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Abstract

In this paper, we relate the feedback canonical form FNCF [24] of differential-algebraic control

systems (DACSs) with the famous Morse canonical form MCF [28],[27] of ordinary differential

equation control systems (ODECSs). First, a procedure called an explicitation (with driving vari-

ables) is proposed to connect the two above categories of control systems by attaching to a DACS

a class of ODECSs with two kinds of inputs (the original control input u and a vector of driving

variables v). Then, we show that any ODECS with two kinds of inputs can be transformed into its

extended MCF via two intermediate forms: the extended Morse triangular form and the extended

Morse normal form. Next, we illustrate that the FNCF of a DACS and the extended MCF of the

explicitation system have a perfect one-to-one correspondence. At last, an algorithm is proposed to

transform a given DACS into its FBCF via the explicitation procedure and a numerical example is

given to show the efficiency of the proposed algorithm.
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1. Introduction

Consider a linear differential-algebraic control system (DACS) of the form

∆u : Eẋ = Hx+ Lu, (1)

where x ∈ X ∼= Rn is called the “generalized” state, u ∈ Rm is the vector of control inputs,

and where E ∈ Rl×n, H ∈ Rl×n and L ∈ Rl×m. A linear DACS of the form (1) will be denoted

by ∆u
l,n,m = (E,H,L) or, simply, ∆u. In the case of the control u being absent, the system

becomes a linear differential-algebraic equation (DAE) Eẋ = Hx, which is called regular if l = n5

and sE − H ∈ Rn×n[s]\0. A detailed exposition of the theory of linear DAEs and DACSs can be

consulted in the textbooks [16],[13] and the survey paper [22]. Early results on linear DAEs can

be traced back to two famous canonical forms of the matrix pencil sE − H given by Weierstrass

[34] and Kronecker [21]. The following literature discusses the normal forms and canonical forms
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of linear DAE systems. The authors of [20] proposed a canonical from for controllable and regular10

DACSs. Several forms for regular systems based on their controllability and impulse controllability

were given in [19]. In [31], a canonical form of general DACSs was discussed. More recently, a normal

form based on impulse-controllability and impulse-observability of DACSs was proposed in [32], and

a quasi-Weierstrass and a quasi-Kronecker triangular/normal forms of DAEs were given in [6] and

[9], respectively. In the present paper, we discuss the feedback canonical form FBCF obtained in15

[24] (we restate it as Theorem 4.4 of the present paper) for general linear DACSs, which plays an

important role in, e.g. controllability analysis [7], regularization problems [12],[8], pole assignment

[25],[10] and stabilization [4]. The FBCF of DACSs is actually an extension of the Kronecker

canonical form of general linear DAEs. Some methods (most are numerical) of transforming a DAE

into its Kronecker canonical form can be found in [17],[33],[3].20

In [15], we proposed a notion, called explicitation, to connect DAEs with control systems. In

the present paper, we will propose a new explicitation procedure called explicitation with driving

variables (see Definition 2.2), and differences and relations of the two explicitation methods are

discussed in Remark 2.5. Since the vector of driving variables v enters statically into the system

(similarly as the control input u), we can regard it as another kind of input. More specifically, the

explicitation with driving variables of a DACS is a class of ODECSs with two kinds of inputs of the

form:

Λuv :

 ẋ = Ax+Buu+Bvv

y = Cx+Duu,
(2)

where A ∈ Rn×n, Bu ∈ Rn×m, Bv ∈ Rn×s, C ∈ Rp×n and Du ∈ Rp×m, where u ∈ Rm is the

vector of control variables and v ∈ Rs is the vector of driving variables. An ODECS of the form

(2) will be denoted by Λuvn,m,s,p = (A,Bu, Bv, C,Du) or, simply, Λuv. Note that although both u

and v may be considered as inputs of system (2), we distinguish them because they play different

roles for the system and, as a consequence, their feedback transformation rules are different (see

Remark 2.8). Observe that we can express an ODECS Λuv of the form (2), as a classical ODECS

Λw = (A,Bw, C,Dw) of the form

Λu :

 ẋ = Ax+Bww

y = Cx+Dww,
(3)

by denoting w = [uT , vT ]T , Bw = [Bu Bv] and Dw = [Du 0]. Throughout the paper, depending

on the context, we will use either Λuv or Λw to denote an ODECS with two kinds of inputs.

