}^{2}
\end{array}\right]+\left[\begin{array}{cc}
\ln x_{6} & -x_{5} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

brings the system Σ^{\prime} into the system $\Sigma^{\prime \prime}$ above. In order to eliminate $z^{*} \tilde{v}_{1}$ in $\dot{z}_{2}^{2}=z_{2}^{3}+z^{*} \tilde{v}_{1}+$ $z_{1}^{2} z_{2}^{2} z_{2}^{3}-z_{1}^{2} z_{2}^{3} \tilde{v}_{2}$ of $\Sigma^{\prime \prime}$, we define the change of coordinates

$$
\tilde{z}_{1}^{1}=z_{1}^{1}, \quad \tilde{z}_{1}^{2}=z_{1}^{2}, \quad \tilde{z}_{2}^{1}=z_{2}^{1}-z^{*} z_{1}^{1}, \quad \tilde{z}_{2}^{2}=z_{2}^{2}-z^{*} z_{1}^{2}, \quad \tilde{z}_{2}^{3}=z_{2}^{3},
$$

and the output multiplication $\left[\begin{array}{l}\tilde{y}_{1} \\ \tilde{y}_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ z^{*} & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Then the system $\Sigma^{\prime \prime}$ becomes

$$
\tilde{\Sigma}:\left\{\begin{array}{l}
\tilde{y}_{1}=\tilde{z}_{1}^{1} \\
\dot{\tilde{z}}_{1}^{1}=\tilde{z}_{1}^{2}-\frac{\tilde{z}_{1}^{1}\left(\tilde{z}_{2}^{1}+\tilde{z}_{1}^{1} z^{*}\right)}{\ln z^{*}}+\frac{\left(\tilde{z}_{2}^{1}+\tilde{z}_{1}^{1} z^{*}\right)}{\ln z^{*}} \tilde{v}_{1}+\frac{\left(\tilde{z}_{2}^{1}+\tilde{z}_{1}^{1} z^{*}\right) \tilde{z}_{2}^{3}}{\ln z^{*}} \tilde{v}_{2} \\
\dot{\tilde{z}}_{1}^{2}=\tilde{v}_{1} \\
\tilde{y}_{2}=\tilde{z}_{2}^{1} \\
\dot{\tilde{z}}_{2}^{1}=\tilde{z}_{2}^{2}+\tilde{z}_{1}^{1}\left(\tilde{z}_{2}^{2}+\tilde{z}_{1}^{2} z^{*}\right)\left(\tilde{z}_{2}^{3}-1\right)+\frac{\tilde{z}_{1}^{1} \tilde{1}_{2}^{1} z^{*}}{\ln z^{*}}-\frac{\left(\tilde{z}_{2}^{1}+\tilde{z}_{1}^{1} z^{*}\right) z^{*}}{\ln z^{*}} \tilde{v}_{1}-\left(\tilde{z}_{1}^{1} \tilde{z}_{2}^{3}+\frac{\left(\tilde{z}_{2}^{1}+\tilde{z}_{1}^{1} z^{*}\right) \tilde{z}_{2}^{3} z^{*}}{\ln z^{*}}\right) \tilde{v}_{2} \\
\dot{\tilde{z}}_{2}^{2}=\tilde{z}_{2}^{3}+\tilde{z}_{1}^{2} z^{*} \\
\dot{z}_{2}^{3}=\tilde{v}_{2} \\
\dot{z}^{*}=-z^{*}-\tilde{z}_{2}^{3}\left(\tilde{z}_{2}^{2}+\tilde{z}_{1}^{2} z^{*}\right)+\tilde{z}_{2}^{3} \tilde{v}_{2} .
\end{array}\right.
$$

Now we drop all the tildes in the system $\tilde{\Sigma}$ for ease of notation. By setting $y_{1}=y_{2}=0$, replacing $v_{1}=\dot{z}_{1}^{2}, v_{2}=z_{2}^{3}$, and deleting the equations $\dot{z}_{1}^{2}=v_{1}, z_{2}^{3}=v_{2}$, we get the following DAE $\tilde{\Xi}$ from $\tilde{\Sigma}$,

$$
\tilde{\Xi}:\left[\begin{array}{cc:cc:c}
0 & 0 & 0 & 0 & 0 \tag{21}\\
1 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 \\
\hdashline z_{2}^{3} & 1
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{1}^{1} \\
\dot{z}_{1}^{2} \\
\dot{z}_{2}^{1} \\
\dot{z}_{2}^{2} \\
\dot{z}_{2}^{3} \\
\dot{z}^{*}
\end{array}\right]=\left[\begin{array}{c}
z_{1}^{1} \\
z_{1}^{2} \\
z_{2}^{1} \\
z_{2}^{2} \\
z_{2}^{3} \\
-z^{*}-z_{2}^{3}\left(z_{2}^{2}+z_{1}^{2} z^{*}\right)
\end{array}\right]+\left[\begin{array}{c}
0 \\
a_{1}^{1}+b_{11}^{1} \dot{z}_{1}^{2}+b_{12}^{1} \dot{z}_{2}^{3} \\
0 \\
a_{2}^{1}+b_{21}^{1} \dot{z}_{1}^{2}+b_{22}^{1} \dot{z}_{2}^{3} \\
a_{2}^{2} \\
0
\end{array}\right]
$$

where $a_{1}^{1}=-\frac{z_{1}^{1}\left(z_{2}^{1}+z_{1}^{1} z^{*}\right)}{\ln z^{*}}, b_{11}^{1}=\frac{\left(z_{2}^{1}+z_{1}^{1} z^{*}\right)}{\ln z^{*}}, b_{12}^{1}=\frac{\left(z_{2}^{1}+z_{1}^{1} z^{*} z_{2}^{3}\right.}{\ln z^{*}}, a_{2}^{1}=z_{1}^{1}\left(z_{2}^{2}+z_{1}^{2} z^{*}\right)\left(z_{2}^{3}-1\right)+\frac{z_{1}^{1} z_{2}^{1} z^{*}}{\ln z^{*}}$, $b_{21}^{1}=-\frac{\left(z_{2}^{1}+z_{1}^{1} z^{*}\right) z^{*}}{\ln z^{*}}, b_{22}^{1}=z_{1}^{1} z_{2}^{3}+\frac{\left(z_{2}^{1}+z_{1}^{1} z^{*}\right) z_{2}^{3} z^{*}}{\ln z^{*}}, a_{2}^{2}=z_{1}^{2} z^{*}$. It is clear that $\tilde{\Sigma} \in \operatorname{Expl}(\tilde{\Xi})$, thus we have $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$ since $\Sigma \in \operatorname{Expl}(\Xi)$ and $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$ (see Theorem 3.6). The above DAE $\tilde{\Xi}$ is in the NWF1 of (20) and the sequence of submanifolds M_{k}^{c} of the geometric reduction algorithm can be expressed as $M_{1}^{c}=\left\{\left(z, z^{*}\right): z_{1}^{1}=z_{2}^{1}=0\right\}, M_{2}^{c}=\left\{\left(z, z^{*}\right) \in M_{1}^{c}: z_{2}^{1}=z_{2}^{2}=0\right\}$ and

$$
M^{*}=M_{3}^{c}=\left\{\left(z, z^{*}\right) \in M_{2}^{c}: z_{2}^{3}=0\right\} .
$$

The functions $a_{1}^{1}, b_{11}^{1}, b_{12}^{1}, a_{2}^{1}, b_{21}^{1}, b_{22}^{1} \in \mathbf{I}^{1}$ vanish on M_{1}^{c}, and the function $a_{2}^{2} \in \mathbf{I}^{2}$ vanishes on M_{2}^{c}.

The form NWF1 of Theorem 4.1 is related to the zero dynamics of nonlinear control systems. In the remaining part of this section, we will use the notions of (vector) relative degree and invariant distributions of nonlinear control theory to study when a DAE Ξ is ex-equivalent to a simpler form

$$
\text { NWF2 : }\left[\begin{array}{cc}
N & 0 \tag{22}\\
0 & I
\end{array}\right]\left[\begin{array}{c}
\dot{z} \\
\dot{z}^{*}
\end{array}\right]=\left[\begin{array}{c}
z \\
f^{*}\left(z^{*}\right)
\end{array}\right],
$$

where $N=\operatorname{diag}\left(N_{1}, \ldots, N_{m}\right)$, with $N_{i} \in \mathbb{R}^{\rho_{i} \times \rho_{i}}, i=1, \ldots, m$, being nilpotent matrices of index ρ_{i}. The NWF2 is a perfect nonlinear counterpart of the linear WF because the nonlinear terms
G, a_{i} and b_{j} of NWF1 are absent in NWF2 and f^{*} depends on z^{*}-variables only. We now recall the definitions of (vector) relative degree and (conditional) invariant distributions for nonlinear control systems.

Definition 4.4 (relative degree [27]). A square control system $\Sigma_{n, m, m}=(f, g, h)$ has a (vector) relative degree $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right)$ at a point x_{p} if (i) $L_{g_{j}} L_{f}^{k} h_{i}(x)=0$ for all $1 \leq j \leq m, k<$ $\rho_{i}-1$, for all $1 \leq i \leq m$, and for all x in a neighborhood of x_{p}; (ii) the $m \times m$ decoupling matrix $D(x)=\left(L_{g_{j}} L_{f}^{\rho_{i}-1} h_{i}(x)\right), 1 \leq i, j \leq m$, is invertible around x_{p}.

For a nonlinear control system $\Sigma_{n, m, p}=(f, g, h)$, define a sequence of distributions S_{i} by

$$
\left\{\begin{array}{l}
S_{1}:=\mathcal{G}=\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\} \tag{23}\\
S_{i+1}:=S_{i}+\left[f, S_{i} \cap \operatorname{kerd} h\right]+\left[\mathcal{G}, S_{i} \cap \operatorname{kerd} h\right] \\
S^{*}:=\sum_{i \geq 1} S_{i}
\end{array}\right.
$$

where $[f, v]$ stands for the Lie bracket of vector fields f and v, and $[f, V]=\{[f, v]: v \in V\}$.
Theorem 4.5. For a nonlinear $D A E \Xi_{n, n}=(E, F)$ (i.e., $l=n$), assume that $\operatorname{rank} E(x)=$ const. around a point $x_{p} \in X$. Then Ξ is locally ex-equivalent to the NWF2, given by (22), around x_{p} if and only if there exists a control system $\Sigma=\Sigma_{n, m, m}=(f, g, h) \in \operatorname{Expl}(\Xi)$ such that
(i) the system Σ has a well-defined relative degree $\rho=\left(\rho_{1}, \ldots, \rho_{m}\right)$ at $x=x_{p}$;
(ii) the distributions S_{i} of Σ, defined by (23), are involutive for all $1 \leq i \leq n-1$.

We omit the proof the Theorem 4.5 since it is a consequence of Theorem 3.6 and some results from nonlinear control theory, see Remark 4.6(i) below.

