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Abstract

In this paper, we relate the feedback canonical form FNCF [24] of differential-algebraic control
systems (DACSs) with the famous Morse canonical form MCF [28],[27] of ordinary differential
equation control systems (ODECSs). First, a procedure called an explicitation (with driving vari-
ables) is proposed to connect the two above categories of control systems by attaching to a DACS
a class of ODECSs with two kinds of inputs (the original control input u and a vector of driving
variables v). Then, we show that any ODECS with two kinds of inputs can be transformed into its
extended MCF via two intermediate forms: the extended Morse triangular form and the extended
Morse normal form. Next, we illustrate that the FNCF of a DACS and the extended MCF of the
explicitation system have a perfect one-to-one correspondence. At last, an algorithm is proposed to
transform a given DACS into its FBCF via the explicitation procedure and a numerical example is
given to show the efficiency of the proposed algorithm.
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1. Introduction

Consider a linear differential-algebraic control system (DACS) of the form
A" : Ei = Hzx + Lu, (1)
where © € 2 = R"™ is called the “generalized” state, u € R™ is the vector of control inputs,

and where £ € R>*", H € R*™ and L € R™™. A linear DACS of the form will be denoted
by A}

l,n,m

= (E,H,L) or, simply, A*. 1In the case of the control u being absent, the system
becomes a linear differential-algebraic equation (DAE) Ei = Hz, which is called regular if [ = n
and sE — H € R""[s]\0. A detailed exposition of the theory of linear DAEs and DACSs can be
consulted in the textbooks [16],[I3] and the survey paper [22]. Early results on linear DAEs can
be traced back to two famous canonical forms of the matrix pencil sE — H given by Weierstrass

[34] and Kronecker [2I]. The following literature discusses the normal forms and canonical forms
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of linear DAE systems. The authors of [20] proposed a canonical from for controllable and regular
DACSs. Several forms for regular systems based on their controllability and impulse controllability
were given in [I9]. In [31], a canonical form of general DACSs was discussed. More recently, a normal
form based on impulse-controllability and impulse-observability of DACSs was proposed in [32], and
a quasi-Weierstrass and a quasi-Kronecker triangular/normal forms of DAEs were given in [6] and
[9], respectively. In the present paper, we discuss the feedback canonical form FBCF obtained in
[24] (we restate it as Theorem of the present paper) for general linear DACSs, which plays an
important role in, e.g. controllability analysis [7], regularization problems [12],[8], pole assignment
[25],[10] and stabilization [4]. The FBCF of DACSs is actually an extension of the Kronecker
canonical form of general linear DAEs. Some methods (most are numerical) of transforming a DAE
into its Kronecker canonical form can be found in [17],[33],[3].

In [I5], we proposed a notion, called explicitation, to connect DAEs with control systems. In
the present paper, we will propose a new explicitation procedure called explicitation with driving
variables (see Definition , and differences and relations of the two explicitation methods are
discussed in Remark Since the vector of driving variables v enters statically into the system
(similarly as the control input u), we can regard it as another kind of input. More specifically, the
explicitation with driving variables of a DACS is a class of ODECSs with two kinds of inputs of the
form:

A | &= Ax + B%u+ Bv @)
y = Cx + D"u,
where A € R"*™ B" € R"*™ BV ¢ R"** C € RP*" and D" € RP*™ where u € R™ is the
vector of control variables and v € R?® is the vector of driving variables. An ODECS of the form
will be denoted by ARY, o = (A, B%, BY,C,D") or, simply, A**. Note that although both u
and v may be considered as inputs of system 7 we distinguish them because they play different
roles for the system and, as a consequence, their feedback transformation rules are different (see
Remark . Observe that we can express an ODECS A"? of the form , as a classical ODECS
AY = (A, BY,C,D"v) of the form
AS S = Az + B%w 3)
y=Czx+ D"w,
by denoting w = [uT,vT]T, BY = [B+ Bv] and D¥ = [D* (]. Throughout the paper, depending
on the context, we will use either A*Y or A" to denote an ODECS with two kinds of inputs.

We use Figure[I]to show the relations of the results of the paper. The purpose of this paper is to
find an efficient geometric way to transform a DACS A" into its feedback canonical form FBCF via
the explicitation procedure. As we have pointed out, the FBCF is a generalization, on one hand,

of the classical Kronecker form (because a DACS is a differential-algebraic equation) and one the

other hand, of the Brunovsky canonical form [I1] (because a DACS is a control system). The explic-
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itation procedure allows us to attach to a DACS a control system A“Y with an output y (defining
the algebraic constraint as y = 0) and to study the double nature of a DACS (differential-algebraic
and control-theoretic) simultaneously by analyzing A*Y. More specifically, instead of using trans-
formations directly on a DACS, we will first transform an ODECS A"V, given by the explicitation
of our DACS, into its canonical form (called the extended Morse canonical form EMCF, see Theo-
rem . Then by the relation between DACSs and ODECSs given in Section [2| we can easily get
the FBCF from the EMCF. Moreover, inspired by the quasi-Kronecker triangular form of [9], we
will propose a Morse triangular form MTF (see Proposition to transform an ODECS (with one
type of controls) into its Morse normal form MNF (see Proposition . Note that a procedure
of transforming an ODECS A" into its MCF was given by Morse [28] for D* = 0 and by Molinari
[27] for the general case D* # 0. We propose to do it via two intermediate normal forms MTF and

MNF.

A r— FBCF [24]
explicitation, see Def[2.2] implicitation, see Sec
G
extension extension extension extension
_ PropBl | PropBa P rvicr pR

Figure 1: The relations of the results in the paper

We use the following abbreviations throughout the paper:
DAE differential-algebraic equation MCF Morse canonical form

DACS differential-algebraic control system EMTF extended Morse triangular form
ODECS ordinary differential equation control system EMNF extended Morse normal form
MTF Morse triangular form EMCF extended Morse canonical form
MNF Morse normal form FBCF  feedback canonical form

This paper is organized as follows. In Section [2| we introduce the explicitation with driving
variables procedure and build geometric connections between DACSs and ODECSs. In Section
we show a method of constructing the MTF and the MINF for classical ODECSs of the form ,
then we extend them to the EMTF and the EMNF for ODECSs (with two kinds of inputs) of
the form . In Section 4| we propose the EMCF for ODECSs of the form , which allows to
construct the FBCF of DACSs as a corollary and we formulate the construction of the FBCF via
the explication procedure as an algorithm. In Section [f] we give a numerical example to show the
efficiency of the algorithm. Section [6]and [7]contain proofs and conclusions of the paper, respectively.

The definitions of geometric invariant subspaces for ODECSs and DACSs are given in Appendix.
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Throughout, we will use the following notations:

ck the class of k-times differentiable functions

N the set of natural numbers with zero and Nt = N\ {0}

R™*™ the set of real valued matrices with n rows and m columns

Gl (n,R) the group of nonsingular matrices of R™*™

ker A the kernel of the map given by a matrix A

ImA the image of the map given by a matrix A

rank A the rank of a matrix A

I, the identity matrix of size n x n for n € NT

Onxm the zero matrix of size n x m for n,m € Nt

AT the transpose of a matrix A

At the inverse of a matrix A

A% {Az |z € A}, the image of a space & under a map given by a matrix A

A1z {z € R"| Az € £}, the preimage of a space % under a map given by a matrix A
AT (AT~

o+ {z € R"|Va € & : 27a = 0}, the orthogonal complement of a subspace </ C R"
AT the right inverse of a full row rank matrix A € R™*™ ie., AAT =1,

z® k-th-order derivative of a function x(¢)

2. Explicitation with driving variables for linear DACSs

A solution of A% is a map (z(t),u(t)) : R — 2 x R™ with z(t) € C! and u(t) € C° satisfying
Ei(t) = Hx(t) + Lu(t). Notice that to some C°-controls u(t), there may not correspond any C!-

solution z(t) because of algebraic relations between u;’s and z;’s present in A" of the form .

Definition 2.1. Two DACSs A}, . = (E,H,L) and Afnm = (E,ﬁ, [N/) are called externally

feedback equivalent, shortly ex-fb-equivalent, if there exist matrices @ € GI(I,R), P € Gi(n,R),
F e R™*™ and G € Gl(m,R) such that

E=QEP', H=Q(H+LF)P™', L=QLG. (4)

e

We denote the ex-fb-equivalence of two DACSs as A" “IVAR,

Now we introduce the explicitation with driving variables procedure for A* as follows.

e Denote the rank of E by ¢ € N, define s =n — ¢ and p = — gq. Then there exists a matrix
Q € GI(I,R) such that QF = [Eol}, where Fp € R?™ and rank F; = ¢q. Via Q, DACS A" is
ex-fb-equivalent to

E H L
Na=| e | u, (5)
0 Hy Lo

where QH = [['], QL = [7}], and where H; € R?*", Hy € RU-0x" L} € R™*™ [y €
RU=—a)xm
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e Consider the differential part of :
Fiz=Hiz+ Liu. (5a)
The matrix F; is of full row rank ¢, so let EI € R™*4 denote its right inverse, i.e., £ EI =1,
Set A = EIHl and BY = EILl. In general, w € R"™ satisfies the linear equation Fyw = b,
where E; : R" — R is of full row rank ¢, if and only if w € EJb+ ker E;. It follows that z(t)
satisfies if and only if

& € Ax 4+ B"u + ker Ej. (6)

e Choose a full column rank matrix B € R™*® such that Im B” = ker F; = ker E (note
that the kernels of E; and E coincide since any invertible @ preserves the kernel). Then
the vector v € R?® of driving variables (see Remark for a control-theory interpretation of
v) parameterizes the subspace ker F1 = Im BY via BYv and the solutions of the differential

inclusion (@, and thus of , correspond to the solutions of

&= Ax + B%u+ B"v. (7)

e We claim, see Proposition below, that all solutions of (and thus of the original DAE

A") are in one-to-one correspondence with all solutions (corresponding to all driving variables

v(t)) of
& = Ax + B%u + B%v
(8)
0= Cz + D"u,
where C = Hy € RP*™ and D" = Ly € RP*™. Recall that a control system of the form is
denoted by ALY, o = (A, B% BY,C,D"). It is immediately to see that equation can be

obtained from the ODECS A%Y by setting the output y = 0. In the above way, we attach an
ODECS A" to a DACS A“.

The above procedure of attaching a control system A*" to a DACS A" will be called explicitation

with driving variables and is formalized as follows.

Definition 2.2. Given a DACS AY

l,n,m

system A" = (4, B, B¥, C, D), with

= (E,H, L), by a (Q,v)-explicitation, we will call a control

A=E/H,, B*=E|L, ImB’ =kerE; =kerE, C = H,, D"= Lo,
where
QE=[%], QH =[], Q@L=[1].
The class of all (Q,v)-explicitations will be called the explicitation with driving variables class or,

shortly explicitation class, of A¥, denoted by Expl(A%). If a particular ODECS A*? belongs to the
explicitation class Expl(A*), we will write A*Y € Expl(A").