We use Figure 1 to show the relations of the results of the paper. The purpose of this paper is to

find an efficient geometric way to transform a DACS ∆u into its feedback canonical form FBCF via

the explicitation procedure. As we have pointed out, the FBCF is a generalization, on one hand,25

of the classical Kronecker form (because a DACS is a differential-algebraic equation) and one the

other hand, of the Brunovsky canonical form [11] (because a DACS is a control system). The explic-

2



itation procedure allows us to attach to a DACS a control system Λuv with an output y (defining

the algebraic constraint as y = 0) and to study the double nature of a DACS (differential-algebraic

and control-theoretic) simultaneously by analyzing Λuv. More specifically, instead of using trans-30

formations directly on a DACS, we will first transform an ODECS Λuv, given by the explicitation

of our DACS, into its canonical form (called the extended Morse canonical form EMCF, see Theo-

rem 4.1). Then by the relation between DACSs and ODECSs given in Section 2, we can easily get

the FBCF from the EMCF. Moreover, inspired by the quasi-Kronecker triangular form of [9], we

will propose a Morse triangular form MTF (see Proposition 3.1) to transform an ODECS (with one35

type of controls) into its Morse normal form MNF (see Proposition 3.2). Note that a procedure

of transforming an ODECS Λu into its MCF was given by Morse [28] for Du = 0 and by Molinari

[27] for the general case Du 6= 0. We propose to do it via two intermediate normal forms MTF and

MNF.

∆u

Λuv

FBCF [24]

Λu

EMTF EMNF EMCF

MTF MNF MCF [28],[27]

explicitation, see Def.2.2 implicitation, see Sec.4

Theorem 4.4

extension extension extension extension

Thm.3.5 Thm.3.6 Thm.4.1

Prop.3.1 Prop.3.2 [27]

Figure 1: The relations of the results in the paper

We use the following abbreviations throughout the paper:40

DAE differential-algebraic equation MCF Morse canonical form

DACS differential-algebraic control system EMTF extended Morse triangular form

ODECS ordinary differential equation control system EMNF extended Morse normal form

MTF Morse triangular form EMCF extended Morse canonical form

MNF Morse normal form FBCF feedback canonical form

This paper is organized as follows. In Section 2, we introduce the explicitation with driving

variables procedure and build geometric connections between DACSs and ODECSs. In Section 3,

we show a method of constructing the MTF and the MNF for classical ODECSs of the form (3),45

then we extend them to the EMTF and the EMNF for ODECSs (with two kinds of inputs) of

the form (2). In Section 4, we propose the EMCF for ODECSs of the form (2), which allows to

construct the FBCF of DACSs as a corollary and we formulate the construction of the FBCF via

the explication procedure as an algorithm. In Section 5, we give a numerical example to show the

efficiency of the algorithm. Section 6 and 7 contain proofs and conclusions of the paper, respectively.50

The definitions of geometric invariant subspaces for ODECSs and DACSs are given in Appendix.
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Throughout, we will use the following notations:

Ck the class of k-times differentiable functions

N the set of natural numbers with zero and N+ = N\{0}

Rn×m the set of real valued matrices with n rows and m columns

Gl (n,R) the group of nonsingular matrices of Rn×n

kerA the kernel of the map given by a matrix A

ImA the image of the map given by a matrix A

rankA the rank of a matrix A

In the identity matrix of size n× n for n ∈ N+

0n×m the zero matrix of size n×m for n,m ∈ N+

AT the transpose of a matrix A

A−1 the inverse of a matrix A

AB {Ax |x ∈ B}, the image of a space B under a map given by a matrix A

A−1B {x ∈ Rn |Ax ∈ B}, the preimage of a space B under a map given by a matrix A

A−TB (AT )−1B

A ⊥ {x ∈ Rn | ∀a ∈ A : xT a = 0}, the orthogonal complement of a subspace A ⊆ Rn

A† the right inverse of a full row rank matrix A ∈ Rn×m, i.e., AA† = In

x(k) k-th-order derivative of a function x(t)