Remark 4.6. (i) Note that, under conditions (i) and (ii) of Theorem 4.5, using the results of [33], we can transform the system Σ into the following form (called the input-output special form in [33]) via suitable coordinates transformations and feedback transformations,

$$
\left\{\begin{array}{l}
\dot{z}^{*}=\bar{f}^{*}\left(z^{*}, y\right) \tag{24}\\
\dot{z}_{i}^{j}=z_{i}^{j+1}, 1 \leq j \leq \rho_{i}-1,1 \leq i \leq m \\
\dot{z}_{i}^{\rho_{i}}=v_{i} \\
y_{i}=z_{i}
\end{array}\right.
$$

Rewrite $\bar{f}^{*}\left(z^{*}, y\right)=\bar{f}^{*}\left(z^{*}, 0\right)+\gamma\left(z^{*}, y\right) y$ for some smooth function γ, then we can always get rid of the y-variables in $\bar{f}^{*}\left(z^{*}, y\right)$ by an output injection $\bar{f}^{*} \mapsto \bar{f}^{*}-\gamma y=f^{*}$, where $f^{*}=$ $f^{*}\left(z^{*}\right)$. Thus the system Σ is always sys-equivalent to the system $\tilde{\Sigma}$ below

$$
\Sigma \stackrel{\text { sys }}{\sim} \tilde{\Sigma}:\left\{\begin{array}{l}
\dot{z}^{*}=f^{*}\left(z^{*}\right), \\
\dot{z}_{i}^{j}=z_{i}^{j+1}, 1 \leq j \leq \rho_{i}-1, \quad \stackrel{\text { Thm. }}{2} \cdot 6 \\
\dot{z}_{i}^{\rho_{i}}=v_{i}, 1 \leq i \leq m, \\
y_{i}=z_{i} .
\end{array} \quad \Xi \stackrel{e x}{\sim} \tilde{\Xi}:\left\{\begin{array}{l}
\dot{z}^{*}=f^{*}\left(z^{*}\right), \\
0=z_{i}, 1 \leq i \leq m, \\
\dot{z}_{i}^{j}=z_{i}^{j+1}, 1 \leq j \leq \rho_{i}-1 .
\end{array}\right.\right.
$$

So by Theorem 3.6, the DAE Ξ is ex-equivalent to $\tilde{\Xi}$ represented in the NWF2 since $\tilde{\Sigma} \in$ $\operatorname{Expl}(\tilde{\Xi})$.
(ii) The linear counterparts of the distributions S_{i}, given by (23), for linear control systems of the form $\Lambda:\left\{\begin{array}{l}\dot{x}=A x+B v \\ y=C v\end{array}\right.$ is $\mathcal{W}_{1}=\operatorname{Im} B, \mathcal{W}_{i+1}=A\left(\mathcal{W}_{i} \cap \operatorname{ker} C\right)+\operatorname{Im} B$, and are called the conditional invariant subspaces. We have shown in [35] that for a linear DAE $\Delta=(E, H)$, if a control system $\Lambda \in \operatorname{Expl}(\Delta)$, then for all $i \geq 1$, the subspaces \mathcal{W}_{i} coincide with the Wong sequences \mathscr{W}_{i} of Δ, given by $\mathscr{W}_{1}=\operatorname{ker} E, \mathscr{W}_{i+1}=E^{-1} H \mathscr{W}_{i}$. Therefore, the sequences of distributions S_{i} can be seen as a nonlinear generalization of the Wong sequence subspaces \mathscr{W}_{i}.
(iii) Although conditions (i) and (ii) of Theorem 4.5 are necessary and sufficient for Ξ being locally ex-equivalent to NWF2, it is, in general, not easy to check them because the relative degree and the involutivity of distributions S_{i} are not invariant under output multiplications and output injections (the two properties are invariant under coordinates changes and feedback). From Proposition 3.2, we know that a control system $\Sigma \in \operatorname{Expl}(\Xi)$ is defined up to a feedback transformation, an output multiplication and a generalized output injection. So it is possible that for one system in $\operatorname{Expl}(\Xi)$, conditions (i) and (ii) hold while for another explicitation system the two conditions (or one of them) are not satisfied. The problem of finding easily checkable conditions for a DAE being ex-equivalent to the NWF2 remains open and, in view of the above analysis, is challenging.

Example 4.7. Consider a classical pendulum system shown in Fig. 2, which is a hanging rigid wire with a ball attached to its end (see also [7,12,13]).

Fig. 2. A hanging wire with a ball attached at the end.

In this system, m is the mass of the ball, τ is the tension force of the wire, θ is the angle between the wire and the y-axis. The system can be modeled by Newton's law:

$$
\begin{equation*}
m \ddot{x}=-\tau \sin \theta=-\frac{\tau x}{l}, \quad m \ddot{y}=-\tau \cos \theta-m g=-\frac{\tau y}{l}-m g, \tag{25}
\end{equation*}
$$

under the following constraint

$$
\begin{equation*}
x^{2}+y^{2}=l^{2} . \tag{26}
\end{equation*}
$$

Denote $x_{1}=x, x_{2}=\dot{x}, x_{3}=y, x_{4}=\dot{y}, x_{5}=\frac{\tau}{m l}$, then (25) and (26) result in a nonlinear DAE $\Xi_{5,5}=(E, F)$, given by

$$
\Xi:\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{27}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{5} x_{1} \\
x_{4} \\
-x_{5} x_{3}-g \\
x_{1}^{2}+x_{3}^{2}-l^{2}
\end{array}\right] .
$$

A control system $\Sigma_{5,1,1}=(f, g, h) \in \operatorname{Expl}(\Xi)$ can be chosen as

$$
\Sigma:\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{5} x_{1} \\
x_{4} \\
-x_{5} x_{3}-g \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] v, \quad y=x_{1}^{2}+x_{3}^{2}-l^{2}
$$

We consider a nominal point x_{p}, given by

$$
x_{p}=\left(x_{1 p}, x_{2 p}, x_{3 p}, x_{4 p}, x_{5 p}\right)=\left(0,0, l, 0,-\frac{g}{l}\right) .
$$

Clearly, the relative degree of Σ is $\rho=3$ at x_{p} because $L_{g} h(x)=L_{g} L_{f} h(x) \equiv 0$ and $L_{g} L_{f}^{2} h\left(x_{p}\right) \neq 0$. By (23), we have

$$
S_{1}=\operatorname{span}\{g\}, S_{2}=\operatorname{span}\left\{g, a d_{f} g\right\}, S_{3}=\operatorname{span}\left\{g, a d_{f} g, a d_{f}^{2} g\right\}, \quad S^{*}=S_{4}=S_{3}
$$

where $g=\frac{\partial}{\partial x_{5}}, a d_{f} g=-x_{1} \frac{\partial}{\partial x_{2}}-x_{3} \frac{\partial}{\partial x_{4}}, a d_{f}^{2} g=x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}-x_{4} \frac{\partial}{\partial x_{4}}$. It can be deduced that the distributions $S_{i}, i=1,2,3$, are all involutive around x_{p}. Thus conditions (i) and (ii) of Theorem 4.5 are satisfied. Then via the following local coordinates transformation

$$
\begin{gather*}
\tilde{x}_{1}=-x_{1} / x_{3}, \quad \tilde{x}_{2}=x_{1} x_{4}-x_{2} x_{3}, \quad \tilde{x}_{3}=x_{1}^{2}+x_{3}^{2}-l^{2}, \\
\tilde{x}_{4}=x_{1} x_{2}+x_{3} x_{4}, \quad \tilde{x}_{5}=-x_{5}\left(x_{1}^{2}+x_{3}^{2}\right)+x_{2}^{2}+x_{4}^{2}-g x_{3}, \tag{28}
\end{gather*}
$$

and a suitable feedback transformation, the system Σ can be transformed into its input-output special form (see (24)), given by

$$
\left[\begin{array}{c}
\dot{\tilde{x}}_{1} \\
\dot{\tilde{x}}_{2} \\
\dot{\tilde{x}}_{3} \\
\dot{\tilde{x}}_{4} \\
\tilde{\tilde{x}}_{5}
\end{array}\right]=\left[\begin{array}{c}
\frac{\tilde{x}_{2}\left(1+\tilde{x}_{1}^{2}\right)}{1^{2}+\tilde{x}_{3}} \\
-g \tilde{x}_{1}\left(\frac{l^{2}+\tilde{x}_{3}}{1+\tilde{x}_{1}^{2}}\right)^{1 / 2} \\
\tilde{x}_{4} \\
\tilde{x}_{5} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \tilde{v}, \quad y=\tilde{x}_{3} .
$$

Notice that we can alway write $\frac{\tilde{x}_{2}\left(1+\tilde{x}_{1}^{2}\right)}{l^{2}+\tilde{x}_{3}}=\frac{\tilde{x}_{2}\left(1+\tilde{x}_{1}^{2}\right)}{l^{2}}+\tilde{x}_{3} a\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$ and $-g \tilde{x}_{1}\left(\frac{l^{2}+\tilde{x}_{3}}{1+\tilde{x}_{1}^{2}}\right)^{1 / 2}=$ $-\frac{g l \tilde{x}_{1}}{\sqrt{1+\tilde{x}_{1}^{2}}}+\tilde{x}_{3} b\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$ for some smooth functions a and b. After using an output injection to get rid of the terms $\tilde{x}_{3} a\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$ and $\tilde{x}_{3} b\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$, we can see that Σ is locally sys-equivalent to the system $\tilde{\Sigma}$ below.

$$
\Sigma \stackrel{\text { sys }}{\sim} \tilde{\Sigma}:\left\{\begin{array}{l}
\dot{\tilde{x}}_{1}=\frac{\tilde{x}_{2}\left(1+\tilde{x}_{1}^{2}\right)}{l^{2}}, \\
\dot{\tilde{x}}_{2}=-\frac{g l \tilde{x}_{1}}{\sqrt{1+\tilde{x}_{1}^{2}}}, \\
\dot{\tilde{x}}_{3}= \\
\tilde{x}_{4}, \\
\dot{\tilde{x}}_{4}= \\
\tilde{x}_{5}, \\
\tilde{\tilde{x}}_{5}= \\
y= \\
y, \\
\tilde{x}_{3} .
\end{array} \quad \text { Thm.3.6 } \quad \underset{ }{\Longleftrightarrow} \tilde{\Xi}:\left\{\begin{array}{l}
\dot{\tilde{x}}_{1}=\frac{\tilde{x}_{2}\left(1+\tilde{x}_{1}^{2}\right)}{l^{2}}, \\
\dot{\tilde{x}}_{2}=-\frac{g l \tilde{x}_{1}}{\sqrt{1+\tilde{x}_{1}^{2}}}, \\
\dot{\tilde{x}}_{3}=\tilde{x}_{4}, \\
\dot{\tilde{x}}_{4}=\tilde{x}_{5}, \\
0=\tilde{x}_{3} .
\end{array}\right.\right.
$$

Hence the original DAE Ξ is locally ex-equivalent to $\tilde{\Xi}$, represented in the NWF2, via $Q=$ $\left[\begin{array}{llll}10 & 0 & 0 & -a \\ 0 & 1 & 0 & 0\end{array}\right]$
$0100-b$
$\left[\begin{array}{lllll}1 & 0 & 0 & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$ and the coordinates transformations given by (28).
00010
-00001 -

5. Conclusions and perspectives

In this paper, we first revise the geometric reduction method for the existence of solutions of nonlinear DAEs, then we define the notions of internal and external equivalence and their differences are discussed by analyzing their relations with solutions. We show that the internal regularity (existence and uniqueness of solutions) of a DAE is equivalent to the fact that the DAE is internally equivalent to an ODE (without free variables) on its maximal invariant submanifold. A procedure named explicitation with driving variables is proposed to connect nonlinear DAEs with nonlinear control systems. We show that the external equivalence for two DAEs is the same as the system equivalence for their explicitation systems. Moreover, we show that Ξ is externally equivalent to a semi-explicit DAE if and only if the distribution defined by $\operatorname{ker} E(x)$ is of constant rank and involutive. If so, the driving variables of a control system $\Sigma \in \operatorname{Expl}(\Xi)$ can be fully reduced. Finally, two nonlinear generalizations of the Weierstrass form WF are proposed based on the explicitation method and the notions of nonlinear control theory, such as zero dynamics, relative degree and invariant distributions.

Several results of the paper can be used for further studies on nonlinear DAE systems. The geometric reduction algorithm and internal equivalence can be used for the stability analysis since DAEs has isomorphic solutions with an ODE (with free variables) by Propositions 2.8 and 3.10, the stability of the ODE clearly indicates that of the original DAE. The explicitation method shown in section 3, in particular, the results of Theorem 3.6, are fundamental tools for applying nonlinear geometric control theory to solve problems like exact linearization, disturbance decoupling, controllability and observability analysis for DAEs systems (possibly with extra controls or disturbances). Finally, as the Weierstrass form is useful for linear DAEs, the two nonlinear Weierstrass form can be applied to study e.g., index analysis, jump solutions, impulse-freeness, of nonlinear DAEs.