The definition of the explicitation class Expl(A™) suggests that a given A* has many (Q,v)-
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explicitations. Indeed, the construction of A*? € Expl(A") is not unique at three stages: there
is a freedom in choosing Q, EI, and BY. We show in the following proposition that Expl(A") is
actually an ODECS defined up to a v-feedback transformation, an output injection and an output

transformation, that is, a class of ODECSs.

Proposition 2.3. Assume that an ODECS A%’ = (A, B“, B",C,D") is a (Q,v)-explicitation

n,m,s,p

of a DACS A}fn = (E,H, L) corresponding to a choice of invertible matriz Q, right inverse EL
and matriz B®. Then A“? (A,B*,B?,C,D") is a (Q,d)-explicitation of A" corresponding

n,m,s,p

to a choice of invertible matriz Q, right inverse EI, and matriz B® if and only if A" and A7 are
equivalent via a v-feedback transformation of the form v = F,x + Ru + T, ', an output injection
Ky = K(Czx + D"u) and an output multiplication § = T,y, which map
A~ A=A+ KC+ B'F,, B"w B*=B"+B'R+ KD" BYw— B’ =BT,
Cw— C=T,C, D"~ D*=T,D"
where F,, K, R, T, Ty are matrices of appropriate sizes, and T\, and T, are invertible.
The following proposition shows that solutions of any DACS are in one-to-one correspondence

with solutions of its (@, v)-explicitations.

Proposition 2.4. Consider A}, . = (E,H,L) and let an ODECS A}, . = (A, B*,B",C, D)
be a (Q,v)-explicitation of A¥, i.e., A*W € Expl(A%). Then a curve (z(t),u(t)) with z(t) € C* and
u(t) € C° is a solution of A" if and only if there exists v(t) € C° such that (x(t),u(t),v(t)) is a

solution of A*V respecting the output constraints y =0, i.e., a solution of (@
The proofs of Proposition [2.3] and Proposition [2.4] will be given in Section [6.1

Remark 2.5. Notice that the definition of (Q,v)-explicitation in the present paper is different in
two aspects from the (Q, P)-explicitation of [I5] (or see Chapter II of [14]). First, in this paper we
consider the explicitation of DACSs while in [I5] we dealt with DAEs (with no controls). The second
difference is that in (@, v)-explicitation, we keep the original generalized state variables x and add
new driving variables v while in (Q, P)-explicitation of [I5], we look for a partition (21, 22) = z = Px
into state- and control- variables. More specifically, consider a DACS A}, | = (E,H, L), then via
two invertible matrices @@ and P, the system A" is ex-fb-equivalent with F' = 0 and G = I,,, (or
ex-equivalent, according to the terminology of [15], since here we do not use feedback transformation

for A*) to a pure semi-explicit PSE DACS
I of |2t Hy, H,| |z Ly

PsE = + U,
0 of |22 Hs Hyl |22 L,

with z = [;;} = [%i] = Pz, where P is any invertible map such that ker P; = ker . We attach
to A%bgp, the control system
2 21 :H121+H222+L1’LL

A% (10)
Yy = ngl + H42’2 + Lou,
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where 22 € 2% = ker F is the vector of free variables (which perform like inputs), z! € 27 is the state
such that 29 ® 25 = 2 = R"™, and y is the output. The system Av# is called a (Q, P)-explicitation
of A% and we will write A¥*” € Expl(A™), where Expl(A") is the explicitation class consisting of all
(Q, P)-explicitations of A" (clearly, for a given A its (@, P)-explicitation is not unique). Now by

2 = v, we obtain the (dynamical) prolongation A“Y of A

adding the equation 2
=Hz' + Hy22 + Lu

A" g 2=y (11)
y = Hsz' + Hy2? + Lou,

which is actually an (Ij, v)-explicitation of A%¢,. We can summarize the relations between the

notions of (@, P)-explicitation and (@, v)-explicitation by the following diagram.

ex-equivalence via (Q, P)

PSE

(Q, v)-expl A € Expl (A™) = Expl(A%gp) (I;,v)-expl
W&tion
_ EM-equivalence
A" € Expl(A%) A" € Expl(Atgg)

The systems A% and A%gp above are DACSs and their ex-equivalence is (Q, P)-equivalence of
DACSs. The system A%’ and A"’ at the bottom are control systems and their EM-equivalence is
the extended Morse equivalence given in Definition Note that the implication that the (@, 0)-
explicitation A%? of A* is EM-equivalent to the prolongation system A“V is a corollary of Theorem
below since A*’ € Expl(A%gy), A" € Expl(A%), and Abgy ~ A

Remark 2.6. The above explicitation (via driving variables) procedure can also be applied to more
general DAE systems such as DACSs with time delays (see e.g., [I]) and external disturbances (see
e.g., [B]). For example, take a DACS of the following form

Ei(t) = Hx(t) + Lu(t) + Tz(t — 7) + Sd(t), (12)
where 7 represents a time delay and d(t) is a vector of external disturbances. It is always possible

to find an invertible matrix @ such that F; of QF = [El} is of full row rank. Then we denote
QH =[], QL=[1], @T=[1], @s=[3]

Choose B" such that ImB” = ker E; and a right inverse EI of F, and define

A:=ElH,, B*":=ElL,, M:=EIT\, N:=E[S,, C:=H,, D"=:Ly J: =Ty, K:=35.

With the above defined matrices, we can attach the following ODECS with time delays and external

disturbance to :
z(t) = Az(t) + B u(t) + B'v(t) + Mxz(t — 7) + Nd(t)

y(t) = Cx(t) + D u(t) + Jx(t — 7) + Kd(t).

(13)
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It is clear that if DACS is not time-delayed, i.e. T =0 (hence M = 0) and thus z(t—7) is absent,
then the results of Proposition [2.4]still hold for and (13), meaning that solutions (z(-), d(-),u(-))
of are in a one-to-one correspondence with solutions (z(-),u(-),d(:),v(-)) of with outputs
y = 0. While if a delayed term is present, the analysis of solutions is more complicated because
for delayed DAE systems, the existence of solutions depends on the initial condition z(t) = ¢(t),
for t € [—7,0] (see some studies on solutions of regular delay DAEs in [I3] [I8]). A particular case
is that if the matrices £ and T of satisfy ker E C kerT', implying that there are no delayed
free variables in the generalized state z, then it is clear that solutions of and those of
still have a one-to-one correspondence. We will not give further discussions on solutions of delayed
DAE/DACSs since the purpose of this paper is to study canonical forms but the application of the

explicitation method to such systems seem to be an interesting subject for further research.

Since the explicitation of A¥ is a class of ODECSs of the form 7 we give the following definition
of equivalence for ODECSs of the form . This definition is a natural extension of the Morse
equivalence ([28], extended by Molinari [27], see also [I5]) of classical ODECSs of the form (3).

Definition 2.7 (extended Morse equivalence and extended Morse transformations). Two ODECSs
A sp=(ABY, B C,D"), Ay, ., = (A B" B C,D")
are called extended Morse equivalent, shortly EM-equivalent, denoted by A*" 7 1~\ﬂ’7, if there exist

matrices T,, € Gl(n,R), T,, € Gl(m,R), T,, € Gl(s,R), T, € Gl(p,R), F, € R™*" F, € R,
R e R*™ K e R™P such that the system matrices of A*? and A% satisfy:

i 5" B T, T, K T 0.0

Agipt| _ [T A B" B° 1 i

|:él§ﬁ0:|_|:om ﬁ}[cDuo] R e (14)
(Fy+RFE)T' RTY T

An 8-tuple (T, Ty, Ty, Ty, Fu, Fy, R, K), acting on the system according to , will be called an

extended Morse transformation and denoted by EM;,qn-

The matrices T, Ty, Ty, and T} are coordinates transformations in the, respectively, state space
Z = R"™, input subspace %, = R™, input subspace %, = R* and, output space % = RP, where F,
defines a state feedback of u, F,, and R define a feedback of v, K defines an output injection.

Remark 2.8. (i) An extended Morse transformation, whose action is given by , includes two

kinds of feedback transformations:

v=Fax+Ru+T,'% and u=F,x+T, (15)
The vector of driving variables v is “stronger” than the original control vector u since when trans-
forming v we can use both u and x as feedback, but when transforming u we are not allowed to use
v. This is expressed by the triangular form of the matrix multiplying on the right in .

(ii) Recall the definition of the Morse equivalence and the Morse transformation [28] (and their

generalization by Molinari [27] for D* # 0, see also [15]): for two ODECSs A* = (A, B%,C, D*) and
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At = (A,Bﬂ,é,bﬁ) of the form , if
5]~ (51108 [T 0]

then A% and A% are called Morse equivalent (shortly M-equivalent) and the Morse transforma-
tion (T, Ty, Ty, Fu, K) is denoted by Mypan. Clearly, M-equivalence is an equivalence relation for
ODECSSs of the form , defined by a 4-tuples (A, B*, C, D*) and EM-equivalence is for ODECSs of
the form (2)), defined by a 5-tuples (4, B*, B, C, D*). Observe that if the vector of driving variables
v is of dimension zero (BY is absent), then the EM-equivalence reduces to the M-equivalence.

(iii) Recall that we can express an ODECS of the form A*Y = (A, B*, B, C, D) as a standard
ODECS A% = (A, B*,C, D") of the form (3 with one type of controls w, where w = [uT,vT]7T.
Now let

_ F, 1 _ [Tt o
Fw—[&ﬁ?ﬂ]? T, _{RII:U’ITU’I}’

then we conclude the following equation from (notice that T, has a block-triangular structure):
Aipv| _ [Tkl rapey[ T8 0

(28] =[5 e8] [ o] (10

which is exactly the expression of the M-equivalence for systems A* (compare Remark (ii) above).

It implies that the EM-equivalence can be expressed as a form of the M-equivalence with a triangular

matrix T, (input coordinates transformation matrix). This triangular form is a consequence of two

kinds of feedback transformation shown in equation ([15)).
Now we give the main result of this subsection:

Theorem 2.9. Consider two DACSs A = (E,H,L) and Af‘nm = (E,H,L) as well as

two ODECSs A% = (A,B*,B*,C,D") and A™ = (4,B* B",C,D%) satisfying A" €

n,m,s,p n,m,s,p

Expl(A%) and A" € Expl(A%). Then, A* cr It Ra if and only if A EM Rav

u
l,n,m

The proof will be given in Section [6.1} In the Appendix, we recall the definitions of geometric
subspaces for DACSs and ODECSs. More specifically, for a DACS A", we recall the augmented
Wong sequences % and #;, together with #; (see [7],[23]); for an ODECS A%, we recall the sub-
spaces sequences V; and W; (see [36],[35],[2]), whose limits are controlled and conditioned invariant

subspaces, respectively, and we introduce a subspaces sequence W;.