2. Explicitation with driving variables for linear DACSs

A solution of ∆u is a map (x(t), u(t)) : R → X × Rm with x(t) ∈ C1 and u(t) ∈ C0 satisfying55

Eẋ(t) = Hx(t) + Lu(t). Notice that to some C0-controls u(t), there may not correspond any C1-

solution x(t) because of algebraic relations between ui’s and xj ’s present in ∆u of the form (1).

Definition 2.1. Two DACSs ∆u
l,n,m = (E,H,L) and ∆̃ũ

l,n,m = (Ẽ, H̃, L̃) are called externally

feedback equivalent, shortly ex-fb-equivalent, if there exist matrices Q ∈ Gl(l,R), P ∈ Gl(n,R),

F ∈ Rm×n and G ∈ Gl(m,R) such that

Ẽ = QEP−1, H̃ = Q(H + LF )P−1, L̃ = QLG. (4)

We denote the ex-fb-equivalence of two DACSs as ∆u ex−fb∼ ∆̃ũ.

Now we introduce the explicitation with driving variables procedure for ∆u as follows.

• Denote the rank of E by q ∈ N, define s = n − q and p = l − q. Then there exists a matrix

Q ∈ Gl(l,R) such that QE =
[
E1
0

]
, where E1 ∈ Rq×n and rankE1 = q. Via Q, DACS ∆u is

ex-fb-equivalent to E1

0

 ẋ =

H1

H2

x+

L1

L2

u, (5)

where QH =
[
H1

H2

]
, QL =

[
L1

L2

]
, and where H1 ∈ Rq×n, H2 ∈ R(l−q)×n, L1 ∈ Rq×m, L2 ∈60

R(l−q)×m.
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• Consider the differential part of (5):

E1ẋ = H1x+ L1u. (5a)

The matrix E1 is of full row rank q, so let E†1 ∈ Rn×q denote its right inverse, i.e., E1E
†
1 = Iq.

Set A = E†1H1 and Bu = E†1L1. In general, w ∈ Rn satisfies the linear equation E1w = b,

where E1 : Rn → Rq is of full row rank q, if and only if w ∈ E†1b+ kerE1. It follows that x(t)

satisfies (5a) if and only if

ẋ ∈ Ax+Buu+ kerE1. (6)

• Choose a full column rank matrix Bv ∈ Rn×s such that ImBv = kerE1 = kerE (note

that the kernels of E1 and E coincide since any invertible Q preserves the kernel). Then

the vector v ∈ Rs of driving variables (see Remark 2.5 for a control-theory interpretation of

v) parameterizes the subspace kerE1 = ImBv via Bvv and the solutions of the differential

inclusion (6), and thus of (5a), correspond to the solutions of

ẋ = Ax+Buu+Bvv. (7)

• We claim, see Proposition 2.4 below, that all solutions of (5) (and thus of the original DAE

∆u) are in one-to-one correspondence with all solutions (corresponding to all driving variables

v(t)) of  ẋ = Ax+Buu+Bvv

0 = Cx+Duu,
(8)

where C = H2 ∈ Rp×n and Du = L2 ∈ Rp×m. Recall that a control system of the form (2) is

denoted by Λuvn,m,s,p = (A,Bu, Bv, C,Du). It is immediately to see that equation (8) can be

obtained from the ODECS Λuv by setting the output y = 0. In the above way, we attach an

ODECS Λuv to a DACS ∆u.65

The above procedure of attaching a control system Λu,v to a DACS ∆u will be called explicitation

with driving variables and is formalized as follows.