Acknowledgment

The first author is currently supported by Vidi-grant 639.032.733. The authors would like to thank the reviewers whose suggestions and remarks have improved the final presentation of the paper.

Appendix A. Proofs of Proposition 2.3 and Theorem 2.20

Proof of Proposition 2.3. Suppose that M is a locally invariant submanifold around x_{p}. By Definition 2.2, there exists a neighborhood U of x_{p} such that for any point $x_{0} \in M \cap U$, there exists a solution $x: I \rightarrow M \cap U$ satisfying $x\left(t_{0}\right)=x_{0}$ for a certain $t_{0} \in I$. Then we have $F(x(t))=E(x(t)) \dot{x}(t) \in E(x(t)) T_{x(t)} M, \forall t \in I$. It follows that $F\left(x_{0}\right) \in E\left(x_{0}\right) T_{x_{0}} M$ by taking $t=t_{0}$. Hence $F(x) \in E(x) T_{x} M$ for all $x \in M \cap U$.

Conversely, suppose that $\operatorname{dim} E(x) T_{x} M=$ const. $=\bar{r}$ and $F(x) \in E(x) T_{x} M$ locally for all $x \in M \cap U$. Notice that M is a smooth connected embedded submanifold, thus there exists a smaller neighborhood U_{1} of x_{p} and local coordinates $\psi(x)=z=\left(z_{1}, z_{2}\right)$ on U_{1} such that $M \cap U_{1}=\left\{z_{2}=0\right\}$, where z_{1} are any complementary coordinates, with $\operatorname{dim} z_{1}=\bar{n}, \operatorname{dim} z_{2}=$ $n-\bar{n}$ and $\bar{n}=\operatorname{dim} M$. In the local z-coordinates, the DAE Ξ has the following form

$$
E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\left(\frac{\partial \psi(x)}{\partial x}\right) \dot{x}=F(x) \Rightarrow\left[\begin{array}{cc}
\tilde{E}_{1}(z) & \tilde{E}_{2}(z)
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\tilde{F}(z)
$$

where $\tilde{E}_{1}: U_{1} \rightarrow \mathbb{R}^{l \times \bar{n}}, \tilde{E}_{2}: U_{1} \rightarrow \mathbb{R}^{l \times(n-\bar{n})},\left[\begin{array}{lll}\tilde{E}_{1} \circ \psi & \tilde{E}_{2} \circ \psi\end{array}\right]=E\left(\frac{\partial \psi}{\partial x}\right)^{-1}$ and $\tilde{F} \circ \psi=F$. By setting $z_{2}=0$, we consider the following DAE defined locally on M (denoted by $\left.\Xi\right|_{M}$ and called the local M-restriction of $\boldsymbol{\Xi}$, see Definition 2.12):

$$
\left.\Xi\right|_{M}: \tilde{E}_{1}\left(z_{1}, 0\right) \dot{z}_{1}=\tilde{F}\left(z_{1}, 0\right)
$$

Then by $\operatorname{dim} E(x) T_{x} M=$ const. $=\bar{r}$ for all $x \in M$ around x_{p}, there exists a neighborhood $U_{2} \subseteq$ U_{1} of x_{p} such that rank $\tilde{E}_{1}\left(z_{1}, 0\right)=\bar{r}, \forall z_{1} \in M \cap U_{2}$. So by Dolezal's theorem, see also [31], there exists a smooth map [30] $Q: M \cap U_{2} \rightarrow G L(l, \mathbb{R})$ such that $\bar{E}_{1}\left(z_{1}\right)$ of $Q\left(z_{1}\right) \tilde{E}_{1}\left(z_{1}, 0\right)=$ $\left[\begin{array}{c}\bar{E}_{1}\left(z_{1}\right) \\ 0\end{array}\right]$ is of full row rank \bar{r}. Rewrite $\bar{E}_{1}\left(z_{1}\right) \dot{z}_{1}=\left[\bar{E}_{1}^{1}\left(z_{1}\right) \bar{E}_{1}^{2}\left(z_{1}\right)\right]\left[\begin{array}{c}\dot{z}_{1}^{1} \\ \dot{z}_{1}^{2}\end{array}\right]$, where $z_{1}=\left(z_{1}^{1}, z_{1}^{2}\right), \bar{E}_{1}^{1}$: $M \cap U_{2} \rightarrow \mathbb{R}^{\bar{r} \times \bar{r}}$ and $\bar{E}_{1}^{2}: M \cap U_{2} \rightarrow \mathbb{R}^{\bar{r} \times(\bar{n}-\bar{r})}$ and denote $Q\left(z_{1}\right) \tilde{F}\left(z_{1}, 0\right)=\left[\begin{array}{l}\bar{F}_{1}\left(z_{1}\right) \\ \bar{F}_{2}\left(z_{1}\right)\end{array}\right]$. Without loss of generality, we assume that $\bar{E}_{1}^{1}\left(z_{1}\right)$ is invertible (if not, we permute the components of z_{1} such that the first \bar{r} columns of $\bar{E}_{1}\left(z_{1}\right)$ are independent). Now by the assumption that $F(x) \in$ $E(x) T_{x} M$ for all $x \in M$ around x_{p}, there exists a neighborhood $U_{3} \subseteq U_{2}$ such that $\tilde{F}(z) \in$ $\tilde{E}(z) T_{z} M$ for all $z \in M \cap U_{3}$, i.e.,

$$
\left[\begin{array}{c}
\bar{F}_{1}\left(z_{1}\right) \\
\bar{F}_{2}\left(z_{1}\right)
\end{array}\right] \in \operatorname{Im}\left[\begin{array}{cc}
\bar{E}_{1}^{1}\left(z_{1}\right) & \bar{E}_{1}^{2}\left(z_{1}\right) \\
0 & 0
\end{array}\right] .
$$

It follows that $\bar{F}_{2}\left(z_{1}\right) \equiv 0$ for all $z_{1} \in M \cap U_{3}$. Then consider the following DAE (which is actually a reduction of $\left.\Xi\right|_{M}$, denoted by $\Xi_{M}^{\text {red }}$, see Definition 2.13)

$$
\left.\Xi\right|_{M} ^{r e d}:\left[\begin{array}{ll}
\bar{E}_{1}^{1}\left(z_{1}\right) & \bar{E}_{1}^{2}\left(z_{1}\right)
\end{array}\right]\left[\begin{array}{c}
\dot{z}_{1}^{1} \tag{29}\\
\dot{z}_{1}^{2}
\end{array}\right]=\bar{F}_{1}\left(z_{1}\right)
$$

Note that a \mathcal{C}^{1}-curve $z_{1}: I \rightarrow M \cap U_{3}$ is a solution of (29) passing through $z_{10}=\left(z_{10}^{1}, z_{10}^{2}\right)$ if and only if $x(\cdot)=\psi^{-1}\left(z_{1}(\cdot), 0\right)$ is a solution of Ξ passing through $x_{0}=\psi^{-1}\left(z_{10}, 0\right)$. Observe
that for any initial point $z_{10} \in M \cap U_{3}$, there always exists a solution $z_{1}(\cdot)$ of (29) such that $z_{1}\left(t_{0}\right)=z_{10}$ for a certain $t_{0} \in I$ and $z_{1}(t) \in M \cap U_{3}, \forall t \in I$. Indeed, rewrite DAE (29) as the following ODE (recall that $\bar{E}_{1}^{1}\left(z_{1}\right)$ is invertible):

$$
\begin{equation*}
\dot{z}_{1}^{1}=\left(\bar{E}_{1}^{1}\left(z_{1}\right)\right)^{-1}\left(\bar{F}_{1}\left(z_{1}\right)-\bar{E}_{1}^{2}\left(z_{1}\right) \dot{z}_{1}^{2}\right) . \tag{30}
\end{equation*}
$$

It is always possible to parameterize solutions $z_{1}(\cdot)=\left(z_{1}^{1}(\cdot), z_{1}^{2}(\cdot)\right)$ of (30) as follows. Denote $\dot{z}_{1}^{2}=v, f\left(z_{1}\right)=\left(E_{1}^{1}\right)^{-1} \tilde{F}_{1}\left(z_{1}\right)$ and $g\left(z_{1}\right)=\left(E_{1}^{1}\right)^{-1} E_{1}^{2}\left(z_{1}\right)$, then (30) can be expressed as

$$
\left\{\begin{array}{l}
\dot{z}_{1}^{1}=f\left(z_{1}\right)+g\left(z_{1}\right) v, \tag{31}\\
\dot{z}_{1}^{2}=v
\end{array}\right.
$$

(called a (Q, v)-explicitation of (29), see Definition 3.1), and for any solution $\left(z_{1}(\cdot), v(\cdot)\right.$) of (31), with $v \in \mathcal{C}^{0}$, the curve $z_{1}(\cdot)$ is a \mathcal{C}^{1}-solution of (29) satisfying $z_{1}\left(t_{0}\right)=z_{10}$ (see Proposition 3.5). It follows that for any point $x_{0}=\psi^{-1}\left(z_{10}, 0\right) \in M \cap U_{3}$, there always exists a solution $x(\cdot)=$ $\psi^{-1}\left(z_{1}(\cdot), 0\right)$ of Ξ such that $x\left(t_{0}\right)=x_{0}$ for a certain $t_{0} \in I$ and that $x(t) \in M \cap U_{3}$ for all $t \in I$, so M is a locally invariant submanifold of Ξ around x_{p} by definition.

Proof of Theorem 2.20. Since M^{*} is locally invariant around x_{p}, via a similar construction to that shown in the proof of Proposition 2.3, we can get a DAE $\left.\Xi\right|_{M^{*}} ^{\text {red }}$ of the form (29) (if the maximal invariant submanifold M^{*} is constructed via the algorithm in section 2.2, then $\left.\Xi\right|_{M^{*}} ^{r e d}$ coincides with the DAE Ξ^{*} of (6) from the results of that algorithm). Note that $\left.\Xi\right|_{M^{*}} ^{\text {red }}$ can be seen as an ODE possibly with free variables (see (30) and (31), where z_{1}^{2} are free variables), and that $\left.\Xi\right|_{M^{*}} ^{\text {red }}$ has isomorphic solutions with Ξ (see Proposition 2.8). Thus Ξ is internally regular around x_{p}, i.e., there exists only one maximal solution passing through any $x_{0} \in M^{*}$ around x_{p} if and only if no free variables are present in $\Xi^{*}=\left.\Xi\right|_{M^{*}} ^{r e d}$, i.e., $\left[\bar{E}_{1}^{1}, \bar{E}_{1}^{2}\right]$ of (29) is invertible or, equivalently, $n^{*}=\operatorname{dim} M^{*}=\operatorname{dim} E(x) T_{x} M^{*}=r^{*}$ for all $x \in M^{*}$ around x_{p} (i.e., E^{*} of (6) is invertible). Moreover, it is clear that $\left[\bar{E}_{1}^{1}, \bar{E}_{1}^{2}\right.$] is invertible if and only if $\left.\Xi\right|_{M^{*}} ^{\text {red }}$ of (29) (or Ξ^{*}, given by (6)) is ex-equivalent to an ODE (10) without free variables, where $f^{*}=\left[\bar{E}_{1}^{1}, \bar{E}_{1}^{2}\right]^{-1} \bar{F}_{1}$ (or $f^{*}=\left(E^{*}\right)^{-1} F^{*}$), that is, Ξ is internally equivalent to (10) around x_{p}.