Proposition 2.10. Given A}, = (E,H,L) and A", ., = (A, B*, B*,C,D") (or equivalently,
ALY mtsp = (A, B™,C,D"™)), consider the subspaces ¥;, #;, V2 of A", given by Deﬁnition and the

subspaces Vi, W;, Wj of A¥, given by Lemma in the Appendiz. Assume that A"’ € Expl(AY).
Then we have for i € N,

Vi(AY) =Vi(AY),  H(AY) = Wi(AY),
and for i € NT,

Hi(A) = W;(A).
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The proof will be given in Section Note that Theorem and Proposition [2.10] are funda-
mental results for the remaining part of the paper. The above proposition shows the importance of
the notion of (@, v)-explicitation. Namely, the augmented Wong sequences of any DACS A* and the
invariant subspaces of its (@, v)-explicitation A" coincide (in particular, they are subspaces of the
same generalized state-space 27). If we use the (Q, P)-explicitation, we need to establish relations
between subspaces of different spaces 2~ and % (see Remark . Our purpose is to find the
FBCF of DACSs via explicitation. We have proven in Theorem that the ex-fb-equivalence for
DACSs corresponds to the EM-equivalence for their explicitations. Thus rather than transforming
a DACS A directly into its FBCF under ex-fb-equivalence, we will look for the canonical form for

A" € Expl(A*) under EM-equivalence.

3. The Morse triangular form and its extension

In the beginning of this section, we show that the normal form given in [27] (called Morse
normal form MNF in the present paper) for the 4-tuple ODECS A%, given by equation (3], can
be constructed through a Morse triangular form MTF that we propose. Although the constructed
normal form is the same as the one in [27], we will provide explicit transformations with the help of
the invariant subspaces given in Lemmal[7.4) of the Appendix, which makes the normalizing procedure

simple and transparent.

Proposition 3.1 (Morse triangular form MTF). For an ODECS A}, . = (A, B*,C, D"), consider
the subspaces V*, Uy, W*, Y* given by Definition [7.3 of the Appendiz. Choose full rank matrices
Tsl c Ran17 Ts2 c Ran27 TSB c Rnxng) T;l c Ran47 Til c Rmxwzl; Ti3 c Rme37 TO3 c Rpo3,

T3 € RP*P+ such that

ImT! = V* N W+, VEOW* @ Im T2 = V*,
VAW eImT3 =W+, (V'+W)eImTi=2 =R",
Im T} =U;, Im7? @ ImT} = %, =R™,
ImT3 = Y*, ImT! @ Im TS =% =RP,

where n =nq, +ng +nz +ng, m =mq +ms, p=p3+ps. Then

T,= [t > 1?1*]~' € Gl(n,R), T;=[r} 2]~ € GI(m,R), T,=[121*]"' € Gl(p,R), (17)
and there exist matrices Fprp € R™*™ and Kyr € R™ P such that the Morse transformation
Miran = (Ts, Ty, T, Fagr, Kprr) brings A™ into AT = Miran(AY), represented in the Morse triangular
form MTF, that is given by A* = (A, B*,C, D%), where

Ay A} A} AY| By B}
0 A, 0 A3] 0 0O
ABr] _ 0 01@31&%‘033 1
[(;Dﬂ}_ 0 0 0 As]l 0 0 (18)
0 0 C3C3| 0 D3
00 0Co0 0

10



150

155

In the above MTF, the pair (A1, By) is controllable, the pair (Cy, Ay) is observable and the 4-tuple
(Ag,,ég,ézg,f)g) 18 prime .

The proof is given in Section In the next proposition, we describe a way to transform the
above M'TF into the Morse normal form MNF, which is a further simplification of the MTF. We
will use the same notations as in Proposition [3.1}

Proposition 3.2 (Morse normal form MINF). There exists a feedback transformation matriz Fyn €
R™*™ an output injection matrix Ky ny € R™ P and a state space coordinate transformation ma-
tric Tyyny € Gl(n,R), which can be chosen by MNF Algorithm below, such that the Morse
transformation Myrqn = (Tan, Tus Iy, Fvn, Kvn) brings AT of Proposition given by @, nto
A" = Myyon(A™), represented in the Morse normal form MINF, that is given by A* = (A, B*,C, D%),

where
A1 0 0 0By O
04 0 0]o0 o0
i pu 0 0 A3 0| 0 B:
[éga]: 0 0 03A4\0 03 (19)
0 0Cs 0 ‘ 0 Ds
0 0 0Csl0 O
In the above MNF, the pair (A1, By) is controllable, the pair (Cy, A4) is observable, and the 4-tuple

(A3, B3, C3, D3) is prime.
The proof of Proposition [3.2] will be given in Section [6.4] and in that proof, we will use the
construction of transformation matrices Fi;n, Kyrn and Thsn, which is formulated in the following

algorithm.

MNF Algorithm 3.3. Step 1: Given the matriz (@, choose Fprn and Ky :

Finy0 0 0 K%N 8
J— MN —
Puw =[5 S agyy i |+ Foow = Kw 2|
M N

such that the spectra of Ay, A, Az and Ay defined by the equation below are mutually disjoint (notice

that Fpyrn and Ky preserve the zero blocks of A% = (fl, Bt Cﬂﬁﬂ)

A, A2 A3 AY| B, B?
0 A 0 A3]0 o0
I, Kun | [ 4 B7 [ 0] = 0 0 A3 A5| 0 B;
0 I ¢ D% | LFun Im 0 0 0 A4l 0 0
0 Oé3é§‘OD3
0 0 0Csl0 0

Step 2: Find matrices Thrn, Tons Tarns Tarns Thrn via the following (constrained) Sylvester
equations:
ATy — ThynAz = — A%, ATy — ThynAs = — A3, (20)
ATy = TiyAs = —AL = ATy — A5y
AT N — Ty nAs = —A}, T} yBs=—B},
AgTSyy — TSy Ay = — A3, CyTiy = —Ca.

(21)

L A control system is called prime if it is M-equivalent to m3 independent chains of integrators, see [28] and [27].
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Step 8: Set

-1
1 2 3
I'Tyn Taun Tun

0 I 0 Tiyn
0 0 I Tyn
0 0 0 I

Tun =

Remark 3.4. It is not surprising that Propositions and describe results similar to those
of Theorem 2.3 and Theorem 2.6 of [9], as we have shown in [I5] that there are direct connections
between the geometric subspaces (the Wong sequences) of a DAE A : Fi = Hx and invariant
subspaces of a control system A = (A, B,C, D) € Expl(A). There are, however, differences between
Propositions and and results of [9]. In particular, in Theorem 2.6 of [9], one has to solve
generalized Sylvester equations, while in Propositions we use (constrained) Sylvester equations.
In addition, our transformations differ from those proposed in the original paper [29] and [27] for

the MINF and seem to be more transparent and explicit.

Recall that the explicitation of a DACS A" is a class of ODECSs with two kinds of inputs of
the form . In the following theorems, we will extend the results of Proposition and to
ODECSs with two kinds of inputs.

Theorem 3.5 (extended Morse triangular form EMTF). For a DACS
Auv = (A7Bu7Bv7C7Du)7

n,M,8,p

there exists an extended Morse transformation EMy.qp bringing A*Y into EM.qn(A™Y) = ATD repre-

sented in the extended Morse triangular form EMTF, that is given by ]\z?m’s’p = (fl, B% BY.C, DY),

where
A~1 A~12 ~13 A~14 ‘ E{L ‘-{‘2 ‘ Bf BfQ
0 Az 0 Axulo 0o o
ABi B ] _ |0 0 A Asa| 0 B | 0 Bj (22)
& Do 00 0 Alo o0]o o
0 0 Cs 6‘34‘ 0 D;}‘ 0
00 0 Clo oo o
In the above EMTF, the pair (A1, BY) is controllable, where BY = [BE BY|; the pair (Cy, Ay) is

observable ; the 4-tuple (A3, BY,Cs, DY) is prime, where BY = [B%, By, DY = [D¥,0].

Theorem 3.6 (extended Morse normal form EMNF). For ]\g?m,s,p = (A,B*, B*,C,D") in the
EMTF, as given by Theorem[3.5, there exists an extended Morse transformation EMy,qy bringing
A jpto AW = Ethn(ZN\M’) represented in the extended Morse normal form EMNF, that is given
by ]\Zf’ms,p = (A,B* B*,C,D%), where

Ay 0 0 O |Bf o |BY o
04 0 0]o0o 0]l0 0O
ABE B _ OOA3O‘OB§‘OB§
[cmo}* 0 0 0 A0 0]0 0 (23)
006*30‘0[’);}‘00
0 0 0Csl0 0O O

In the above EMNNF, the pair (Ay, BY®) is controllable, where BY = [BY, BY|; the pair (Cy, Ay) is
observable; the 4-tuple (Az, BY,Cs, DY) is prime, where BY = [BY, BY], D¥ = [D¥,0].

The proofs of Theorem [3.5] and Theorem [3.6] are given in Section [6.5}

12
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4. From the extended Morse normal form EMNF to the feedback canonical form FBCF

We show that, with a suitable choice of an extended Morse transformation for each subsys-
tem in the EMNF of Theorem we can bring the EMNF into the extended Morse canonical
form EMCEF. Below the upper indices refer to: ¢ to controllable, nn to non-controllable and non-
observable, p to prime, o to observable. If an ODECS AY,, = (Agm, B, Bha Cem, D) is in

the EMCEF, then the matrices Agar, By B Cem, D), are given by

A 00 0 0 O01B™ 010 0

0 A" 0 0 0 01 0 0 IB™ 0

0 To a™ 9 0 010 010 0

Apn B, BY 0 0 0 0 010 0 0
[CEM [y EM} =0 0 0 0 A 0l 0 o010 B™]|, (24)

ey Dy 00 0 0 0 4A°l 0 0 l0 0

0 0 0 CP 0 01 0 DI 0 0

0 0 0 0 Cc™olo o01l0 0

00 0 0 o0c 1o 010 0

with the matrices and their invariants of the following form:

(i) A = diag{A¢",..., A"}, B = diag{B¢", ..., B}, A% = diag{ A", ..., A%},
B = diag{B¢’, ..., BE'}, where
A= [0 ] € B, Bet = () € B, A% = [050] € B, B = [§] € B
The integers €1, ..., €, € N1 are the controllability indices of (A%, B*), the integers €1, ..., & €

N* are the controllability indices of (A, B).
(ii) A™ € R™*"2 ig unique up to similarity and can always be put in the real Jordan form.