Definition 2.2. Given a DACS ∆u
l,n,m = (E,H,L), by a (Q, v)-explicitation, we will call a control

system Λuv = (A,Bu, Bv, C,Du), with

A = E†1H1, Bu = E†1L1, ImBv = kerE1 = kerE, C = H2, Du = L2,

where

QE =
[
E1
0

]
, QH =

[
H1

H2

]
, QL =

[
L1

L2

]
.

The class of all (Q, v)-explicitations will be called the explicitation with driving variables class or,

shortly explicitation class, of ∆u, denoted by Expl(∆u). If a particular ODECS Λuv belongs to the

explicitation class Expl(∆u), we will write Λuv ∈ Expl(∆u).70

The definition of the explicitation class Expl(∆u) suggests that a given ∆u has many (Q, v)-

5



explicitations. Indeed, the construction of Λuv ∈ Expl(∆u) is not unique at three stages: there

is a freedom in choosing Q, E†1, and Bv. We show in the following proposition that Expl(∆u) is

actually an ODECS defined up to a v-feedback transformation, an output injection and an output

transformation, that is, a class of ODECSs.75

Proposition 2.3. Assume that an ODECS Λuvn,m,s,p = (A,Bu, Bv, C,Du) is a (Q, v)-explicitation

of a DACS ∆u
l,n = (E,H,L) corresponding to a choice of invertible matrix Q, right inverse E†1,

and matrix Bv. Then Λ̃uṽn,m,s,p = (Ã, B̃u, B̃ṽ, C̃, D̃u) is a (Q̃, ṽ)-explicitation of ∆u corresponding

to a choice of invertible matrix Q̃, right inverse Ẽ†1, and matrix B̃ṽ if and only if Λuv and Λ̃uṽ are

equivalent via a v-feedback transformation of the form v = Fvx + Ru + T−1
v ṽ, an output injection

Ky = K(Cx+Duu) and an output multiplication ỹ = Tyy, which map

A 7→ Ã = A+KC +BvFv, Bu 7→ B̃u = Bu +BvR+KDu, Bv 7→ B̃ṽ = BvT−1
v ,

C 7→ C̃ = TyC, Du 7→ D̃u = TyD
u,

(9)

where Fv,K,R, Tv, Ty are matrices of appropriate sizes, and Tv and Ty are invertible.

The following proposition shows that solutions of any DACS are in one-to-one correspondence

with solutions of its (Q, v)-explicitations.

Proposition 2.4. Consider ∆u
l,n,m = (E,H,L) and let an ODECS Λuvn,m,s,p = (A,Bu, Bv, C,Du)

be a (Q, v)-explicitation of ∆u, i.e., Λuv ∈ Expl(∆u). Then a curve (x(t), u(t)) with x(t) ∈ C1 and80

u(t) ∈ C0 is a solution of ∆u if and only if there exists v(t) ∈ C0 such that (x(t), u(t), v(t)) is a

solution of Λuv respecting the output constraints y = 0, i.e., a solution of (8).

The proofs of Proposition 2.3 and Proposition 2.4 will be given in Section 6.1.

Remark 2.5. Notice that the definition of (Q, v)-explicitation in the present paper is different in

two aspects from the (Q,P )-explicitation of [15] (or see Chapter II of [14]). First, in this paper we

consider the explicitation of DACSs while in [15] we dealt with DAEs (with no controls). The second

difference is that in (Q, v)-explicitation, we keep the original generalized state variables x and add

new driving variables v while in (Q,P )-explicitation of [15], we look for a partition (z1, z2) = z = Px

into state- and control- variables. More specifically, consider a DACS ∆u
l,n,m = (E,H,L), then via

two invertible matrices Q and P , the system ∆u is ex-fb-equivalent with F = 0 and G = Im (or

ex-equivalent, according to the terminology of [15], since here we do not use feedback transformation

for ∆u) to a pure semi-explicit PSE DACS

∆u
PSE :