Appendix B. Proofs of Proposition 3.2, Proposition 3.5, Theorem 3.6, Proposition 3.8 and Theorem 3.13

Proof of Proposition 3.2. If. Throughout the proof below, we may drop the argument x for the maps $f(x), g(x), h(x), \ldots$, for ease of notation. Suppose that Σ and $\tilde{\Sigma}$ are equivalent via transformations given by (17). First, $\operatorname{Im} \tilde{g}=\operatorname{Im} g \beta=\operatorname{ker} E_{1}=\operatorname{ker} E$ implies that \tilde{g} is another choice such that $\operatorname{Im} \tilde{g}=\operatorname{ker} E$. Moreover, we have

$$
\tilde{\Sigma}:\left\{\begin{array}{l}
\dot{x}=\tilde{f}+\tilde{g} \tilde{v}=f+g \alpha+\gamma h+g \beta v=E_{1}^{\dagger} F_{1}+g \alpha+\gamma F_{2}+g \beta v, \\
\tilde{y}=\tilde{h}=\eta h .
\end{array}\right.
$$

Pre-multiplying the differential part $\dot{x}=E_{1}^{\dagger} F_{1}+g \alpha+\gamma F_{2}+g \beta v$ of $\tilde{\Sigma}$ by E_{1}, we get (note that $\operatorname{Im} g=\operatorname{ker} E_{1}$)

$$
\left\{\begin{aligned}
E_{1} \dot{x} & =F_{1}+E_{1} \gamma F_{2} \\
\tilde{y} & =\eta h
\end{aligned}\right.
$$

Thus $\tilde{\Sigma}$ is an (I, \tilde{v})-explicitation of the following DAE:

$$
\left[\begin{array}{c}
E_{1} \\
0
\end{array}\right] \dot{x}=\left[\begin{array}{c}
F_{1}+E_{1} \gamma F_{2} \\
\eta F_{2}
\end{array}\right]
$$

Since the above DAE can be obtained from Ξ via $\tilde{Q}=Q^{\prime} Q$, where $Q^{\prime}=\left[\begin{array}{cc}I_{q} & E_{1} \gamma \\ 0 & \eta\end{array}\right]$, it proves that $\tilde{\Sigma}$ is a (\tilde{Q}, \tilde{v})-explicitation of Ξ corresponding to the choice of invertible matrix $\tilde{Q}=Q^{\prime} Q$. Finally, by $E_{1} \tilde{f}=F_{1}+E_{1} \gamma F_{2}$, we get $\tilde{f}=\tilde{E}_{1}^{\dagger}\left(F_{1}+\gamma F_{2}\right)$ for the above choice of right inverse \tilde{E}_{1}^{\dagger} of E_{1}.

Only if. Suppose that $\tilde{\Sigma} \in \operatorname{Expl}(\Xi)$ via $\tilde{Q}, \tilde{E}_{1}^{\dagger}$ and \tilde{g}. First, by $\operatorname{Im} \tilde{g}=\operatorname{ker} E=\operatorname{Im} g$, there exists an invertible matrix β such that $\tilde{g}=g \beta$. Moreover, since E_{1}^{\dagger} is a right inverse of E_{1} if and only if any solution \dot{x} of $E_{1} \dot{x}=w$ is given by $E_{1}^{\dagger} w$, we have $E_{1} E_{1}^{\dagger} F_{1}=F_{1}$ and $E_{1} \tilde{E}_{1}^{\dagger} F_{1}=F_{1}$. It follows that $E_{1}\left(\tilde{E}_{1}^{\dagger}-E_{1}^{\dagger}\right) F_{1}=0$, so $\left(\tilde{E}_{1}^{\dagger}-E_{1}^{\dagger}\right) F_{1} \in \operatorname{ker} E_{1}$. Since $\operatorname{ker} E_{1}=\operatorname{Im} g$, it follows that $\left(\tilde{E}_{1}^{\dagger}-E_{1}^{\dagger}\right) F_{1}=g \alpha$ for a suitable α. Furthermore, since Q is such that E_{1} of $Q E=\left[\begin{array}{c}E_{1} \\ 0\end{array}\right]$ is of full row rank, any other \tilde{Q}, such that \tilde{E}_{1} of $\tilde{Q} E=\left[\begin{array}{c}\tilde{E}_{1} \\ 0\end{array}\right]$ is of full row rank, must be of the form $\tilde{Q}=Q^{\prime} Q$, where $Q^{\prime}=\left[\begin{array}{cc}Q_{1} & Q_{2} \\ 0 & Q_{4}\end{array}\right]$. Thus via \tilde{Q}, Ξ is ex-equivalent to

$$
Q^{\prime}\left[\begin{array}{c}
E_{1} \\
0
\end{array}\right] \dot{x}=Q^{\prime}\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
Q_{1} E_{1} \\
0
\end{array}\right] \dot{x}=\left[\begin{array}{c}
Q_{1} F_{1}+Q_{2} F_{2} \\
Q_{4} F_{2}
\end{array}\right]
$$

The equation on the right-hand side of the above can be expressed (using \tilde{E}_{1}^{\dagger} and \tilde{g}) as:

$$
\left\{\begin{array}{l}
\dot{x}=\tilde{E}_{1}^{\dagger} F_{1}+\tilde{E}_{1}^{\dagger} Q_{1}^{-1} Q_{2} F_{2}+\tilde{g} v=E_{1}^{\dagger} F_{1}+g \alpha+E_{1}^{\dagger} Q_{1}^{-1} Q_{2} h+g \beta \tilde{v} \\
0=Q_{4} F_{2}=Q_{4} h .
\end{array}\right.
$$

Thus the explicitation of Ξ via $\tilde{Q}, \tilde{E}_{1}^{\dagger}$ and \tilde{g} is

$$
\tilde{\Sigma}:\left\{\begin{array}{l}
\dot{x}=E_{1}^{\dagger} F_{1}+g \alpha+\gamma h+g \beta \tilde{v}=f+\gamma h+g(\alpha+\beta \tilde{v})=\tilde{f}+\tilde{g} \tilde{v}, \\
\tilde{y}=\eta h=\tilde{h},
\end{array}\right.
$$

where $\gamma=E_{1}^{\dagger} Q_{1}^{-1} Q_{2}, \eta=Q_{4}$. Therefore, we can see that Σ and $\tilde{\Sigma}$ are equivalent via the transformations of the form (17).

Proof of Proposition 3.5. Consider the DAE (12) of the (Q, v)-explicitation procedure. Since Q-transformations preserve solutions of Ξ, system (12) resulting from a Q-transformation of Ξ has the same solutions as Ξ. Thus we need to prove that (12) and (15) have corresponding solutions for any choices of E_{1}^{\dagger} and g. Moreover, the second equation $0=F_{2}(x)$ of (12) coincides with $0=h(x)$ of (15). So we only need to prove that $x(t) \in \mathcal{C}^{1}$ is a solution of $E_{1}(x) \dot{x}=F_{1}(x)$ if and only if there exists $v(t) \in \mathcal{C}^{0}$ such that $(x(t), v(t))$ is a solution of $\dot{x}=f(x)+g(x) v$
independently of the choice of E_{1}^{\dagger}, defining $f(x)=E_{1}^{\dagger}(x) F_{1}(x)$, and of the choice of g satisfying $\operatorname{Im} g(x)=\operatorname{ker} E_{1}(x)$.

If. Suppose that $(x(t), v(t))$ is a solution of $\dot{x}=f(x)+g(x) v$. Then we have $\dot{x}(t)=f(x(t))+$ $g(x(t)) v(t)$. Pre-multiplying the latter equation by $E_{1}(x(t))$, we get that

$$
E_{1}(x(t)) \dot{x}(t)=E_{1}(x(t)) f(x(t))=E_{1}(x(t)) E_{1}^{\dagger}(x(t)) F_{1}(x(t))=F_{1}(x(t)),
$$

which proves that $x(t)$ is a solution of $E_{1}(x) \dot{x}=F_{1}(x)$.
Only if. Suppose that $x(t)$ is a solution of $E_{1}(x) \dot{x}=F_{1}(x)$. Rewrite $E_{1}(x) \dot{x}$ as $\left[E_{1}^{1}(x) E_{1}^{2}(x)\right] \times$ $\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]$, where $E_{1}^{1}: U \rightarrow \mathbb{R}^{q \times q}$ is smooth and $x=\left(x_{1}, x_{2}\right)$. Then, by taking a smaller neighborhood U, if necessary, we assume that $E_{1}^{1}(x)$ is invertible locally around x_{p} (if not, we permute the components of x such that the first q columns of $E_{1}(x)$ are independent). Thus a choice of right inverse of E_{1} is $E_{1}^{\dagger}=\left[\begin{array}{c}\left(E_{1}^{1}\right)^{-1} \\ 0\end{array}\right]$. So the maps f and g can be defined as $f:=E_{1}^{\dagger} F_{1}=\left[\begin{array}{c}\left(E_{1}^{1}\right)^{-1} F_{1} \\ 0\end{array}\right]$, $g:=\left[\begin{array}{c}-\left(E_{1}^{1}\right)^{-1} E_{2} \\ I_{m}\end{array}\right]$. Set $v(t)=\dot{x}_{2}(t)$, then $v \in \mathcal{C}^{0}$ and it is clear that if $x(t)=\left(\left(x_{1}(t), x_{2}(t)\right)\right)$ is a solution of $E_{1}(x) \dot{x}=F_{1}(x)$, then $(x(t), v(t))$ solves $\dot{x}=f(x)+g(x) v$ since
$\left[\begin{array}{ll}E_{1}^{1}(x(t)) & E_{1}^{2}(x(t))\end{array}\right]\left[\begin{array}{l}\dot{x}_{1}(t) \\ \dot{x}_{2}(t)\end{array}\right]=F_{1}(x(t)) \Rightarrow \dot{x}_{1}(t)=\left(E_{1}^{1}\right)^{-1} F_{1}(x(t))-\left(E_{1}^{1}\right)^{-1} E_{1}^{2}(x(t)) \dot{x}_{2}(t)$.
Notice that if we choose another right inverse \tilde{E}_{1}^{\dagger} of E_{1} and another matrix \tilde{g} such that $\operatorname{Im} \tilde{g}=$ ker E_{1}, then by Proposition 3.2, we have

$$
\dot{x}=\tilde{f}(x)+\tilde{g}(x) \tilde{v} \Leftrightarrow \dot{x}=f(x)+g(x)(\alpha(x)+\beta(x) v) .
$$

We thus conclude that there exists $\tilde{v}(t)=\alpha(x(t))+\beta(x(t)) v(t)=\alpha(x(t))+\beta(x(t)) \dot{x}_{2}(t)$ such that $(x(t), \tilde{v}(t))$ solves $\dot{x}=\tilde{f}(x)+\tilde{g}(x) \tilde{v}$. Therefore, Ξ has corresponding solutions with any (Q, v)-explicitation Σ independently of the choice of Q, E_{1}^{\dagger} and g.

Proof of Theorem 3.6. By the assumptions that $\operatorname{rank} E(x)=$ const. $=q$ and $\operatorname{rank} \tilde{E}(\tilde{x})=$ const. $=\tilde{q}$ around x_{p} and \tilde{x}_{p}, respectively, we have that Ξ and $\tilde{\Xi}$ are locally ex-equivalent to

$$
\Xi^{\prime}:\left[\begin{array}{c}
E_{1}(x) \\
0
\end{array}\right] \dot{x}=\left[\begin{array}{l}
F_{1}(x) \\
F_{2}(x)
\end{array}\right] \quad \text { and } \quad \tilde{\Xi}^{\prime}:\left[\begin{array}{c}
\tilde{E}_{1}(\tilde{x}) \\
0
\end{array}\right] \dot{\tilde{x}}=\left[\begin{array}{l}
\tilde{F}_{1}(\tilde{x}) \\
\tilde{F}_{2}(\tilde{x})
\end{array}\right]
$$

respectively, where $E_{1}(x)$ and $\tilde{E}_{1}(\tilde{x})$ are full row rank matrices and their ranks are q and \tilde{q}, respectively. By Definition 3.1, we have

$$
\begin{align*}
& f(x)=E_{1}^{\dagger}(x) F_{1}(x), \quad \operatorname{Im} g(x)=\operatorname{ker} E_{1}(x), \quad h(x)=F_{2}(x), \tag{32}\\
& \tilde{f}(\tilde{x})=\tilde{E}_{1}^{\dagger}(\tilde{x}) \tilde{F}_{1}(\tilde{x}), \quad \operatorname{Im} \tilde{g}(\tilde{x})=\operatorname{ker} \tilde{E}_{1}(\tilde{x}), \quad \tilde{h}(\tilde{x})=\tilde{F}_{2}(\tilde{x}) .
\end{align*}
$$

Note that explicitation systems are defined up to a feedback, an output multiplication and a generalized output injection. Any two control systems belonging to $\operatorname{Expl}(\Xi)$ are sys-equivalent to each other and so are any two control systems belonging to $\operatorname{Expl}(\tilde{\Xi})$. Thus the choice of an explicitation system makes no difference for the proof of sys-equivalence. Without loss of
generality, we will use $f(x), g(x), h(x)$ and $\tilde{f}(x), \tilde{g}(x), \tilde{h}(x)$ given in (32) for the remaining part of this proof.