(iii) Both the 4-tuple (AP, BP* CP* DP*) and the triple (APY, BPY CPV) are prime, and thus con-
trollable and observable. That is,

Apu DPU
APv pPu
wpeu | = | CP*T 0 0
e Al aenil
where [gzz Bgu] is square and invertible and é = rank DP* € N, and the matrices

Arv = diag{Azv, ..., A"}, Br* = diag{BL", ..., B2"}, CP" = diag{C?",...,CL"},
Arv = diag{AL), ..., AL"}, B’ =diag{BL,...,BY}, CP’ =diag{C%,...,CY},

g1 o1
where
Apu = [0 1] e R7X7, Bre = [Q] e R7¥L, CP% =[10] € RI*°,
ALY = [0171] e R7*?, BEY =[9] e R*!, C%"=[10] € R¥7.
The integers o071, ...,0. € NT are the controllability indices of the pair (Ap", BP”) and they are
equal to the observability indices of the pair (C’p“, A”“). The integers o1, ...,64 € NT are the
controllability indices of the pair (APY, BPY) and they are equal to the observability indices of

the pair (CPv, APY).

(iv) A° = diag{Ay ,..., A7 }, C° = diag{C}

o
. s Cp ), where

o [0 I, 0
Ag=[0 It ]ermn, cp=[10]eRM".

The integers 71, ...,n. € NT are the observability indices of the pair (C°, A°).

13
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Theorem 4.1 (extended Morse canonical form EMCF). For any

A" =AY, = (A, B, B",C,D"),

n,m,s,p

there exists an extended Morse transformation EMygyqn bringing A*Y into
A%,[}M - (AEM7 BEM) B%Ma CYEJWa D%M) = EMtT‘an(Auv)7

represented by the extended Morse canonical form EMCF.

The proof will be given in Section Throughout if we only consider the differential equation of
([2) (meaning without the output y), we denote it as A}Y,, o = (A, BY, BY). Now we introduce
the driving variables v-reduction and implicitation (compare [I5]) to reduce the driving variables v

and implicit the EMCF to a DACS.

Definition 4.2 (v-reduction and implicitation). For a control system A and its prolongation
A"’ given by and , respectively, the inverse operation of prolongation will be called the
v-reduction, that is, the v-reduction of A*? is Av#. For an ODECS A“zg, the implicitation of Au#
is a DACS Impl(A“z2) constructed by setting the output y = 0, that is,

I o] |2 Hy Hy| |2 Ly

Impl(A"Zz) : = + u.
22 2
0 0f |2 Hs Hyl |z Lo

Remark 4.3. If A" = Impl(A“Z2), where A% is the v-reduction of A", then A" € Expl(A"Y).

Then with the help of the above v-reduction and implicitation procedure, we can regard the
feedback canonical form FBCF for DACSs of the form A} = (E, H, L) given in [24] as a corollary

lin,m
of Theorem In the following, in order to save space and simplify notations, we denote
K;=[011] e RODX L= [1,,0] e RE-DXI N, = [0 0] e R¥I, ¢; =[] € RY,
where 8= (61,...,0k), |8l = P14+ -+ Bk, and
Ng = diag {Ng,, ..., N, } € RIFIXIAI Ks = diag {Kp,,..., Kz, } € RUSI=FIxIBI
Lp = diag{Lg,,...,Lg,} € RUSI=RIXIBI g5 = diag {eg,,...,ep, } € RIFIXE,
Theorem 4.4 (feedback canonical form of DACSs [24]). Any DACS A}, . = (E,H, L) is er-fb-

equivalent to the following feedback canonical form FBCF:

Igp 00 0 0 0 N7 o 0o 0o 0 o0
0 Ly 0 0 0 0 0 Kb 0O 0 0 0 £/ 0 0
A 0 00
0 01, 0 0 0 0 04, 0 0 0 0 00
0 0 0 K:’ 0 0 ) 0 0 0 La/ 0 0 5 0 &, 0 5
0 0 0 0 N,y O 0 0 0 0 Iz O e g9
0o 0 0 o0 o0 LT 0 0 0 0 0 KL
I (o / a' o _ (= = b’ o / / S =
where € = (¢},...,e,,) € (ND)* & = (¢&,...,¢,) € (NN, ¢/ = (01,...,0.) € (N")®, 5’ =
— — / ’ .. . . . .
(67,...,00) € (ND)T, o =(n),...,n.) € (NV)¢ are multi-indices and the matriz A, is given up

to similarity ( and can always be put into real Jordan form).

Remark 4.5. (i) The above theorem of the FBCF of DACSs is a corollary of Theorem [4.1] Indeed,
for any DACS A" = (E, H, L), we can construct an ODECS A*? € Expl(A"). Then, by Theorem
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, we have A" 7 EMCEF. It is not hard to see that the FBCF is the implicitation of the v-
reduction (see Definition of the EMICF. A crucial observation is that EMCF € Expl(FBCF)
(see Remark . Thus, by Theorem we conclude A* “~'’ FBCF (since A™Y s EMCEF).

(ii) There exists a perfect correspondence between the six subsystems of the EMCF and their
counterparts of the FBCF. Morse specifically,

(A, B) &5 (I, NZ, E2), (A, B) & (Lar, Kot 0), A™ & (L, A),

(APY, B, CP", D) < (K1, L3/, Exr),  (APY, BPY,CP") 5 (Nor, I 51,0), (C°,A%) « (L}, K], 0).

(iii) Since the FBCF is the implicitation of the v-reduction of the EMCEF, it is easy to observe
that the indices of the FBCF and EMCF have the following relations: a = a' and ¢, = ¢, for
k=1,...,a; b ="V and = &, for k = 1,...,b; no = n, and A" ~ A, ( similar matrices);
cté=cando) =0y =---=05=1,05,, =01+1,05,,=02+1, ..., 05, .= 0c+ 1; moreover,

d=d and o =a) fork=1,...,dje=¢and gy + 1=, for k=1,... e

In an algorithm below, we summarize how to construct the FBCF for a given DACS A}, | =

(E, H, L) based on the explicitation procedure.

Algorithm 4.6 the construction of the FBCF for linear DACSs via the explicitation
Initialization: Consider a DACS A}, | = (E,H,L) with E € R*" H ¢ R*" [ € RX™,
Step 1: Construct an ODECS A"" such that A" € Expl(A™) by Definition
1: Find @ such that Ey of QE = [ %] is of full row rank, denote QH = [} ], QL = [[!];
2: Set A= EIHl, BY = EILl, C = Hy, D* = Ly and find B such that Im BY = ker E| = ker F;
3: Set A" = (A, B*, BY,C, D"), then we have A"? € Expl(A").
Step 2: Find EM;,q, such that A% = EM;qn(A") is in the EMTF by Theorem
4: Calculate the subspaces V*, Uy, W*, Y* for A¥ = A" by Lemma [7.4}
5. Construct T, T, by and T, by ;
6: Find Kyr = T, KT, and Fyrr = T, 'FT, by (30) and (31);
7 Set T, =T1,, T, =1T,, Fy = Fur, Ky = Ky and Mypans = (T, T, Ty, Flw, Kuw), then we have
A = Myyans(A™) is in the MTF, i.e., 3 EMypqpn: A% = EM;pqn(A™) is in the EMTF.
Step 3: Find EM,,q, such that A™ = Ethn([\’w) is in the EMINF by Theorem
8: Construct Farn, Kyw, Taun for A2 by the MNF Algorithm
9: Set Mipan = (Tarn, Lu, Iy Farn, Karn), then we have A® = My,q,(A®) is in the MNF, i.e.,
3 EMjyqn such that A" = EM;,a,(A™) is in the EMNF.
Step 4: By the procedure shown in the proof of Theorem bring A®? into the EMCF.
Step 5: By Definition find the implicitation of the v-reduction of A%®, denoted by A¥.

Result: A% is in the FBCF and A% r Ib AT,
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In this section, we illustrate the construction of Algorithm by an example taken from [9)].

Consider the following mathematical model of an electrical circuit (see Fig. 1.1 of [9]), which is a

5. Example
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2The calculations of the invariant subspaces and the transformation matrices in the example are implemented by
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By the proof of Theorem and Proposition [3.1], we can choose the following transformation

Matlab and the source code are available on the webpage of the first author.




matrices: Ty = Iy, Ky = Orax11,

i (1] 8 E: {1] H H 8 :; 8 8 8 8 8 8- rlo 0 0000000 O 0O 007
0 00 0 100000 0 O 0O 01 0 0000000 O O 0O
0 00 0000000 1 0 O0O0 00 1 0000000 O O OO
0 00 0 000000 O 1 00 00 0 0000000 1 0 0O
—1 10 0000000 O 0 0O 00 0 0000000 O 1 00
Rp+Rg ) 00 -1 1000000 O O 0O
——Rg 0100000000 000 00 (RF+Rg)/Re 0100000 0 0 00
= 0 00 0010000 O 0 0O =100 0 0010000 0O 0 0O
Ts 0 00 0001000 O O 0O Tw 00 0 0001000 0O 0 00|
—1/R¢ 00 0 000100 0 0 00 00 —1/Rg 0000100 O 0 0O
—1/RG 00 0 000010 O O 0O 00 —l/RG 0000010 O 0 0O
0 00 —T} 000001 0 O 0O 00 —(Rp+Rg)/R*Rg 0000001 0 0 00
—1/Rg 00 0 000000 1 =110 00 —1/Rg 00000001 =110
L 1/Re 005000000-1 1 01 L0 0 (R+Rp+Re)/(RxRg) 0000000 =1 1 01
r 0 000100000 0 0 007