I 0

0 0

ż1

ż2

 =

H1 H2

H3 H4

z1

z2

+

L1

L2

u,
with z =

[
z1

z2

]
=
[
P1x
P2x

]
= Px, where P is any invertible map such that kerP1 = kerE. We attach

to ∆u
PSE , the control system

Λuz
2

:

 ż1 = H1z
1 +H2z

2 + L1u

y = H3z
1 +H4z

2 + L2u,
(10)
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where z2 ∈ Z2 = kerE is the vector of free variables (which perform like inputs), z1 ∈ Z1 is the state

such that Z1⊕Z2 = X ∼= Rn, and y is the output. The system Λuz
2

is called a (Q,P )-explicitation

of ∆u and we will write Λuz
2 ∈ Expl(∆u), where Expl(∆u) is the explicitation class consisting of all

(Q,P )-explicitations of ∆u (clearly, for a given ∆u, its (Q,P )-explicitation is not unique). Now by

adding the equation ż2 = v, we obtain the (dynamical) prolongation Λuv of Λuz
2

Λuv :


ż1 = H1z

1 +H2z
2 + L1u

ż2 = v

y = H3z
1 +H4z

2 + L2u,

(11)

which is actually an (Il, v)-explicitation of ∆u
PSE . We can summarize the relations between the

notions of (Q,P )-explicitation and (Q, v)-explicitation by the following diagram.85

∆u ∆u
PSE

Λuz
2 ∈ Expl(∆u) = Expl(∆u

PSE)

Λuṽ ∈ Expl(∆u) Λuv ∈ Expl(∆u
PSE)

(Q, ṽ)-expl

ex-equivalence via (Q,P )

(Q,P )-expl

EM-equivalence

(Il, v)-expl

(Il, In)-expl

prolongation

The systems ∆u and ∆u
PSE above are DACSs and their ex-equivalence is (Q,P )-equivalence of

DACSs. The system Λuṽ and Λuv at the bottom are control systems and their EM-equivalence is

the extended Morse equivalence given in Definition 2.7. Note that the implication that the (Q, ṽ)-

explicitation Λuṽ of ∆u is EM-equivalent to the prolongation system Λuv is a corollary of Theorem 2.990

below since Λuv ∈ Expl(∆u
PSE), Λuṽ ∈ Expl(∆u), and ∆u

PSE

ex∼∆u.

Remark 2.6. The above explicitation (via driving variables) procedure can also be applied to more

general DAE systems such as DACSs with time delays (see e.g., [1]) and external disturbances (see

e.g., [5]). For example, take a DACS of the following form

Eẋ(t) = Hx(t) + Lu(t) + Tx(t− τ) + Sd(t), (12)

where τ represents a time delay and d(t) is a vector of external disturbances. It is always possible

to find an invertible matrix Q such that E1 of QE =
[
E1
0

]
is of full row rank. Then we denote

QH =
[
H1

H2

]
, QL =

[
L1

L2

]
, QT =

[
T1

T2

]
, QS =

[
S1

S2

]
.

Choose Bv such that ImBv = kerE1 and a right inverse E†1 of E1, and define

A := E†1H1, Bu := E†1L1, M := E†1T1, N := E†1S1, C := H2, Du =: L2, J := T2, K := S2.

With the above defined matrices, we can attach the following ODECS with time delays and external

disturbance to (12): ẋ(t) = Ax(t) +Buu(t) +Bvv(t) +Mx(t− τ) +Nd(t)

y(t) = Cx(t) +Duu(t) + Jx(t− τ) +Kd(t).
(13)
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It is clear that if DACS (12) is not time-delayed, i.e. T = 0 (hence M = 0) and thus x(t−τ) is absent,

then the results of Proposition 2.4 still hold for (12) and (13), meaning that solutions (x(·), d(·), u(·))

of (12) are in a one-to-one correspondence with solutions (x(·), u(·), d(·), v(·)) of (13) with outputs