If. Suppose $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$ in a neighborhood U of x_{p}. By Definition 3.3, there exists a diffeomorphism $\tilde{x}=\psi(x)$ and $\beta: U \rightarrow G L(m, \mathbb{R})$ such that $\tilde{g} \circ \psi=\frac{\partial \psi}{\partial x} g \beta$, which implies

$$
\operatorname{ker}(\tilde{E} \circ \psi)=\operatorname{span}\left\{\tilde{g}_{1}, \ldots, \tilde{g}_{m}\right\} \circ \psi=\operatorname{span}\left\{\frac{\partial \psi}{\partial x} g_{1}, \ldots, \frac{\partial \psi}{\partial x} g_{m}\right\}=\frac{\partial \psi}{\partial x} \operatorname{ker} E
$$

and $q=\tilde{q}$ (since $\operatorname{dim} \operatorname{ker} \tilde{E}=\tilde{m}=m=\operatorname{dim} \tilde{E}$). We can deduce from the above equation that there exists $Q_{1}: U \rightarrow G L(q, \mathbb{R})$ such that

$$
\begin{equation*}
\tilde{E}_{1} \circ \psi=Q_{1} E_{1}\left(\frac{\partial \psi}{\partial x}\right)^{-1} \tag{33}
\end{equation*}
$$

Subsequently, by $\tilde{f} \circ \psi=\frac{\partial \psi}{\partial x}(f+\gamma h+g \alpha)$ of Definition 3.3, we have

$$
\left(\tilde{E}_{1}^{\dagger} \circ \psi\right)\left(\tilde{F}_{1} \circ \psi\right)=\frac{\partial \psi}{\partial x}\left(E_{1}^{\dagger} F_{1}+\gamma F_{2}+g \alpha\right) .
$$

Pre-multiply the above equation by $\tilde{E}_{1} \circ \psi=Q_{1} E_{1}\left(\frac{\partial \psi}{\partial x}\right)^{-1}$, to obtain

$$
\begin{equation*}
\tilde{F}_{1} \circ \psi=Q_{1} F_{1}+Q_{1} E_{1} \gamma F_{2} . \tag{34}
\end{equation*}
$$

Then by $\tilde{h} \circ \psi=\eta h$ of Definition 3.3, we immediately get

$$
\begin{equation*}
\tilde{F}_{2} \circ \psi=\eta F_{2} \tag{35}
\end{equation*}
$$

Now combining (33), (34) and (35), we conclude that Ξ^{\prime} and $\tilde{\Xi}^{\prime}$ are ex-equivalent via $\tilde{x}=\psi(x)$ and $Q=\left[\begin{array}{cc}Q_{1} & Q_{1} E_{1 \gamma} \\ 0 & \eta\end{array}\right]$, which implies that $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$ (since $\Xi \stackrel{e x}{\sim} \Xi^{\prime}$ and $\tilde{\Xi} \stackrel{e x}{\sim} \tilde{\Xi}^{\prime}$).

Only if. Suppose that locally $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$ around x_{p}. It follows that locally $\Xi^{\prime} \stackrel{e x}{\sim} \tilde{\Xi}^{\prime}$ around x_{p}, which implies that $q=\tilde{q}$. Assume that they are ex-equivalent via $Q: U \rightarrow G L(l, \mathbb{R})$ and $\tilde{x}=\psi(x)$ defined on a neighborhood U of x_{p}. Let $Q=\left[\begin{array}{ll}Q_{1} & Q_{2} \\ Q_{3} & Q_{4}\end{array}\right]$, where Q_{1}, Q_{2}, Q_{3} and Q_{4} are matrix-valued functions of sizes $q \times q, q \times m, p \times q$ and $p \times p$, respectively. Then by $\left[\begin{array}{ll}Q_{1} & Q_{2} \\ Q_{3} & Q_{4}\end{array}\right]\left[\begin{array}{c}E_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\tilde{E}_{1} \circ \psi \\ 0\end{array}\right] \frac{\partial \psi}{\partial x}$, we can deduce that $Q_{3}=0$ and Q_{1}, Q_{4} are invertible matrices. Then we have

$$
\left[\begin{array}{cc}
Q_{1} & Q_{2} \\
0 & Q_{4}
\end{array}\right]\left[\begin{array}{c}
E_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
\tilde{E}_{1} \circ \psi \\
0
\end{array}\right] \frac{\partial \psi}{\partial x}, \quad\left[\begin{array}{cc}
Q_{1} & Q_{2} \\
0 & Q_{4}
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]=\left[\begin{array}{l}
\tilde{F}_{1} \circ \psi \\
\tilde{F}_{2} \circ \psi
\end{array}\right],
$$

which implies

$$
\begin{equation*}
\tilde{E}_{1} \circ \psi=Q_{1} E_{1}\left(\frac{\partial \psi}{\partial x}\right)^{-1}, \quad \tilde{F}_{1} \circ \psi=Q_{1} F_{1}+Q_{2} F_{2}, \quad \tilde{F}_{2} \circ \psi=Q_{4} F_{2} . \tag{36}
\end{equation*}
$$

Thus by $\operatorname{Im} g(x)=\operatorname{ker} E(x)=\operatorname{ker} E_{1}(x)$ and $\operatorname{Im} \tilde{g}(x)=\operatorname{ker} \tilde{E}(\tilde{x})=\operatorname{ker} \tilde{E}_{1}(\tilde{x})$, and using (36), we have

$$
\begin{equation*}
\tilde{g} \circ \psi=\frac{\partial \psi}{\partial x} g \beta \tag{37}
\end{equation*}
$$

for some $\beta: U \rightarrow G L(m, \mathbb{R})$. Moreover, there exists $\alpha: U \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{align*}
\tilde{f} \circ \psi & =\tilde{E}_{1}^{\dagger} \circ \psi \tilde{F}_{1} \circ \psi \stackrel{(36)}{=} \frac{\partial \psi}{\partial x} E_{1}^{\dagger} Q_{1}^{-1} Q_{1} F_{1}+Q_{2} F_{2} \\
& =\frac{\partial \psi}{\partial x} E_{1}^{\dagger} Q_{1}^{-1}\left(Q_{1} F_{1}+Q_{2} F_{2}+Q_{1} E_{1} g \alpha\right) \\
& =\frac{\partial \psi}{\partial x}\left(f+E_{1}^{\dagger} Q_{1}^{-1} Q_{2} y+g \alpha\right) \tag{38}
\end{align*}
$$

In addition, we have

$$
\begin{equation*}
\tilde{h} \circ \psi=\tilde{F}_{2} \circ \psi \stackrel{(36)}{=} Q_{4} F_{2}=Q_{4} h \tag{39}
\end{equation*}
$$

Finally, it can be seen from (37), (38), and (39) that $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$ via $\tilde{x}=\psi(x), \alpha, \beta, \gamma=E_{1}^{\dagger} Q_{1}^{-1} Q_{2}$ and $\eta=Q_{4}$.

Proof of Proposition 3.8. We first show that the sequence of submanifolds M_{k}^{c} of the geometric reduction method of the DAE Ξ and the sequence N_{k}^{c} of the zero dynamics algorithm of any control system $\Sigma=(f, g, h) \in \operatorname{Expl}(\Xi)$ locally coincide. Suppose that rank $E(x)=$ const. $=q$ in a neighborhood U_{1} of x_{p}. Then there always exists an invertible matrix $Q(x)$ defined on U_{1} such that $E_{1}(x)$ of $Q(x) E(x)=\left[\begin{array}{c}E_{1}(x) \\ 0\end{array}\right]$ is of full row rank q for all $x \in U_{1}$, denote $Q(x) F(x)=$ $\left[\begin{array}{l}F_{1}(x) \\ F_{2}(x)\end{array}\right]$. Recall, see Remark 3.7, that N_{k} of the zero dynamics algorithm are well-defined for any $\Sigma \in \operatorname{Expl}(\Xi)$ and that N_{k} are the same for all control systems belonging to $\operatorname{Expl}(\Xi)$. So the choice of an explicitation system makes no difference for N_{k}. We may choose a control system $\Sigma=(f, g, h) \in \operatorname{Expl}(\Xi)$, given by $f(x)=E_{1}^{\dagger}(x) F_{1}(x), \operatorname{Im} g(x)=\operatorname{ker} E(x), h(x)=F_{2}(x)$. By the definition of M_{1} (see (4)) and $N_{1}=h^{-1}(0)$, we have

$$
\begin{aligned}
M_{1}^{c}=M_{1} \cap U_{1} & =\left\{x \in U_{1}: Q(x) F(x) \in \operatorname{Im} Q(x) E(x)\right\}=\left\{x \in U_{1}:\binom{F_{1}(x)}{F_{2}(x)} \in \operatorname{Im}\left[\begin{array}{c}
E_{1}(x) \\
0
\end{array}\right]\right\} \\
& =\left\{x \in U_{1}: F_{2}(x)=0\right\}=\left\{x \in U_{1}: h(x)=0\right\}=N_{1} \cap U_{1}=N_{1}^{c} .
\end{aligned}
$$

For $k>1$, suppose $M_{k-1}^{c}=N_{k-1}^{c}$. Then by (4) and (18), we have

$$
\begin{aligned}
M_{k} & =\left\{x \in M_{k-1}^{c}: Q(x) F(x) \in Q(x) E(x) T_{x} M_{k-1}^{c}\right\}=\left\{x \in M_{k-1}^{c}:\binom{F_{1}(x)}{F_{2}(x)} \in\left[\begin{array}{c}
E_{1}(x) \\
0
\end{array}\right] T_{x} M_{k-1}^{c}\right\} \\
& =\left\{x \in M_{k-1}^{c}: F_{1}(x) \in E_{1}(x) T_{x} M_{k-1}^{c}\right\} \\
& =\left\{x \in M_{k-1}^{c}: f(x)+\operatorname{ker} E_{1}(x) \subseteq T_{x} M_{k-1}^{c}+\operatorname{ker} E_{1}(x)\right\} \\
& =\left\{x \in N_{k-1}^{c}: f(x) \in T_{x} N_{k-1}^{c}+\mathcal{G}(x)\right\}=N_{k},
\end{aligned}
$$

and thus $M_{k}^{c}=N_{k}^{c}$. If either one among (A1) and (A2) is satisfied, then by $N_{k}^{c}=M_{k}^{c}$, we can easily deduce the other one and thus (A1) and (A2) are equivalent. Then by Proposition 2.7, $M^{*}=M_{k^{*}}^{c}$ is a locally maximal invariant submanifold and by Proposition 6.1.1 of [27], $N^{*}=$ $N_{k^{*}}^{c}$ is a local maximal output zeroing submanifold. Moreover, we have locally $M^{*}=N^{*}$ (since locally $M_{k}^{c}=N_{k}^{c}$). Now under the assumption that $\operatorname{dim} E(x) T_{x} M^{*}=$ const. for all $x \in M^{*}$ around x_{p}, by Theorem 2.20, Ξ is internally regular if and only if $\operatorname{dim} M^{*}=\operatorname{dim} E(x) T_{x} M^{*}$, i.e., $\operatorname{ker} E(x) \cap T_{x} M^{*}=0$, locally $\forall x \in M^{*}$ around x_{p}. Thus by $N^{*}=M^{*}$ and $\operatorname{ker} E(x)=\mathcal{G}(x)$, we have that Ξ is internally regular (around x_{p}) if and only if $\mathcal{G}\left(x_{p}\right) \cap T_{x_{p}} N^{*}=0$.