(RF+RG)/RG 000000000 0 0 00

000000000O0 0 0 00

(J 000000000O0 0 0 00

0 000000000 0 0 00

0 000000000 0 0 00

J—— 0 000000000 0 0 00

MT — 0 0000000O0OO () 0 00

0 0000000O0O 0 00

1/(CaxRxRg) 000000000 —1/(Ca*R) 1/(CaxR) 00

0 000000000 0 0 00

0 000000000 0 0 00

0 000000000 0 0 00

| —1/(Ca*R*Rg) 000000000 1/(CaxR) —1/(CaxR) 0 0 |

Then the Morse transformation Myyqns(Ts, Tw, Ty, Farr, Kayr) brings A" into A% = ([1, Bﬁ’, C, D’D),
which is in the EMTF, where

ilgn] _ [algepae] _ | A Al o 18T B
[&57] = [At5t5"] = |0 a0 |0 a7 | =
0 Cs; [D¥l o o
r 0 00 0 0 0O 0 00 O 0 0 0 01001 000 0 0000000F7
1/(Ca*xRg) 00 —-1/Ca1/Ca O 0O 0 0O O 0 0 1/Ca 0|0 (»\(RF+RG)/RG 000 1 0000000
1/L 00 0 0 0O 0 OO0 O 0 0 0 0/00] 0 000 0 0000000
0 00 0 0 0O 0 00 O 0 0 0 01001 0 100 0 0000000
0 00 0 0 0O 0 00 O 0 0 0 01001 0 010 0 0000000
0 00 0 0 0O 0 00O 0 0 0 01001 0 001 0 0000000
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 1 0000000
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 0 1000000
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 0 0100000
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 0 0010000
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 0 0001000
0 00 0 0 0 0 00 0 O O0-1/(CaxR)0]|00] 0 000-1/R0O000100
0 00 0 0 0O 0 00O 0 0 0 01001 0 000 0 0000010
0 00 0 O 0 0 000 0 0 1/(CaxR) 0[00] 0 000 1/R 0000001
0 00 O 0 -1 0 00Rg 0 O 0 000 0 000 O 0000000
0 00 0 0O 1 -1 00 0 RrpoO 0 000 0 000 O 0000000
0 00 0 0 0O 0 00O 0 R 0 0lool 0 000 0 0000000
0 00 0 0 0O 0 100 0 0 0 01001 0 000 0 0000000
0 00 0 0 0O 0 010 0 0 0 01001 0 000 0 0000000
0 00 0 0 -1 0 00 O 0 0 0 0100 0 000 0 0000000
0 00 0 0 0O 0 —10 O 0 0 0 0110 0 000 0 0000000
0 00 0 0 0O 0 011 —-10 0 0100 0 000 0 0000000
0 00 0 0 0O 0 00 0O —-10 1 0100 0 000 0 0000000
0 00 0 0 0O 0 00O 0 1 1 11001 0 000 0 0000000
L 0 00 0 0 0O -1 000 0 0 0 0101 0 000 0 00000004
Step 3: By MNF Algorlthm - set
)00 0 0 0 007
—1/(Ca*RG) [1 00 —1/Ca 1/(Ca*RG) 01/Ca —=1/Ca 00
0 000 0 0 0 0 00
0 000 () 0 0 0 0 00
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 00
= 0 000 O 0 0 0 0 00 —
Kun 0 000 0 0 0 0 000y Fun = 0uxaa
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 00
0 000 O 0 0 0 0 o004
Then find 7%,y via the following constrained Sylvester equation,
A 72 2 2 pW_ P
AlTMN - TMNA3 = A17 TMNBS - T P12

where A= A+ K M NC’ , BY = BY + K M Nﬁﬁ’. The above equation is solvable and the solution is

0200000060
- )00 0
T2,n=1000000000
MN 000000000
000000000
. 2
Thus the Morse transformation My.qn, = (Tavn, [14, 111, Frun, Kvn), where Tyny = [éTI\fN},

17



| o

U
D12
0 O
0 0

0 Ci3
0 0
0 0]

0

0

0

00

0
1/(CaxRg) 00 —1/Ca 1/Ca 0

o OoooooccococooH
O O00000C0o0 HO
slslelelololololoRele]
Eisislelelololololelola]
O O00000oHOO OO
O O0O0000HOO O OO
helslelolsi=l=l=le}=lo)

& w

o cooroooo Jo
—

o O0HOOOoCOoOOo 00
O OHODOOODO OO

O HOOOOOODO OO

[=Nelolslelelelelelelole]

isislelelelolololelole]

O O0O0O0000000 00

O O0O0O0000000 00

O O0O00000000 00

O O0O00000000 00

O O0O00000000O 00

0
0
0
)
)
)
)
)
)
)
)
)

0
0
0
)
)
)
)
)
)
)
)
)

00

SO OoOOOO-HOOOO

[=Nejelololololoiolle]
OO 00000 O~HHO

oo RKoocoococo~HO
3 —

o pococoT oo

DMuO OO0 O HOOO

OO0 O0O0OHOOHOOO

00010040000

— —

— —
| — OO0 | ocoooo

brings A" into A%

[lslolelelololeleloly]
OO0000000OHO
OO000000HOO
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OO000O0—HOOOO
DO00O0HOOOOO
DO0OHOOOOoOoOo
DOO0O—HOOOOOoOoOo
OOHOOOOOoOOoOoOo

canonical form as in Theorem 4.1/ to obtain

Step 4: Transform each subsystem of A? into its

7E2

2

Step 5: Using the v-reduction and implicitation of Definition [4.2] we get the following DACS

The EMCEF indices are €;
are all zeros and we have 3 subsystems only.

210

zZ+

T 1
DOOO00000000H
DOOO0000000HO
DOOO000000—HOO
DOOO0000O0—HOOO
OO0 0O0000HOOOO
OO0 O000O0HOOOOO
DO00O00HOOOOOO
DOOOOoOHOOOoOOOoOoOo
DOOOHOOOOoOoOOoOoOo

T 1
DOOO000000000
DOOO000000000
DOOO000000000
DODO000000000
DODO000000000
[Slelelelelololelelolelelo]
[lslslslelololalelalolale]
[lslslelelololslelslolele]
[lelslslelololslelelolelo]

0
0
)
)
)
)
)
)
)
)
)
)
)
where z and 4 is the new “generalized” state and the new input, respectively. Obviously, the above

DACS is in the FBCF with indices &
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6. Proofs of the results

6.1. Proofs of Proposition Proposition and Theorem [2.9

Proof of Proposition[2.3 If. Suppose that A* and A" are equivalent via a transformation given
by (@} First, Im B? @Im B'T;! = ker By = ker E implies that B? is another choice such that
Im B? = ker E. Observe that
fuo. ) T Az + B*u+ B @(A + KC + B'F,)z + (B* + KD" 4+ B"R)u + BT, %
" g=ce+ Du Q1,00 + T, D
Then pre-multiply the differential part of AP by Ei, to get (notice that A = EIHl, B* = EILl,
Im BY = ker E; and C = Hy, D¥ = Ly)
Eix = (Hy+ E1KHy)x + (L1 + E1KLo)u
y = TyHyx +TyLau.
Thus A%’ is an (I}, ¥)-explicitation of the following DACS:

Ei1] s _ | Hit+E1KH> L1+E1KL3
[O]m—{ ToHs | Tt BRI T

Since the above DACS can be transformed from A% via Q = Q'Q, where Q' = [Ig E;ﬂf], it proves
that A“? is a (Q, ¥)-explicitation of A* corresponding to the choice of invertible matrix Q. Finally,
by E1A = Hy+ E\KH,, By B* = Ly + E1 K Ly, we get A = Ej(H, + KHy) and B* = E] (L, + K L)
for another choice of right inverse E’I of Ej.
Only if. Suppose that A* € Expl(A¥) via Q, E] and B?. First, by Im B® = ker E = Im B,
there exists an invertible matrix ;! such that B® = B*T;"!. Moreover, since E| is a right inverse of
E if and only if any solution & of E1& = w is given by EIw, we have ElEI(HlirLlu) = Hiz+Liu
and By E|(Hyz+ Liu) = Hyz + Lyu. Tt follows that By (E] — ET)(Hyz4 Liu) = 0, so (Ef — ENH, €
ker Eq, (E';r — EI)Ll € ker E;. Since ker By = Im BY, it follows that (EI - EI)Hl = BYF, and
(Eir — EI)Ll = BYR for suitable F,, and R. Furthermore, since () is such that E; of QF = [%1] is
of full row rank, it follows that any other Q, such that E; of QF = []%1} is full row rank, must be
of the form Q = Q'Q, where Q' = {%1 8:‘; } Thus via Q, A% is ex-equivalent to
@ U3]e = [B]+Q [hlu= [0 ]a =[G |+ [2 48" u

We obtain the following equations, using EI and B?, and based on the right-hand side of the above:
i = (EJHy + E{Q ' Qo Hs)a + (B Ly + E[Q ' Q2 Lo)u + B™v

= (ElH, + B'F, + EIQ'Q2C)z + (E]H, + B'R + EIQ7'Q2D")u + B'T; '

0=Q4Hz + QsL2 = QuCx + Q4D".

Thus the explicitation of A* via Q, EI and BY is

i = Az + K(Cx + D%u) + B*(Fyz + Ru+ T, '0) = Az + B%u + B

y="T,Cx +TyD"u = Cx + D¥u.

]\ufz .
where K = EI Ql_lQQ, Ty = Q4. Now we can see that A*” and A"? are equivalent via transformations
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listed in @ O

Proof of Proposition[2.]} Consider equation of the (Q,v)-explicitation procedure. Since Q-
transformations preserve solutions of A%, equation resulting from a @-transformation of A
has the same solutions as A*. Thus we need to prove that equations and have correspond-
ing solutions for any choices of EI and B"Y. Moreover, the second equation 0 = Hox + Lou of
coincides with 0 = Cz + D"u of (since C' = Hy and D" = Ls). So we only need to prove that
(x(t),u(t)) with () € C! and u(t) € C° is a solution of if and only if there exists v(t) € C°
such that (z(t),u(t), v(t)) is a solution of (7) independently of the choice of EI, defining A = EIH
and BY = EILl, and of the choice of B" satisfying Im BY = ker Ej.

If. Suppose that (z(t),u(t),v(t)) is a solution of (7). Then we have @(t) = Az(t) + B u(t) +
BYv(t). Pre-multiplying the last equation by E;, we conclude (recall that A = EIHl , BY = EILl,
ker By = Im B, that Eyi(t) = Hyz(t) + Lyu(t), which proves that (z(t),u(t)) is a solution of (5a)).

Only if. Suppose that (z(t),u(t)) is a solution of . Rewrite E14 as [E] E?] [I;L where
E{ € R7™% and x = [5}]. Then, without loss of generality, we assume that the matrix E{ is invertible
(if not, we permute the components of « such that the first ¢ columns of E; are independent). Thus,
a choice of the right inverse of By is E] = [(Eio)_l} (since [E} E?] [(E%O)_l} = I,), which gives the
matrices A, B%, BY of @ to be, respectively,

A= ElH = [FD 0] Bei= BlL = (B0 B | SR

0 s
Let v(t) = @2(t), then v € C° and it is clear that if (z(¢),u(t)) = ((x1(t), z2(t)), u(t)) is a solution of

(Ba), then (x(t),u(t),v(t)) solves (7) with (A, B*, BY) as above, since
)
)

(et m2] | 2

| = B ) + Lau() = a1 (1) = (B Haat) + (B 7 Liu(t) - (B]) Bz (0).
Notice that if we choose another right inverse E‘I of E; and another matrix BV such that Im B” =
ker F1, then by Proposition equation becomes

i = Az + B+ B°% & & = Az + B%u+ BY(F,z + Ru+ T, '%).
We thus conclude that there exists 0(t) = =T, F,x(t) — T, Ru(t) + Tyv(t) = =T, Fpx(t) — T, Ru(t) +
T, i (t) such that (x(t),u(t), (t)) solves equation (7). Therefore, A" has corresponding solutions
with any (Q,v)-explicitation independently of the choice of @, EI and B". O

Proof of Theorem[2.9 Without loss of generality, we assume that the system matrices of A" =

(E,H,L) and A" = (E, H, L) are of the following form:
_[1I40 _[H _ 7L o [I;0 7 | H
E=[40). H=[R]. L=[}). B=[§). A=[2]. t=[E].
where H; € R, L, € R&*™ H, € R?*" [, € R1*™ ¢ = rank E, § = rank E. Since if not, we

can always find Q,Q € GI(I,R), P, P € Gl(n,R) such that
(QEP™' . QHP™,QL) and (QEP™,QHP™!, QL)

are of the above desired form and it is easily seen that the ex-fb-equivalence of (F, H, L) and (E,H,L)
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is equivalent to (implied by and implying) that of (QEP~',QHP~',QL) and (QEP~',QHP~',QL).
Thus we can use the above system matrices to represent A% and A% in the remaining part of proof.