y = 0. While if a delayed term is present, the analysis of solutions is more complicated because95

for delayed DAE systems, the existence of solutions depends on the initial condition x(t) = φ(t),

for t ∈ [−τ, 0] (see some studies on solutions of regular delay DAEs in [13, 18]). A particular case

is that if the matrices E and T of (12) satisfy kerE ⊆ kerT , implying that there are no delayed

free variables in the generalized state x, then it is clear that solutions of (12) and those of (13)

still have a one-to-one correspondence. We will not give further discussions on solutions of delayed100

DAE/DACSs since the purpose of this paper is to study canonical forms but the application of the

explicitation method to such systems seem to be an interesting subject for further research.

Since the explicitation of ∆u is a class of ODECSs of the form (2), we give the following definition

of equivalence for ODECSs of the form (2). This definition is a natural extension of the Morse

equivalence ([28], extended by Molinari [27], see also [15]) of classical ODECSs of the form (3).105

Definition 2.7 (extended Morse equivalence and extended Morse transformations). Two ODECSs

Λuvn,m,s,p = (A,Bu, Bv, C,Du), Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ)

are called extended Morse equivalent, shortly EM-equivalent, denoted by Λuv
EM∼ Λ̃ũṽ, if there exist

matrices Tx ∈ Gl(n,R), Tu ∈ Gl(m,R), Tv ∈ Gl(s,R), Ty ∈ Gl(p,R), Fu ∈ Rm×n, Fv ∈ Rs×n,

R ∈ Rs×m, K ∈ Rn×p such that the system matrices of Λuv and Λ̃ũṽ satisfy:[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=
[
Tx TxK
0 Ty

] [
A Bu Bv

C Du 0

] [ T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv+RFu)T−1
x RT−1

u T−1
v

]
. (14)

An 8-tuple (Tx, Tu, Tv, Ty, Fu, Fv, R,K), acting on the system according to (14), will be called an

extended Morse transformation and denoted by EMtran.

The matrices Tx, Tu, Tv and Ty are coordinates transformations in the, respectively, state space

X = Rn, input subspace Uu = Rm, input subspace Uv = Rs and, output space Y = Rp, where Fu

defines a state feedback of u, Fv and R define a feedback of v, K defines an output injection.110

Remark 2.8. (i) An extended Morse transformation, whose action is given by (14), includes two

kinds of feedback transformations:

v = Fvx+Ru+ T−1
v ṽ and u = Fux+ T−1

u ũ. (15)

The vector of driving variables v is “stronger” than the original control vector u since when trans-

forming v we can use both u and x as feedback, but when transforming u we are not allowed to use

v. This is expressed by the triangular form of the matrix multiplying on the right in (14).

(ii) Recall the definition of the Morse equivalence and the Morse transformation [28] (and their

generalization by Molinari [27] for Du 6= 0, see also [15]): for two ODECSs Λu = (A,Bu, C,Du) and
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Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ) of the form (3), if[
Ã B̃ũ

C̃ D̃ũ

]
=
[
Tx TxK
0 Ty

] [
A Bu

C Du
] [ T−1

x 0

FuT
−1
x T−1

u

]
,

then Λu and Λ̃ũ are called Morse equivalent (shortly M-equivalent) and the Morse transforma-

tion (Tx, Tu, Ty, Fu,K) is denoted by Mtran. Clearly, M-equivalence is an equivalence relation for115

ODECSs of the form (3), defined by a 4-tuples (A,Bu, C,Du) and EM-equivalence is for ODECSs of

the form (2), defined by a 5-tuples (A,Bu, Bv, C,Du). Observe that if the vector of driving variables

v is of dimension zero (Bv is absent), then the EM-equivalence reduces to the M-equivalence.

(iii) Recall that we can express an ODECS of the form Λuv = (A,Bu, Bv, C,Du) as a standard

ODECS Λw = (A,Bw, C,Dw) of the form (3) with one type of controls w, where w = [uT , vT ]T .