Proof of Theorem 3.13. (i) \Rightarrow (ii): Suppose in a neighborhood U of x_{p} that rank $E(x)=q$ and $\mathcal{G}(x)=\operatorname{ker} E(x)=\operatorname{span}\left\{g_{1}(x), \ldots, g_{m}(x)\right\}$ is involutive, where g_{1}, \ldots, g_{m} are independent vector fields on U and $m=n-q$. Then by the involutivity of \mathcal{G}, there exist local coordinates $\tilde{x}=\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\psi(x)$, where $\tilde{x}_{1}=\left(\tilde{x}_{1}^{1}, \ldots, \tilde{x}_{1}^{q}\right)$ and $\tilde{x}_{2}=\left(\tilde{x}_{2}^{1}, \ldots, \tilde{x}_{2}^{n-q}\right)$, such that $\operatorname{span}\left\{\mathrm{d} \tilde{x}_{1}^{1}, \ldots, \mathrm{~d} \tilde{x}_{1}^{q}\right\}=\operatorname{span}\left\{\mathrm{d} \tilde{x}_{1}\right\}=\mathcal{G}^{\perp}$ (Frobenius theorem [3]), where \mathcal{G}^{\perp} denotes the codistribution which annihilates \mathcal{G}. Note that in the \tilde{x}-coordinates, the distribution

$$
\operatorname{ker} \tilde{E}(\tilde{x})=\operatorname{ker}\left(E(x)\left(\frac{\partial \psi(x)}{\partial x}\right)^{-1}\right)=\frac{\partial \psi(x)}{\partial x} \mathcal{G}(x)=\operatorname{span}\left\{\tilde{g}_{1}(\tilde{x}), \ldots, \tilde{g}_{m}(\tilde{x})\right\}
$$

where $\tilde{g}_{i} \circ \psi=\frac{\partial \psi}{\partial x} g_{i}, i=1, \ldots, m$. Now let \tilde{g} be a matrix whose columns consist of \tilde{g}_{i}, for $i=1, \ldots, m$. It follows that $\operatorname{rank} \tilde{g}(\tilde{x})=m$ around $\tilde{x}_{0}=\psi\left(x_{0}\right)$. By span $\left\{\mathrm{d} \tilde{x}_{1}\right\}=\mathcal{G}^{\perp}$, we have $\left\langle\mathrm{d} \tilde{x}_{1}, \tilde{g}_{i}\right\rangle=0$, for $i=1, \ldots, m$. Thus $\tilde{g}(\tilde{x})$ is of the form $\tilde{g}(\tilde{x})=\left[\begin{array}{c}0 \\ \tilde{g}_{2}(\tilde{x})\end{array}\right]$, where $\tilde{g}_{2}: \psi(U) \rightarrow$ $\mathbb{R}^{m \times m}$. Since $\operatorname{rank} \tilde{g}(\tilde{x})=m$, it can be seen that $\tilde{g}_{2}(\tilde{x})$ is an invertible matrix, which implies by $\operatorname{Im} \tilde{g}(\tilde{x})=\operatorname{ker} \tilde{E}(\tilde{x})$ that $\tilde{E}(\tilde{x})$ has to be of the form $\tilde{E}(\tilde{x})=\left[\tilde{E}_{1}(\tilde{x}) 0\right]$, where $\tilde{E}_{1}: \psi(U) \rightarrow \mathbb{R}^{l \times m}$. Thus in the \tilde{x}-coordinates, $\tilde{\Xi}=(\tilde{E}, \tilde{F})$ admits the following form:

$$
\left[\begin{array}{ll}
\tilde{E}_{1}(\tilde{x}) & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\tilde{x}}_{1} \\
\dot{\tilde{x}}_{2}
\end{array}\right]=\tilde{F}(\tilde{x}),
$$

where $\tilde{F} \circ \psi=F$. Now by $\operatorname{rank} E(x)=q$, we get $\operatorname{rank}\left[\begin{array}{cc}\tilde{E}_{1}(\tilde{x}) & 0\end{array}\right]=\operatorname{rank} E(x)=q$ (the coordinate transformation preserves the rank). Thus by Dolezal's theorem [30], see also [31], there exists a smooth map $Q: \psi(U) \rightarrow G L(l, \mathbb{R})$ such that $Q(\tilde{x}) \tilde{E}(\tilde{x})=Q(\tilde{x})\left[\begin{array}{cc}\tilde{E}_{1}(\tilde{x}) & 0\end{array}\right]=$ $\left[\begin{array}{cc}\tilde{E}_{1}^{1}(\tilde{x}) & 0 \\ 0 & 0\end{array}\right]$, where $\tilde{E}_{1}^{1}: \psi(U) \rightarrow \mathbb{R}^{q \times q}$. Since $Q(\tilde{x})$ preserves the rank of $\tilde{E}(\tilde{x})$, we have $\operatorname{rank} \tilde{E}_{1}^{1}(\tilde{x})=q$. Therefore, $\tilde{E}_{1}^{1}(\tilde{x})$ is an invertible matrix. Now let $Q^{\prime}(\tilde{x})=\left[\begin{array}{cc}\left(\tilde{E}_{1}^{1}(\tilde{x})\right)^{-1} & 0 \\ 0 & I_{m}\end{array}\right] Q(\tilde{x})$ and denote $Q^{\prime}(\tilde{x}) \tilde{F}(\tilde{x})=\left[\begin{array}{l}F_{1}(\tilde{x}) \\ F_{2}(\tilde{x})\end{array}\right]$. It is seen that, via $\tilde{x}=\psi(x)$ and Q^{\prime}, the system Ξ is locally ex-equivalent to $\tilde{\Xi}=\left(Q^{\prime} \tilde{E}, Q^{\prime} \tilde{F}\right)$, where $Q^{\prime} \tilde{E} \circ \psi=Q^{\prime} E\left(\frac{\partial \psi}{\partial x}\right)^{-1}=\left[\begin{array}{cc}I_{q} & 0 \\ 0 & 0\end{array}\right]$. Clearly, $\tilde{\Xi}$ is a semiexplicit DAE.
(ii) \Rightarrow (iii): Suppose that Ξ is locally ex-equivalent to $\Xi^{S E}$ of the form (2) around x_{p}. Then, any control system $\Sigma \in \operatorname{Expl}(\Xi)$ is locally sys-equivalent to $\Sigma^{\prime} \in \operatorname{Expl}\left(\Xi^{S E}\right)$ below (by Theorem 2.20):

$$
\Sigma^{\prime}:\left\{\begin{array}{c}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
F_{1}\left(x_{1}, x_{2}\right) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
I_{m}
\end{array}\right] v,} \\
y
\end{array}=F_{2}\left(x_{1}, x_{2}\right) . . ~ \$\right.
$$

Suppose that $\Sigma \stackrel{s y s}{\sim} \Sigma^{\prime}$ via $z=\left(z_{1}, z_{2}\right)=\psi(x), \alpha, \beta$ and $\gamma=\left[\begin{array}{l}\gamma_{1} \\ \gamma_{2}\end{array}\right]$, then

$$
\Sigma:\left\{\begin{array}{c}
{\left[\begin{array}{c}
\dot{\grave{1}}_{1} \\
\dot{z}_{2}
\end{array}\right]=\frac{\partial \psi(x)}{\partial x}\left(\left[\begin{array}{c}
F_{1}(x) \\
0
\end{array}\right]+\left[\begin{array}{l}
\gamma_{1}(x) \\
\gamma_{2}(x)
\end{array}\right] y+\left[\begin{array}{c}
0 \\
I_{m}
\end{array}\right](\alpha(x)+\beta(x) \tilde{v})\right)} \\
\tilde{y}=\eta(x) F_{2}(x)
\end{array}\right.
$$

where $x=\psi^{-1}(z)$. By Definition 3.12, Σ can always be fully reduced to (by a coordinates change and a feedback transformation)

$$
\left\{\begin{aligned}
\dot{x}_{1} & =F_{1}\left(x_{1}, x_{2}\right)+\gamma_{1}\left(x_{1}, x_{2}\right) F_{2}\left(x_{1}, x_{2}\right), \\
y & =\eta\left(x_{1}, x_{2}\right) F_{2}\left(x_{1}, x_{2}\right),
\end{aligned}\right.
$$

where x_{2} is the new control.
(iii) $\Rightarrow($ i $)$: Suppose (iii) holds. Then $\operatorname{Expl}(\Xi)$ is not empty implies that $E(x)$ has constant rank around x_{p}. By Definition 3.12, if a control system $\Sigma \in \operatorname{Expl}(\Xi)$ can be fully reduced, then $\mathcal{G}=\operatorname{ker} E(x)=\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}$ is involutive.

Appendix C. Proof of Theorem 4.1

Claim. If assumptions (A1)-(A3) of Theorem 4.1 are satisfied, then the point x_{p} is a regular point of the zero dynamics algorithm (rank conditions (i), (ii), (iii) of Proposition 6.1.3 of [27] are satisfied) for any control system $\Sigma \in \operatorname{Expl}(\Xi)$. If so, we use Proposition 6.1.5 of [27] with a small modification: there exist local coordinates $\left(z, z^{*}\right)=\left(z_{1}, \ldots, z_{m}, z^{*}\right)$, where $z_{i}=\left(z_{i}^{1}, \ldots, z_{i}^{\rho_{i}}\right)$, such that Σ is the following form

$$
\left\{\begin{array}{rlrll}
y_{1} & =z_{1}^{1} & & \tag{40}\\
\dot{z}_{1}^{1} & =z_{1}^{2}+\sigma_{1}^{1} v & y_{i} & =z_{i}^{1}, \quad \text { for } 3 \leq i \leq m \\
& \cdots & & \dot{z}_{i}^{1} & =z_{i}^{2}+\sum_{s=1}^{i-1} \delta_{i, s}^{1}\left(\alpha_{s}+\beta_{s} v\right)+\sigma_{i}^{1} v \\
\dot{z}_{1}^{\rho_{1}-1} & =z_{1}^{\rho_{1}}+\sigma_{1}^{\rho_{1}-1} v & & \cdots & \\
\dot{z}_{1}^{\rho_{1}} & =\alpha_{1}+\beta_{1} v & & \\
y_{2} & =z_{2}^{1} & \dot{z}_{i}^{\rho_{i}-1} & =z_{i}^{\rho_{i}}+\sum_{s=1}^{i-1} \delta_{i, s}^{\rho_{i}-1}\left(\alpha_{s}+\beta_{s} v\right)+\sigma_{i}^{\rho_{i}-1} v \\
\dot{z}_{2}^{1} & =z_{2}^{2}+\delta_{2,1}^{1}\left(\alpha_{1}+\beta_{1} v\right)+\sigma_{2}^{1} v & & \dot{z}_{i}^{\rho_{i}} & =\alpha_{i}+\beta_{i} v \\
& \cdots & & \\
\dot{z}_{2}^{\rho_{2}-1} & =z_{1}^{\rho_{2}}+\delta_{2,1}^{\rho_{2}-1}\left(\alpha_{1}+\beta_{1} v\right)+\sigma_{2}^{\rho_{2}-1} v & \dot{z}^{*} & =f^{*}\left(z, z^{*}\right)+g^{*}\left(z, z^{*}\right) v, \\
\dot{z}_{1}^{\rho_{2}} & =\alpha_{2}+\beta_{2} v & &
\end{array}\right.
$$

where $\delta_{i, s}^{j} \equiv 0$ for $1 \leq j<\rho_{s}, 1 \leq s \leq i-1$.
(i) Note that in (40), $\rho_{1} \leq \rho_{2} \leq \ldots \leq \rho_{m}$ and the matrix $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is invertible at x_{p}. The functions σ_{k} satisfy $\left.\sigma^{k}\right|_{N_{k}}=0$ for $k=1, \ldots, \rho_{i}-1$, where

$$
N_{k}=\left\{\left(z, z^{*}\right): z_{i}^{j}=0,1 \leq i \leq m, 1 \leq j \leq k\right\}
$$

(ii) There are two differences between system (40) and the zero dynamics form of Proposition 6.1.3 of [27], where the functions $\sigma_{1}^{1}, \ldots, \sigma_{1}^{\rho_{1}-1}$ are not present and all the functions $\delta_{i, s}^{j}$ can be nonzero. However, in (40), $\sigma_{1}^{1}, \ldots, \sigma_{1}^{\rho_{1}-1}$ vanish on $N_{1}, \ldots, N_{\rho_{1}-1}$, respectively, but may not outside, and $\delta_{i, s}^{j} \equiv 0$ for $1 \leq j<\rho_{s}, 1 \leq s \leq i-1$.