By the assumptions that A%’ € Expl(A*) and A% € Expl(A%), we have

ern- i) (et w

We have chosen A“’ and A% as above for convenience, any other choice based on the explicitation
procedure could have been made. Since any two ODECSs in an explicitation class are EM-equivalent,
the choice of a (@, v)-explicitation makes no difference when proving EM-equivalence. Therefore,
we will use the system matrices in for the following proof.

If. Suppose A*? P A% Then there exist transformation matrices Ty, Ty, Ty, Ty, Fu, Fy, R, K
such that holds. Substituting the system matrices of into , we have

~ ~ -1
Hy|Li| o Hi|Li| © T, 0o 0
[ 010 [Inyg|= [TOT Tif(} 00 [Ing FT? T 0 . (26)
Hy[L2| O 2 [ L2 (Fy+RF,)T,;* RT; ' T, !
T} T? o0 - T} T? -
Represent T, = [Tg Tﬂ, where T} € R4, By B*=T,B"T,!, we get [9]= [T’g 7i | [71T57F, hence

it can be deduced that ¢ = ¢ and T2 = 0. Moreover, 2Tt = I implies that T} is invertible. Thus

by the invertibility of T}, we have T} is invertible as well.

Subsequently, premultiply equation by [(Twlo) o 8 I;[i ] and we get

11 S T, 0 0
[(Tz) 0 } [1511\@1\0} _ [qu {F} [H1L110] Rl p-1
0 17 utx u 9
1—q ] LH21L21]0 u 2l L2 (Fut RE)T-L RT-1 71
where Ky = [1, (tH)'12] K. Tt follows that

H|Li| _ | T} T K, [Hl\L1] T, ! 0
Hyllo| | 0 T, Hyl Ll | Pt Tt |
o—fb 1o
Thus A* ““~'7 A? via
1 1
Q=[%"], =t F=FR, G=T"

0 T, u

b~ -
! AY. Then there exist invertible matrices @, P, and matrices F, G

Only if. Suppose A" L
of appropriate sizes such that equation holds. Represent @ = [Ql Q2 }, where @1 € R9%?, and

Q3 Q4

Pl = [IP;; ]P;Z], where P; € R?*4, Then by

B=qer™ = [§5]=[8&] (43[R R,
we immediately get ¢ = ¢ and Q1 Py = I, Q1 P> = 0, Q3P = 0, which implies that @1, P, are
invertible matrices, P, = 0, and @3 = 0. Thus by the invertibility of Q and P, we have Q4 and Py
are invertible matrices as well. Then by equation , we get

miz]=[s &) min (5 e),

which implies that the following equation holds:

H |L:| o Q1 0 |Q2 Hy|Li| O p-t
0|0 |Ing|=1|Xx Pt o0 0 |0 [In_g Fp-1
Hs | La 0 0 0 1 2 [ La Y

|\

NQ o
Jo o
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where X = —P['PsP[ " Y = (P3P Hy + PsP 'Ly F)P~Y, Z = P3P ' L1G. So A™ 2 o

T,=P, T,=G, T,=P; ', T, = Qa,
F,=F, F,=PP 'H, R=PP 'L, K:[Qgﬂ.

6.2. Proof of Proposition

Proof. Without loss of generality, we may assume that A} = (E,H, L) is of the following form:

ln,m
[Gol 53] = [m m] 5]+ (L]
where ¢ = rank E and H; € R?%9 H, € R0 Hy ¢ RP*4 H, € RP*("=9) [, ¢ RI*™,
Ly € RP*™ where p = — ¢. Since if not, we can always find Q € GI(I,R), P € Gi(n,R) such that
= (QEP~',QHP',QL) is of the above form. Then, it is not hard to check that ¥%(A%) =
PY(AY), #i(AT) = PH;(AY), #;(A%) = PW#;(A*). Moreover, for two ODECSs A* = A" €
Expl(A%), A? = A% ¢ Expl(A%), we can verify that V;(A®) = PV;(A®), W;(A®) = PW;(AY),
Wi (A®) = PW;(A"). Therefore, in order to show that the relations of the subspaces (as claimed in
Proposition hold, replacing A* by A% makes no difference and thus we will assume that A% is
of the above form in what follows.
The following system, denoted A* = A"?| is a (Q, v)-explicitation of AY,
(2] =[S+ 5 ur [12,]v
y = Hsxy + Hyxo + Lou.
Firstly, we calculate V;(A") through equation of the Appendix:

AV = A (27)

Vi+1(Aw) _ [é]*l ([ ]V (Aw) + Im [ w]) _ [f?: goj_l ([Vj(é\w)] 4+ Im [f{i Inzq]>
= [ 2] ([ ) 4 Im [£6]) = B (BV(A®) + I ).

Comparing the above expression with equation of the Appendix, it is easily seen that the sub-
space sequences V;y1(A") and ¥;1(A") are calculated in the same way. Since ¥H(AY) = Vo(AY) =
R™, we conclude that %;(A%*) = V;(AY) for i € N.
Then calculate #;1(A") via equation (43]) of the Appendix:
Vg (AY)

E-Y(HA(A") +Tm L) =[5 9]7 ([ 2] #5(A") +Im [£2])

[ Lo 0]—1 ([Hl Ha L1 0] {%(A“)D
00 Hz Hy L2 0 Uy

[ % 81 ([ 7407 ] ke s o)) 1 12,

In the above formula, according to the special form of E, we directly calculate the preimage. More-

over, we can express
(12,1 = 18882, 1 ([ 7427 | nker (s s 22 0]).
It follows that

Wi (a) = [0 0 0] (7687 ] nker [ i 22 0])
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=[aB"] ({%;(2”)} Nker[c D“’D .
It is seen from the above equation and of Appendix that the subspace sequences W;1(A") and
#i11(A") are calculated in the same way. Since the initial conditions Wy (A") = #,(A") = {0}, we
conclude that W1 (A"Y) = #ip1(AY) for all i € N.

Then from 1) and , it is seen that the subspaces sequences #; and #; are calculated in the
same form, their difference comes from their initial conditions only. Similarly, from and ,
it is seen that W; and W; have different initial conditions but evolve in the same way. Thus, by
Wi (AY) = #1(AY) = ker E = Im BY, we get W;(A™) = #;(A") for all i € NT. O
6.3. Proof of Proposition|3.1
Proof. Observe that the transformation matrix Ty decomposes the state space 2~ of A% into & =
216 Xo® X3® Xy, where 27 =V NIW*, 210625 =V, 210625 =W*, V' + W) 2, =2
The transformation matrix T; decomposes the input space %, into %, = % & %, where % = U,
U D U = U,. The transformation matrix T, decomposes the output space # into & = % $ %,
where 9 = YV* &% =% . Let N = (A, B',C", D) = Mypan(A™), where Mypqp is the Morse

transformation Myqn = (Ts, T;, Ty, 0,0). Then consider the following equation and subspaces:
Ay A? A7 AY| By BY

Ay A3 A3 A3 | B; BS * :

[A’ B/}:[Ts 0114 8] .U 0 || Ay A] A3 A5 | B; B3 V*(A’%[S} W*(A’):[*}
¢’ D' 0 TollC D" o T;7! A A3 A% A% By B |’ 0 0
. 0

Y5

cicz ol ol ooz | U (A[5]
C; Ci ¢i ¢y | Dy D}
Now, applying (46)), for i = n, to both A’ and the dual system of A’ ( see Appendix), we have

4 * * (C/)T *\ L )+
It follows that B3, Bi, Ci, C3, Di, D}, D3 are all zero.
Then applying for i = n, to both A’ and its dual system, we have

[A¥lc ] +m[5], (28)
(A/)T(W*)L sy L (C/)T
&B/)T(W‘)J < {(Wo) ] +1m [(D’)T] (29)

The lower parts of equations and give C'V* C Im D' and (B")T(W*)* C Im (D')T, which
implies that B and C3 are zero. On the other hand, equation gives that

Ay B} A3 [ B
Im | A} | CIm | B2 and Im | 42| CIm | B?|,
C; D? c? D?

implying that there exist matrices F; € R"3*™ and Fy € R™3*"2 guch that

Al B2 A2 B2 ]
Al |l =—|B2|F and A2 | = — | B2 | F. (30)
C3 D} cs D}

Then setting F' = [191 192 B 8], we have
A14+BiF, A2+ B?F, A3 A} | Bl B?

AJ+B3F, A3+B3F, A A5| 0 B3

T, 07 7AB" 7t o0 ] 0 0 A% A3 0 B2
[o To] [CD”} |:TL.’1FT[1} - 0 0 A Ayl 0 Bj
0 0 cicilo D

0 0 0 Ccilo o
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Since W* is feedback invariant, equation also holds for the above transformed system. Thus
the upper part of becomes
(A" + B'F)T(W*(A)F € W (A)F +Im ()7,
which gives that (A} + B?Fy)T =0,
3\T 3\T 3\T 3\T
tm [ (G5 | €t [G0r ] and T (B8 ] <t [(F5 ]
It follows that there exist K7 € R™*P3 and Ko € R™*P3 guch that

AT o) T A3\ T 3T
(] == [Shr] T ana [G0] = [Chr] &5 (1)

T T T . . .
Let K = [8 Ky 8 Ky } , which implies that

0 0
A1+BiF, A24BIF, A} At | Bf B}

0 AZ4+B3F1 0 AS+K.CP] 0 0

[TSKTO][AB][T; 0 }: 0 0 A3 A3 |0 B}
0 T, Il¢ Dl | 'Fo1?t 0 0 0 A3+K;Ci]l 0 0

0 0 c3 cs | 0 D2

0 0 0 cy | o o

A = (4, B%,C, DY)

-+

Now it is seen that there exist Ky = Ts_lKTO and Fyr = Ti_lFTs such tha
has the form , where

AB"| _ [T TsKur] [ A B T, 7! 0
(a5 ] =[5m0 a8 [0 2]

The system matrices of A¥, see , are A = Al + B3Fy, A3 = A2, A3 = 43, A} = A% B, = B},
B} =B}, Ay = A3+ B3F,, AS = AY+ K\C}, Ay = A3, A4 = A}, By = B}, Ay = A} + KO,
C3=C3,Ct=C4 D3=D3,Cy=C}.