Now let

Fw =
[

Fu
Fv+RFu

]
, T−1

w =
[
T−1
u 0

RT−1
u T−1

v

]
,

then we conclude the following equation from (14) (notice that Tw has a block-triangular structure):[
Ã B̃w

C̃ D̃w

]
=
[
Tx TxK
0 Ty

] [
A Bw

C Dw
] [ T−1

x 0

FwT
−1
x T−1

w

]
, (16)

which is exactly the expression of the M-equivalence for systems Λw (compare Remark 2.8(ii) above).

It implies that the EM-equivalence can be expressed as a form of the M-equivalence with a triangular120

matrix Tw (input coordinates transformation matrix). This triangular form is a consequence of two

kinds of feedback transformation shown in equation (15).

Now we give the main result of this subsection:

Theorem 2.9. Consider two DACSs ∆u
l,n,m = (E,H,L) and ∆̃ũ

l,n,m = (Ẽ, H̃, L̃) as well as

two ODECSs Λuvn,m,s,p = (A,Bu, Bv, C,Du) and Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ) satisfying Λuv ∈125

Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ). Then, ∆u ex−fb∼ ∆̃ũ if and only if Λuv
EM∼ Λ̃ũṽ.

The proof will be given in Section 6.1. In the Appendix, we recall the definitions of geometric

subspaces for DACSs and ODECSs. More specifically, for a DACS ∆u, we recall the augmented

Wong sequences Vi and Wi, together with Ŵi (see [7],[23]); for an ODECS Λw, we recall the sub-

spaces sequences Vi and Wi (see [36],[35],[2]), whose limits are controlled and conditioned invariant130

subspaces, respectively, and we introduce a subspaces sequence Ŵi.

Proposition 2.10. Given ∆u
l,n,m = (E,H,L) and Λuvn,m,s,p = (A,Bu, Bv, C,Du) (or equivalently,

Λwn,m+s,p = (A,Bw, C,Dw)), consider the subspaces Vi, Wi, Ŵi of ∆u, given by Definition 7.2 and the

subspaces Vi, Wi, Ŵi of Λw, given by Lemma 7.4 in the Appendix. Assume that Λuv ∈ Expl(∆u).

Then we have for i ∈ N,

Vi(∆
u) = Vi(Λw), Wi(∆

u) =Wi(Λ
w),

and for i ∈ N+,

Ŵi(∆
u) = Ŵi(Λ

w).
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The proof will be given in Section 6.2. Note that Theorem 2.9 and Proposition 2.10 are funda-

mental results for the remaining part of the paper. The above proposition shows the importance of

the notion of (Q, v)-explicitation. Namely, the augmented Wong sequences of any DACS ∆u and the

invariant subspaces of its (Q, v)-explicitation Λw coincide (in particular, they are subspaces of the135

same generalized state-space X ). If we use the (Q,P )-explicitation, we need to establish relations

between subspaces of different spaces X and Z1 (see Remark 2.5). Our purpose is to find the

FBCF of DACSs via explicitation. We have proven in Theorem 2.9 that the ex-fb-equivalence for

DACSs corresponds to the EM-equivalence for their explicitations. Thus rather than transforming

a DACS ∆u directly into its FBCF under ex-fb-equivalence, we will look for the canonical form for140

Λuv ∈ Expl(∆u) under EM-equivalence.

3. The Morse triangular form and its extension

In the beginning of this section, we show that the normal form given in [27] (called Morse

normal form MNF in the present paper) for the 4-tuple ODECS Λu, given by equation (3), can

be constructed through a Morse triangular form MTF that we propose. Although the constructed145

normal form is the same as the one in [27], we will provide explicit transformations with the help of

the invariant subspaces given in Lemma 7.4 of the Appendix, which makes the normalizing procedure

simple and transparent.