Proof of the Claim. We will prove that assumptions (A1), (A2), (A3) of Theorem 4.1 correspond to the rank conditions (i), (ii), (iii) of Proposition 6.1.3 in [27]. By the assumption of Theorem 4.1 that rank $E(x)=$ const. around x_{p}, we have $\operatorname{Expl}(\Xi)$ is not empty. Now, in order to compare the two algorithms (the geometric reduction algorithm in section 2.2 for Ξ and the zero dynamics algorithm in [27] for $\Sigma \in \operatorname{Expl}(\Xi)$), we use the same notations as in the algorithm of section 2.2.

Then for a control system $\Sigma=(f, g, h) \in \operatorname{Expl}(\Xi)$, we have $f(x)=\left(\tilde{E}_{1}^{1}\right)^{\dagger} \tilde{F}_{1}^{1}(x), \operatorname{Im} g(x)=$ $\operatorname{ker} E(x)=\operatorname{ker} \tilde{E}_{1}^{1}(x), h(x)=\tilde{F}_{1}^{2}(x)$. The zero dynamics algorithm for Σ can be implemented in the following way:

Step 1: by (A2) of Theorem 4.1, we get $\mathrm{D} h(x)=\mathrm{D} \tilde{F}_{1}^{2}(x)$ has constant rank $n-n_{1}$ around x_{p} (condition (i) of Proposition 6.1.3 in [27]). Thus $h^{-1}(0)$ can be locally expressed as $N_{1}^{c}=\{x$: $\left.H_{1}(x)=0\right\}$, where $H_{1}=\psi_{1}(x)=\left(\psi_{1}^{1}, \ldots, \psi_{1}^{n-n_{1}}\right)$.

Step $k(k>1)$: By the proof of Proposition 3.8, we have $N_{k-1}^{c}=M_{k-1}^{c}$, which is

$$
N_{k-1}^{c}=M_{k-1}^{c}=\left\{x: H_{k-1}(x)=0\right\},
$$

where $H_{k-1}=\left(\psi_{0}, \ldots, \psi_{k-1}\right)$. By the zero dynamic algorithms, N_{k} consists of all $x \in N_{k-1}^{c}$ such that

$$
L_{f} H_{k-1}(x)+L_{g} H_{k-1}(x) u=0 .
$$

Then by assumption (A1) of Theorem 4.1, we can deduce that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} E \cap \operatorname{ker} d H_{k-1}\right)(x)=\operatorname{dim}\left(\operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\} \cap \operatorname{ker} d H_{k-1}\right)(x)=\text { const } ., \tag{41}
\end{equation*}
$$

for all $x \in M_{k-1}^{c}$ around x_{p}. Now by dim ker $E(x)=$ const. around x_{p} (implied by rank $E(x)=$ const.), we get

$$
\begin{equation*}
\operatorname{dim} \operatorname{span}\left\{g_{1}, \ldots, g_{m}\right\}(x)=\text { const } . \tag{42}
\end{equation*}
$$

locally around x_{p}. By (41) and (42), we get rank $L_{g} H_{k-1}(x)=$ const. for all $x \in M_{k-1}^{c}$ around x_{p} (condition (ii) of Proposition 6.1.3 in [27]).

Since rank $L_{g} H_{k-1}(x)=$ const., there exists a basis matrix $R_{k-1}(x)$ of the annihilator of the image of $L_{g} H_{k-1}(x)$, that is $R_{k-1}(x) L_{g} H_{k-1}(x)=0$. Thus N_{k}^{c} can be defined by

$$
N_{k}^{c}=\left\{x \in U_{k}: H_{k-1}(x)=0, R_{k-1}(x) L_{f} H_{k-1}(x)=0\right\} .
$$

Notice that by the geometric reduction algorithm, we have

$$
M_{k}^{c}=\left\{x \in U_{k}: H_{k-1}(x)=0, \quad \tilde{F}_{k}^{2}(x)=0\right\}
$$

By $N_{k}^{c}=M_{k}^{c}$ and the fact that the rank of the differential of $\left(H_{k-1}(x), \tilde{F}_{k}^{2}(x)\right)$ is constant around x_{p} (assumption (A2) of Theorem 4.1), it follows that the rank of the differential of $\left[\begin{array}{c}H_{k-1}(x) \\ R_{k-1}(x) L_{f} H_{k-1}(x)\end{array}\right]$ is constant around x_{p} (condition (i) of Proposition 6.1.3 in [27]).

Assumption (A3) of Theorem 4.1 that $\operatorname{dim} E(x) T_{x} M^{*}=\operatorname{dim} M^{*}$, locally around x_{p}, implies

$$
\operatorname{span}\left\{g_{1}\left(x_{p}\right), \ldots, g_{m}\left(x_{p}\right)\right\} \cap T_{x_{p}} N^{*}=0 .
$$

Finally, by $N^{*}=\left\{x: H_{k^{*}}(x)=0\right\}$, it follows that the matrix $L_{g} H_{k^{*}}\left(x_{p}\right)$ has rank m (condition (iii) of Proposition 6.1.3 in [27]).

Proof of Theorem 4.1. Observe that by assumption (A3) and Theorem 2.20(iii), we have that Ξ is internally regular. Then by Claim, we have that x_{p} is a regular point of the zero dynamics algorithm for any control system $\Sigma \in \operatorname{Expl}(\Xi)$. Thus there exist local coordinates $\left(z, z^{*}\right)$ such that Σ is in the form (40) around x_{p}. Notice that the matrix $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is invertible at x_{p} and the functions $\left.\sigma_{i}^{k}\right|_{N_{k}^{c}}=0$, for $1 \leq i \leq m, 1 \leq k \leq \rho_{i}-1$, which implies $\sigma_{i}^{k} \in \mathbf{I}^{k}$, where \mathbf{I}^{k} is the ideal generated by $z_{i}^{j}, 1 \leq i \leq m, 1 \leq j \leq k$ in the ring of smooth functions of z_{b}^{a} and z_{c}^{*}. Then for system (40), using the feedback transformation $\tilde{v}=\alpha+\beta v$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, we get

$$
\left\{\begin{align*}
y_{i} & =z_{i}^{1}, \quad i=1, \ldots, m \tag{43}\\
\dot{z}_{i}^{1} & =z_{i}^{2}+\sum_{s=1}^{i-1} \delta_{i, s}^{1} \tilde{v}_{s}+a_{i}^{1}+b_{i}^{1} \tilde{v} \\
& \ldots \\
\dot{z}_{i}^{\rho_{i}-1} & =z_{i}^{\rho_{i}}+\sum_{s=1}^{i-1} \delta_{i, s}^{\rho_{i}-1} \tilde{v}_{s}+a_{i}^{\rho_{i}-1}+b_{i}^{\rho_{i}-1} \tilde{v} \\
\dot{z}_{i}^{\rho_{i}} & =\tilde{v}_{i} \\
\dot{z}^{*} & =\tilde{f}^{*}\left(z, z^{*}\right)+\tilde{G}^{*}\left(z, z^{*}\right) \tilde{v}
\end{align*}\right.
$$

where $\tilde{f}^{*}=f^{*}-\bar{g} \beta^{-1} \alpha, \tilde{G}^{*}=g^{*} \beta^{-1}$, and where $a_{i}^{k}=-\sigma_{i}^{k} \beta^{-1} \alpha, b_{i}^{k}=\sigma_{i}^{k} \beta^{-1}$, for $1 \leq i \leq m$, $1 \leq k \leq \rho_{i}-1$ and by $\sigma_{i}^{k} \in \mathbf{I}^{k}$, we have $a_{i}^{k}, b_{i, s}^{k} \in \mathbf{I}^{k}$.

Recall from (40) that the functions $\delta_{i, s}^{j} \equiv 0$ for $1 \leq j<\rho_{s}, 1 \leq s \leq i-1$. Then if the function $\delta_{i, \bar{s}}^{j} \neq 0, j=\rho_{\bar{s}}+k$, for a certain $1 \leq \bar{s} \leq i-1$ and a certain $0 \leq k \leq \rho_{i}-1-\rho_{\bar{s}}$, we show that, via suitable changes of coordinates and output multiplications, the nonzero function $\delta_{i, \bar{s}}^{k+\rho_{\bar{s}}}$ can be eliminated. Namely, define the new coordinates (and keep the remaining coordinates unchanged):

$$
\tilde{z}_{i}^{k+1}=z_{i}^{k+1}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k} z_{\bar{s}}^{1}, \quad \tilde{z}_{i}^{k+2}=z_{i}^{k+2}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k} z_{\bar{s}}^{2}, \quad \ldots, \quad \tilde{z}_{i}^{k+\rho_{\bar{s}}}=z_{i}^{k+\rho_{\bar{s}}}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k} z^{\rho_{\bar{s}}},
$$

we have (notice that below $\delta_{\bar{s}, s}^{1} \equiv 0$ for $1 \leq s \leq \bar{s}-1$)

$$
\begin{aligned}
\dot{\tilde{z}}_{i}^{k+1} & =z_{i}^{k+2}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+1} \tilde{v}_{s}+a_{i}^{k+1}+b_{i}^{k+1} \tilde{v}-\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime} z_{\bar{s}}^{1}-\delta_{i, s}^{\rho_{s}+k}\left(z_{\bar{s}}^{2}+a_{\bar{s}}^{1}+b_{\bar{s}}^{1} \tilde{v}+\sum_{s=1}^{\bar{s}-1} \delta_{\bar{s}, s}^{1} \tilde{v}_{s}\right) \\
& =\left(z_{i}^{k+2}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k} z_{\bar{s}}^{2}\right)+\left(a_{i}^{k+1}-\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime} z_{\bar{s}}^{1}-\delta_{i, s}^{\rho_{s}+k} a_{\bar{s}}^{1}\right)+\left(b_{i}^{k+1}-\delta_{i, s}^{\rho_{s}+k} b \frac{1}{\bar{s}}\right) \tilde{v}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+1} \tilde{v}_{s} \\
& =\tilde{z}_{i}^{k+2}+\tilde{a}_{i}^{k+1}+\tilde{b}_{i}^{k+1} \tilde{v}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+1} \tilde{v}_{s}
\end{aligned}
$$

where $\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime}$ denotes the derivative of $\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}(x(t))$ with respect to t, and $\tilde{a}_{i}^{k+1}=a_{i}^{k+1}-$ $\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime} z_{\bar{s}}^{1}-\delta_{i, s}^{\rho_{s}+k} a_{\bar{s}}^{1}, \tilde{b}_{i}^{k+1}=b_{i}^{k+1}-\delta_{i, s}^{\rho_{s}+k} b_{\bar{s}}^{1}$, and it is clear that $\tilde{a}_{i}^{k+1}, \tilde{b}_{i, l}^{k+1} \in \mathbf{I}^{k+1}$. Then via similar calculations, we have

$$
\dot{\tilde{z}}_{i}^{k+j}=\tilde{z}_{i}^{k+j+1}+\tilde{a}_{i}^{k+j}+\tilde{b}_{i}^{k+j} \tilde{v}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+j} \tilde{v}_{s}, \quad 2 \leq j \leq \rho_{\bar{s}}-1,
$$