Now we will show that (A;, B) is controllable. By Lemma 4 of [27] applied to A%, we get

Wi (A"

u;) = Wi(A") NV (A%), (32)
where W;(A®
matrices to calculate Wi(f\ﬂu;) and W;(A%) N V*(A%), which gives

u:) denotes the subspace W; when the input is restricted to U;. Use the system

Wa(RTuss) = B+ 4By + - + (AL D W, (A7) n Ve (A7), (33)
where %, = Im[5,000]7. We can see from the above equation that the reachability space of
(A1, By) is W*(A") N V*(A%) = 27, which implies that (A;, B;) is controllable. Since the proof of
the observability of (C~’4, 1214) is completely dual to the above proof, we omit that part.

Subsequently, we prove that the system A3 = (A3, Bs, C3, D3), given by , is prime. Using

the system matrices of A% to calculate W* (]\akqu)i), we get

W* (A% gey2) = Z x {0} x W*(A?) x {0},

uz) ®
W*(Aﬁku;)i) and equation , we can deduce that W*(A3) = 2°(A3) = 23(A%). Moreover, by a

where % denotes a subspace whose explicit form is irrelevant. From W*(A%) = W*(A®

direct calculation, we get
V(A3 = D (A%) = CsW* (A®) + D3, (A®), V*(A%) =0, U;(A*)=0.

Finally, by Theorem 10 of [27], we conclude that A3 = (As, Bs, Cs, D3) is prime. O
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6.4. Proof of Proposition
Proof. First, by MNF Algorithm and a direct calculation, we have
A=A+ BiFYy Ny, A3 = A3+ BIFY n + KiynCs + KinDsF3ys
Ay = Ay + K3,,C3, Az = A3 + K3, Cs + BsF3n + Ka nD3sF3
B3 = By + K3,yD3, A} = Af + BIF} x + KiynCs + KiynDsFiyns
Bt = Bf + Ky nDs, A§= A3+ BsFjyy + K} nCh + K nyDsFiyy,
C3=Cs + D3F2y, C4=Ch4 DsF3y.
We will show that we can always assume D5 = 0. To this end, we can find a change of coordinates in
the input and output spaces to obtain Dy = [8 105 ] Then by suitable choice of feedback and output

injection transformation, the 5-tuple (Blz ,Bs,C5, é’§, 133) can be brought into the following form:

[ss]

o x| B2 * x |Bf o
. — | = x1Bs0
A A4
AN CsCil o0 0
s C3 | Ds 0 0] 0 Is
The zero columns of B and the zero rows of C which correspond to the static relations y; = u,,

1 < i < o, we will be kept unchanged. Now, by neglecting the zero columns of B and the zero rows

x x| B2 « x| B2
* ok B = * * B )
Gy CF | Ds Cs O 0

Now with the assumption D3 = 0, we show that the constrained Sylvester equations of can

of C, we may assume that

i.e., D3-matrix is D3 = 0.

be reduced to normal Sylvester equations by a suitable choice of Fa;n and Kysn. We claim that

the following matrix equation

B% = *TJ%MVBS (34)
is solvable for T2 . This claim can be proved by observing that
R 1=
| Doy | NI4T =0 (35)

Note that the above equation is a consequence of the definition of U (see equation ) Now by
(35), we have
Im (col [B2 0 Bs 0 Ds 0]) N [ ] =0.
Since Ds is already zero, the above equation implies that is solvable for T]%/[ - Consequently,
substitute into the upper equations of and we get
AT2 y — T3 As = —A3 4+ AT, — T3 NyAs, T3 yBs =0, (36)

where T2,y = T2 n + T3 n-

Furthermore, since (1213, 33, é’g, [)3) is prime ( a consequence of Proposition , we can always
assume Bz = [I,,,0]” and Cs = [I,,,,0] (if not, use coordinates transformations such that Bz and
Cs5 are of that form), where ms = rank B; = dim (U = p3 = rank Cs = dim Y* . Then, it is

possible to choose K3,n, K3;x, Fin such that the 4-tuple (A3, A3, B2 Cs3) is transformed into the
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following form:

i3 0 A%
el T lo Ao
: Ipy 0|
Thus T% 5 in equation is of the form T2, = [0 7%y ] because T3 B3 = 0. Hence, solving
T2,y via equation is equivalent to solving 7%y via
T . - 00 23/
Aot | = [0t ] [0 8] = [0a7].

Therefore, the upper part of the constrained Sylvester equations of can be reduced to the above
normal Sylvester equation. The reduction of the lower part of to a normal Sylvester equation
follows dually from the above result and we will omit that proof.

Moreover, from Proposition we have that the pair (fil,Bl) is controllable and the pair
(C~'4, /i4) is observable. By the standard matrix theory, we can choose Fj;n and Kjsn such that the
spectra of Ay, Ay, A, ,.and A} are mutually disjoint ( that of Aj is fixed but, the three others can be
made arbitrary). Then there exist unique solutions for T3, n, T3 ns Tirns Tirn, Tory in and
. Furthermore, it is not hard to see that the state coordinates transformation matrix 7T,y brings
A% into A". Feedback transformations preserve controllability, so the controllability of (zﬁil,Bl)
implies the controllability of (A;, B); output injection preserves observability, so the observability
of (6’4, 1214) implies the observability of (Cy, A4). The fact that the 4-tuple (A3, B3, C3, D3) is prime
is inherited from the fact that (1213, Bs, Cs, Dg) is prime since (1213, Bs,Cs, Dg) AN/[(/_ig, B3, C3, D3) (see

this property of prime systems in [27]). O

6.5. Proofs of Theorem[3.5 and Theorem[3.4

Proof of Theorem[3.5 . Recall Remark iii) that there exists an extended Morse transformation
EMy,qy such that A% = EM;.q, (A") is of the EMTF if and only if there exists a Morse trans-
formation My,.q, with a triangular (and not just any) input coordinates transformation bringing
Ay ispy = (A, BY,C, DY) into the MTF. Now we use the result of Proposition for A" with
a more subtle way to construct the input coordinates transformation matrix T;,. More specifically,
set T, =T, T, =Ty, F\y = Fyr, Ky = Kyr as in Proposition @ and define

T, = [T} T3 12 7271 € RUMHo)x(ms) (37)
where T} € Rm+s)xmi 78 ¢ Rlmts)xms Tl ¢ Rimts)xsi T8 ¢ RM+9)X83 with my + mg = m,

$1 + s3 = s are full rank matrices such that

ImT! = U, 7! e ImT? = %,
T} & T} = U, = U, Tl e Tl e T} & T = %y = Y,
where U} is U}, when the input w = [uT vT]7T is restricted to v (i.e., we put u = 0). Notice that T,

has a triangular form since Im T} @ Im T3 = %, and thus preserves %,. Now the Morse transforma-
tion Myrans = (T, Tw, Ty, Fu, Ky) brings A™ into the desired form of . Hence, it proves that
there exists an EM;,q, transforming A"’ into the EMTF. The claims that (A1, BY) is controllable,
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(C~'47 214) is observable and (12137 Bg’ ,Cs, Dg{v) is prime are inherited from the corresponding results of

Proposition |3.1 O

Proof of Theorem [3.6, There exists an EM;,q, such that A™ = EM;.q,(A") is in the EMNF if
and only if there exists a Morse transformation Mjy,..,, with a triangular input transformation matrix
Ty, bringing the system A, given in MTF, into the MINF. Then as shown in Proposition the
input coordinates transformation matrix of the Morse transformation, which brings the MTF into
the MINF, is the identity matrix, thus triangular, as we need. Therefore, with the transformation
matrices shown in Proposition we can always bring A? into the EMNF. Moreover, the claims
that (A;, BY) is controllable, (Cy4, A4) is observable, (Az, BY,Cs, DY) is prime follow from the
corresponding results of Proposition O

6.6. Proof of Theorem[.1]
Proof. By Theorem for a given ODECS A¥? = (A, B%,BY,C, D"), there exists an extended

n,m,s,p
Morse transformation EM;,.qn, such that EMy.q,(A*?) is in the EMNF. Therefore, the starting
point of this proof is the EMNF given by . Since the system represented in the EMINF is
already decoupled into four independent subsystems, we only need to transform each subsystem into
its corresponding canonical form.

(i) We will prove that any controllable A}, o = (A, B",B") can be transformed into the
Brunovsky canonical form with indices (eq,...,€,) and (€1,...,€), then the transformation from
(A1, By, BY) to ([4" 2], [B"], [ ]) is straightforward to see. Since A“Y = (A, B*, BY) is
a control system without output, in view of the extended Morse equivalence of Definition we
just need to prove that there exist transformation matrices T,, T,, T,, F,, F,, R such that the

transformed system matrices

(T, (A+ B*F, + B" (F, + RF,)) T, ', T, (B*+ B'R) T, ', T, B"T; ")
are in the Brunovsky canonical form (notice a triangular form of input transformation acting on
[B* B]). First, from the classical linear system theory (see, e.g., [11]), using only a state coordinates
transformation and state feedback, i.e., choosing suitable T, F,, F,, and setting T,, = I,,,, T\, = I,
R =0, we can transform A"? into the following form:
a'cj:mgﬂ, 1<i<m+s, 1<75<k;—1,

K3

_ _ (38)
B =blug + o A DUy, + bivg + -+ bvs, 1 <i<m+s.

Moreover, without loss of generality, we assume rank B¥ = m + s (if not, we can always permute
the variables of u and v such that the first m; columns of B* and the first s; columns of BY are
independent, where m; = rank B* and s; = rank BY, then we will work with the matrices with
these independent columns only, the remaining ones being zero by suitable transformations 73, and

T,). Thus the matrix I = [T, T',], where T, = (b}) and T, = (55), where 1 <i<m+s,1<I<m

27



and 1 <[ < s, is invertible. Then we suppose that the controllability indices ; satisfy
R1 Z’{QZ"‘ZKm+sZ]-~

Note that in the case of the Brunovsky form for classical ODECS (with one kind of inputs), we
could use T,, = I' as an input coordinates transformation matrix. However, A*Y has two kinds of
inputs and the input coordinates transformation matrix should have a triangular form (see Remark
2-8(ii)). In order to have such an input coordinates transformation matrix, we implement the
following procedure.

Step i = 1: two cases are possible: either for all 1 < j < s, we have 5{ =0 or there exists 1 < j <'s
such that 5{ # 0. In the first case, by the invertibility of I', there exists 1 < j < m such that b{ #0.
We assume b} # 0 (if not, we permute the u;’s), set £; = 1, ¢; = k1, and £; = 0 and define

) /Uj:Uj71<j<S7

’l]j = UJ‘, 2 S] S m
the system becomes (we delete "tildes” over u; and v;)

il =20 1<i<m+s, 1<j<ki—1,

K2

=,
& :b}ul+~~+b;"um+l_)%v1+~~+l_)fvs, 2<i<m-+s.
In the second case, assume bi # 0 (if not, we permute the v;’s), set lh=1,6 =k, and ¢ =0, and
define
01 = blug + - + b Uy, + blvg + - - 4+ by,
v; = v, 2<1<s,

and we get

Set

@ =2l 1<i<m4s, 1<j<k—1,
= blug + A O Uy + 04 bPva + -+ bvs, 2<i<m+s.

Step ¢ = k + 1: Assume that after k steps, we have defined £, and ¢;, for 1 < i < ¢;, as well as 0,
and €; for 1 < < E_k, such that €5, + £, = k, and the system reads ( the term “0” is to indicate that
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v1,..., vz, are missing)

VR ; ;

if'ri 5 ISZSEka 1§]§61715
P =, 1<i< by,

P =T 1<i<f, 1<j<g-1

i =v, 1<i <l
il =2t E+1<i<m4s, 1<5<k—1,
F5 = bl 4 b+ 0 D gy B, kLSS mAs

Then two cases are possible, either for all £, + 1 < j < s, we have l_ﬂ; 41 = 0 or there exists
{, +1 < j < s such that Biﬂ # 0. In the first case, set {1 =l + 1, €4, = Kiy1, liy1 = 0 and
set

U = b,chul + 0 U, J = Ly,

Uj =uj, ly1+1<7<m,

v; =wvj, 1<j5<s,
which is well-defined because, by controllability, at least one bi 41 70, for j > £ We get (we delete
"tildes” over x;, u; and v;)

il =0T 1<i<lpyy, 1<j<e-—1

7 K3 ’ 9
T =, 1<i< iy
o= 1<i<hp =0, 1<j<&-1,
T = v, 1<4< lyq =g,
il =2t kr2<i<mdts, 1<j<w—1,

F = blug A A DU + 0+ B oy B, k4+2<i<m+s.

Or+1

In the second case, assume Bk+1 # 0 (if not, we permute the v,’s), set Cpor = Uy + 1, €7pyy = Kh+1s

and 1 = l, and define
17] = bi_,'_lU/] + -+ b;gn+1um + biitlvzk+1 + -+ BZ_A'_l/US) j = Zk7+1’

U5 =05, J 7 kg,

we get
SREHL o~
L1 = Vipyro
B = bluy 4 A D Uy + DYy 4 D20 4 4 05T, k41 <i<m+s.
Set
iy =g o —rit] . .
B = ol Bt b o cicmts 1<) <,
= d ) Lo
xi_wk+17 z_€k+17 ]-SJS lrt12
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315

to get (we delete "tildes” over z;, vj, b;, b;)

il =2l 1<i<lp=0, 1<j<e—1,

B =y, 1 <0 < gy = by,

7 =T 1<i<ly, 1<j<&—1,

i =v,  1<i< e,

il =T E42<i<m4s, 1<j<ki—1,
:'C?i:b%’l,ﬂ+"'+brum+0+gfk+l+lvl7k+1+1+”.+va8’ E+2<i<m+s.

After m + s steps, we have £, 1, = m and £,,,, = s and we get the Brunovsky canonical form of
A" with indices (e1,...,€,) and (€1,...,&):

= 1<j<e—1, 1<i</lyy,=m,

)

'j;?:uiy 1Si§£m+s:ma

(ii) The A™"-matrix (corresponding to the uncontrollable and unobservable system) is A" = Aj.

(iii) First, we can find a Morse transformation M}, with a triangular T, such that

tran
T A, |B* 0| BY
Mtl'r'an (%‘}u—lﬁ&) = CP‘ 0 0 ‘ .
Cs D3 | 010 I
Since (A3, BY,Cs, DY) is prime, by Theorem 10 of [27], (A,, By, Cp) enjoys the properties:
V*(Ap, By,Cp) =0, Uy (Ap, By,Cp) =0. (39)
W*(Ay,, B, Cp) =R"™, Y*(A,, B, C,) =% (40)

A little thought (or see Lemma 2 of [27]) and equation give that [é’z Bopw} is of full column
rank. Then by V*(A4,, BY,C,) = W*((4p)7, (Cp)", (BY)T))* (see also the results of below)

and equation , we have [g” BOZJ} is of full row rank. Thus [gp Bf ] is square and invertible.
P p

Moreover, by item (i) of this proof, there exists a Morse transformation M2, with triangular

T,, such that the pairs (AP*, BP*) and (APY, BP?) below are in the Brunovsky form with indices

(01,...,0¢) and (G1,...,04), respectively
w v APU RPU
Mtzmn(ApB B):(A o 57| (;v)'
Cpl 0| av v | o |

Then, according to the block-diagonal structure of AP and APV the matrices Cv and C? above
have the form:
C*“=[CE‘ \ Cs \ \ é}f] C”Z[Cf \ cy \ \ c:;},
where C’Z“ eRPs*7i 1 <j<cand Cf € RP3%7i 1 <4 <d.
Now the diagonal submatrices (AP, BP*, C*) of (AP, BP*,C*), for 1 < i < ¢, and (AP", BP”, C¥)
of (APY, BPY (CV), for 1 < i < d, have to satisfy
W AP, B Oy = R, WA, B, CY) = R (41)

since if not, equation does not hold.
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320

325

330

By a direct calculation, we have Wi (AP, B C*) = Im B and Wy (AP, B, C?) = Tm B,
Then the subspaces W (AP, BP*, C*,0) and Wy (A?", BPY,C?,0) coincide with Tm BP* and Tm B",
respectively, unless the last columns of C’;‘ and C} are zero vectors. By similar arguments, we can
deduce that C’;‘, 1<i<cand C}, 1<i<d have the following form:

éyz[eg Lo | ] o], C;J:[c;f Lo | ] 0],
where ¢ € RP® and ¢! € RP*. Furthermore, since the columns of A”* and AP corresponding to &

and ¢} are all zero, so by the inveritibility of [ép Bo;u }7 we see that the following matrix
D

T =l e e | e o
is invertible. Finally, using T}, as an output coordinates transformation matrix, we get the following
canonical form for C,,
) cre 0
T,C, =T, [ ] =
0o cr
(iv) The proof of transforming (A%, C3) into (A°, C°) is omitted since it is well-known in the

linear control theory. O

7. Conclusion

In this paper, on one hand, for linear ODECSs, we modify and simplify the construction of the
MCEF given in [27] by proposing the Morse triangular form MTF. On the other hand, a bridge from
the MTF of ODECSs to the FBCF of DACSs is constructed via the explicitation with driving
variables procedure. It is shown that, after attaching a class of ODECSs with two kinds of inputs to
a DACS, we can find connections between their geometric subspaces and canonical forms. Finally,
an explicit algorithm for constructing transformations from the MTF into the FBCF is proposed
via the explicitation procedure and an example is given to show how our results and algorithms can

be applied to physical systems.

Appendix

Recall the following geometric subspaces for DACSs (see e.g. [30],[7]) of the form A" : Ex =
Hzx + Lu.

Definition 7.1. Consider a DACS A} = (F,H,L). A subspace ¥ C R" is called (H, E;Im L)-

l,n,m

invariant if
HY CEY +1ImL.
A subspace # C R" is called restricted (E, H;Im L)-invariant if

W=E"'(HY +ImL).
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340

Definition 7.2. For a DACS AV

l,n,m

= (E, H, L), define the augmented Wong sequences as follows:
Yo =R" Vg1 =H YEY¥%+ImL), (42)
Wo=0, Wi1=E Y HW;+ImL). (43)
Additionally, define the sequence of subspaces #; as follows:

Wy =ker E, Wiy =E “(H¥; +ImlL). (44)

Consider an ODECS A*Y = (A, B*%,B?,C, D) of the form

n,m,s,p —
AW | &= Ax + B%u+ Bv
y = Cx + D"u.
The state, input and output space of A*Y will be denoted by 2", Z,, and %, respectively. The input
subspaces of u and v will be denoted by %, and %,, respectively. Thus we have %, = %, ® U,.
Recall that A*” can be expressed as a classical ODECS A} . . = (A, B¥,C, D") of the form .
The input space of A" is denoted by %, and, clearly, %, = %, = %y ® %,. We now recall the
invariant subspaces ¥V and W defined in [26] and [27] for A" (generalizing the classical invariant

subspaces [2], 35 B6] given for D* = 0).

Definition 7.3. For an ODECS A¥

n,m=+s,p

= (A4,BY,C,D"v), a subspace ¥V C R" is called a null-
output (A, B*)-controlled invariant subspace if there exists F' € R(™+$)X" such that
(A+BYF)YCV and (C+DYF)Y=0
and a subspace U,, C R*T™ is called a null-output (A4, B¥)-controlled invariant input subspace if
U, = (B¥) 'V Nker DY,

Denote by V* (respectively U) the largest null-output (A, B*) controlled invariant subspace (re-
spectively input subspace).

Correspondingly, a subspace W C R" is called an unknown-input (C, A)-conditioned invariant

subspace if there exists K € R™*P such that
(A+ KW+ (BY + KD®)%yy =W
and a subspace ) C RP? is called an unknown-input (C, A)-conditioned invariant output subspace if
Y=CW+D"%,.

Denote by W* (respectively Y*) the smallest unknown-input (C, A)-conditioned invariant subspace
(respectively output subspace).
Lemma 7.4. [20] Initialize Vo = & = R"™ and, for i € N, define inductively

Virr = (17 ({81 Vi+1m [32]) (45)

and U; C U fori € N are given by
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350

355

360

Then V* =V, and U, = U,.
Correspondingly, initialize Wy = {0} and, for i € N, define inductively
Wiﬂz[AB“’]([l/&Vﬁﬂker[CD“’]) (47)
and Y; C ¥ fori €N are given by

Vi=[co*][)]. (48)

w

Additionally, define a sequence W, of subspaces as

Wi =ImBY, Wiy =[aB"] ([Wyf

w

} Nker[c D“’D. (49)
Then W* =W, = Wn and Y* =Y,.

Note that when considering the above defined invariant subspaces for the dual system (A*)? of

A¥, given by (A¥)4 = (AT,CT,(B¥)T, (D™)T), we have the following results [28],[27]:
VIA®) = (W((A)D) T, W Ar) = (V((A)Y)

. (50)
U (A") = (7 (A1), YH ) = @A)

1
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