for some $\tilde{a}^{k+j}, \tilde{b}_{i, l}^{k+j} \in \mathbf{I}^{k+j}$. Moreover, we have

$$
\begin{aligned}
\dot{\tilde{z}}_{i}^{k+\rho_{\bar{s}}} & =z_{i}^{k+\rho_{\bar{s}}+1}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+\rho_{\bar{s}}} \tilde{v}_{s}+a_{i}^{k+\rho_{\bar{s}}}+b_{i}^{k+\rho_{\bar{s}}} \tilde{v}-\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime} z_{\bar{s}}^{\rho_{\bar{s}}}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k} \tilde{v}_{\bar{s}} \\
& =z_{i}^{k+\rho_{\bar{s}}+1}+\left(a_{i}^{k+\rho_{\bar{s}}}-\left(\delta_{i, \bar{s}}^{\rho_{\bar{s}}+k}\right)^{\prime} z_{\bar{s}}^{\rho_{\bar{s}}}\right)+b_{i}^{k+1} \tilde{v}+\sum_{s=1}^{i-1} \delta_{i, s}^{k+\rho_{\bar{s}}} \tilde{v}_{s}-\delta_{i, \bar{s}}^{k+\rho_{\bar{s}}} \tilde{v}_{\bar{s}} \\
& =z_{i}^{k+\rho_{\bar{s}}+1}+\tilde{a}_{i}^{k+\rho_{\bar{s}}}+\tilde{b}_{i}^{k+\rho_{\bar{s}}} \tilde{v}+\sum_{s=1}^{\bar{s}-1} \delta_{i, s}^{k+\rho_{\bar{s}}} \tilde{v}_{s}+\sum_{s=\bar{s}+1}^{i-1} \delta_{i, \bar{s}}^{k+\rho_{\bar{s}}} \tilde{v}_{s},
\end{aligned}
$$

where the functions $\tilde{a}^{k+\rho_{\bar{s}}}, \tilde{b}_{i, l}^{k+\rho_{\bar{s}}} \in \mathbf{I}^{k+\rho_{\bar{s}}}$. Thus in the above formula, the nonzero function $\delta_{i, \bar{s}}^{k+\rho_{\bar{s}}}$ is eliminated. Note that if $k=0$, then the change of coordinate $\tilde{z}_{i}^{1}=z_{i}^{1}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}} z \frac{1}{\bar{s}}$ transforms the first equation $y_{i}=z_{i}^{1}$ of (43) into $y_{i}=\tilde{z}_{i}^{1}+\delta_{i, \bar{s}}^{\rho_{\bar{s}}} z \overline{\bar{s}}$. We define a new output $\tilde{y}_{i}=y_{i}-\delta_{i, \bar{s}}^{\rho_{\bar{s}}} z \frac{1}{\bar{s}}=$ $y_{i}-\delta_{i, \bar{s}}^{\rho_{\overline{5}}} y_{\bar{s}}$ (which is actually an output multiplication of the form $\tilde{y}_{i}=\eta_{i} y$) such that the first equation of (43) becomes $\tilde{y}_{i}=\tilde{z}_{i}^{1}$.

Repeat the above construction to eliminate all nonzero functions $\delta_{i, s}^{j}$ for $j \geq \rho_{s}, 1 \leq s \leq i-1$. Then system (43) becomes the following control system

$$
\tilde{\Sigma}:\left\{\begin{aligned}
\tilde{y}_{i} & =\tilde{z}_{i}^{1}, \quad i=1, \ldots, m \\
\dot{\tilde{z}}_{i}^{1} & =\tilde{z}_{i}^{2}+\tilde{a}_{i}^{1}+\tilde{b}_{i}^{1} \tilde{v} \\
& \cdots \\
\dot{z}_{i}^{\rho_{i}-1} & =\tilde{z}_{i}^{\rho_{i}}+\tilde{a}_{i}^{\rho_{i}-1}+\tilde{b}_{i}^{\rho_{i}-1} \tilde{v} \\
\dot{z}_{i}^{\rho_{i}} & =\tilde{v}_{i} \\
\dot{z}^{*} & =\tilde{f}^{*}\left(z, z^{*}\right)+\tilde{G}^{*}\left(z, z^{*}\right) \tilde{v}
\end{aligned}\right.
$$

where $a_{i}^{k}, b_{i, s}^{k} \in \mathbf{I}^{k}$ for $1 \leq k \leq \rho_{i}-1$. It is clear that $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$ (we used coordinates changes, feedback transformations and output multiplications to transform Σ into $\tilde{\Sigma}$). Then consider the last row of every subsystem of $\tilde{\Sigma}$, which is $\dot{z}_{i}^{\rho_{i}}=\tilde{v}_{i}$. By deleting this equation in every subsystem and setting $y_{i}=0$ for $i=1, \ldots, m$, and replacing the vector \tilde{v} by \dot{z}^{ρ}, we transform $\tilde{\Sigma}$ into a DAE $\tilde{\Xi}$ below. It is straightforward to see that $\tilde{\Sigma} \in \operatorname{Expl}(\tilde{\Xi})$, where

$$
\tilde{\tilde{\Xi}:\left\{\begin{aligned}
{\left[\begin{array}{cccc}
0 & & & \\
1 & \ddots & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\tilde{z}}_{i}^{1} \\
\dot{\tilde{z}}_{i}^{2} \\
\vdots \\
\dot{\tilde{z}}_{i}^{\rho_{i}}
\end{array}\right] } & =\left[\begin{array}{c}
\tilde{z}_{i}^{1} \\
\tilde{z}_{i}^{2} \\
\vdots \\
\tilde{z}_{i}^{\rho_{i}}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\tilde{a}_{i}^{1}+\tilde{b}_{i}^{1} \dot{\tilde{z}}^{\rho} \\
\vdots \\
\tilde{a}_{i}^{\rho_{i}-1}+\tilde{b}_{i}^{\rho_{i}-1} \dot{\tilde{z}}^{\rho}
\end{array}\right], i=1, \ldots, m, \\
& =\tilde{G}^{*}\left(\tilde{z}, z^{*}\right) \dot{\tilde{z}}^{\rho}+\dot{z}^{*}
\end{aligned}\right.}=\begin{aligned}
& \left(\tilde{z}, z^{*}\right) .
\end{aligned}
$$

Finally, by Theorem 3.6 and $\Sigma \stackrel{s y s}{\sim} \tilde{\Sigma}$, we have that $\Xi \stackrel{e x}{\sim} \tilde{\Xi}$ and that $\tilde{\Xi}$ is in the NWF1, given by (20).

References

[1] P.J. Rabier, W.C. Rheinboldt, Theoretical and numerical analysis of differential-algebraic equations, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, Volume VIII, Elsevier Science, Amsterdam, the Netherlands, 2002, pp. 183-537.
[2] R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Scientific Publishing, Basel, 2008.
[3] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience, 1963.
[4] R. Riaza, DAEs in circuit modelling: a survey, in: A. Ilchmann, T. Reis (Eds.), Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, Springer-Verlag, Berlin-Heidelberg, 2013, pp. 97-136.
[5] G. Byrne, P. Ponzi, Differential-algebraic systems, their applications and solutions, Comput. Chem. Eng. 12 (1988) 377-382.
[6] C.C. Pantelides, D. Gritsis, K.R. Morison, R.W.H. Sargen, The mathematical modeling of transient systems using differential-algebraic equations, Comput. Chem. Eng. 12 (1988) 449-454.
[7] P.J. Rabier, W.C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint, vol. 68, Society for Industrial and Applied Mathematics, 2000.
[8] P. Betsch, P. Steinmann, A DAE approach to flexible multibody dynamics, Multibody Syst. Dyn. 8 (2002) 365-389.
[9] W. Blajer, K. Kołodziejczyk, Control of underactuated mechanical systems with servo-constraints, Nonlinear Dyn. 50 (2007) 781-791.
[10] S. Reich, On a geometrical interpretation of differential-algebraic equations, Circuits Syst. Signal Process. 9 (1990) 367-382.
[11] S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations, Circuits Syst. Signal Process. 10 (1991) 343-359.
[12] P.J. Rabier, W.C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations, J. Differ. Equ. 109 (1994) 110-146.
[13] Y. Chen, S. Trenn, On geometric and differentiation index of nonlinear differential-algebraic equations, IFACPapersOnLine 54 (2021) 186-191.
[14] T. Berger, Controlled invariance for nonlinear differential-algebraic systems, Automatica 64 (2016) 226-233.
[15] T. Berger, The zero dynamics form for nonlinear differential-algebraic systems, IEEE Trans. Autom. Control 62 (2017) 4131-4137.
[16] Y. Chen, S. Trenn, W. Respondek, Normal forms and internal regularization of nonlinear differential-algebraic control systems, Int. J. Robust Nonlinear Control 31 (2021) 6562-6584.
[17] Y. Chen, S. Trenn, An approximation for nonlinear differential-algebraic equations via singular perturbation theory, IFAC-PapersOnLine 54 (2021) 187-192.
[18] Y. Chen, W. Respondek, Geometric analysis of differential-algebraic equations via linear control theory, SIAM J. Control Optim. 59 (2021) 103-130.
[19] L. Kronecker, Algebraische Reduction der Schaaren bilinearer Formen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1890, pp. 1225-1237.
[20] F.R. Gantmacher, The Theory of Matrices (Volume II), Chelsea, New York, 1959.
[21] K. Weierstraß, Zur Theorie der bilinearen und quadratischen Formen, Berl. Monatsb., 1868, pp. 310-338.
[22] J.J. Loiseau, K. Özçaldiran, M. Malabre, N. Karcanias, Feedback canonical forms of singular systems, Kybernetika 27 (1991) 289-305.
[23] T. Berger, A. Ilchmann, S. Trenn, The quasi-Weierstraß form for regular matrix pencils, Linear Algebra Appl. 436 (2012) 4052-4069.
[24] T. Berger, S. Trenn, The quasi-Kronecker form for matrix pencils, SIAM J. Matrix Anal. Appl. 33 (2012) 336-368.
[25] P. Rouchon, M. Fliess, J. Lévine, Kronecker's canonical forms for nonlinear implicit differential systems, in: System Structure and Control, Pergamon, 1992, pp. 248-251.
[26] A. Kumar, P. Daoutidis, Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes, Chapman and Hall/CRC Research Notes in Mathematics, vol. 397, Chapman and Hall, Boca Raton, FL, 1999.
[27] A. Isidori, Nonlinear Control Systems, 3rd ed., Communications and Control Engineering Series, Springer-Verlag, Berlin, 1995.
[28] H. Nijmeijer, A.J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin-Heidelberg-New York, 1990.
[29] K.-T. Wong, The eigenvalue problem $\lambda T x+S x$, J. Differ. Equ. 16 (1974) 270-280.
[30] V. Dolezal, The existence of a continuous basis of a certain linear subspace of e_{r} which depends on a parameter, Čas. Pěst. Mat. 089 (1964) 466-469.
[31] K.A. Grasse, A vector-bundle version of a theorem of V. Doležal, Linear Algebra Appl. 392 (2004) 45-59.
[32] T. Berger, T. Reis, Regularization of linear time-invariant differential-algebraic systems, Syst. Control Lett. 78 (2015) 40-46.
[33] R. Marino, W. Respondek, A. van der Schaft, Equivalence of nonlinear systems to input-output prime forms, SIAM J. Control Optim. 32 (1994) 387-407.
[34] A.S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control 11 (1973) 446-465.
[35] Y. Chen, W. Respondek, From Morse triangular form of ODE control systems to feedback canonical form of DAE control systems, J. Franklin Inst. 358 (2021) 8556-8592.
[36] Y. Chen, Geometric Analysis of Differential-Algebraic Equations and Control Systems: Linear, Nonlinear and Linearizable, Ph.D. thesis, Normandie Université, INSA de Rouen, 2019.

[^0]: * Corresponding author.

 E-mail addresses: yahao.chen@rug.nl (Y. Chen), witold.respondek@insa-rouen.fr (W. Respondek).