Proposition 3.1 (Morse triangular form MTF). For an ODECS Λun,m,p = (A,Bu, C,Du), consider

the subspaces V∗, U∗u, W∗, Y∗ given by Definition 7.3 of the Appendix. Choose full rank matrices

T 1
s ∈ Rn×n1 , T 2

s ∈ Rn×n2 , T 3
s ∈ Rn×n3 , T 4

s ∈ Rn×n4 , T 1
i ∈ Rm×m1 , T 3

i ∈ Rm×m3 , T 3
o ∈ Rp×p3 ,

T 4
o ∈ Rp×p4 such that

ImT 1
s = V∗ ∩W∗, V∗ ∩W∗ ⊕ ImT 2

s = V∗,

V∗ ∩W∗ ⊕ ImT 3
s =W∗, (V∗ +W∗)⊕ ImT 4

s = X = Rn,

ImT 1
i = U∗u , ImT 3

i ⊕ ImT 1
i = Uu = Rm,

ImT 3
o = Y∗, ImT 4

o ⊕ ImT 3
o = Y = Rp,

where n = n1 + n2 + n3 + n4, m = m1 +m3, p = p3 + p4. Then

Ts = [ T 1
s T 2

s T 3
s T 4

s ]−1 ∈ Gl(n,R), Ti = [ T 1
i T 3

i ]−1 ∈ Gl(m,R), To = [ T 3
o T 4

o ]−1 ∈ Gl(p,R), (17)

and there exist matrices FMT ∈ Rm×n and KMT ∈ Rn×p such that the Morse transformation

Mtran = (Ts, Ti, To, FMT ,KMT ) brings Λu into Λ̃ũ = Mtran(Λu), represented in the Morse triangular

form MTF, that is given by Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ), where

[
Ã B̃ũ

C̃ D̃ũ

]
=


Ã1 Ã

2
1 Ã

3
1 Ã

4
1 B̃1 B̃

2
1

0 Ã2 0 Ã4
2 0 0

0 0 Ã3 Ã
4
3 0 B̃3

0 0 0 Ã4 0 0

0 0 C̃3 C̃
4
3 0 D̃3

0 0 0 C̃4 0 0

 . (18)
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In the above MTF, the pair (Ã1, B̃1) is controllable, the pair (C̃4, Ã4) is observable and the 4-tuple

(Ã3, B̃3, C̃3, D̃3) is prime 1.150

The proof is given in Section 6.3. In the next proposition, we describe a way to transform the

above MTF into the Morse normal form MNF, which is a further simplification of the MTF. We

will use the same notations as in Proposition 3.1.

Proposition 3.2 (Morse normal form MNF). There exists a feedback transformation matrix FMN ∈

Rm×n, an output injection matrix KMN ∈ Rn×p and a state space coordinate transformation ma-

trix TMN ∈ Gl(n,R), which can be chosen by MNF Algorithm 3.3 below, such that the Morse

transformation Mtran = (TMN , Iu, Iy, FMN ,KMN ) brings Λ̃ũ of Proposition 3.1, given by (18), into

Λ̄ū = Mtran(Λ̃ũ), represented in the Morse normal form MNF, that is given by Λ̄ū = (Ā, B̄ū, C̄, D̄ū),

where

[
Ā B̄ū

C̄ D̄ū

]
=


Ā1 0 0 0 B̄1 0
0 Ā2 0 0 0 0
0 0 Ā3 0 0 B̄3

0 0 0 Ā4 0 0

0 0 C̄3 0 0 D̄3

0 0 0 C̄4 0 0

 . (19)

In the above MNF, the pair (Ā1, B̄1) is controllable, the pair (C̄4, Ā4) is observable, and the 4-tuple

(Ā3, B̄3, C̄3, D̄3) is prime.155

The proof of Proposition 3.2 will be given in Section 6.4 and in that proof, we will use the

construction of transformation matrices FMN , KMN and TMN , which is formulated in the following

algorithm.

MNF Algorithm 3.3. Step 1: Given the matrix (18), choose FMN and KMN :

FMN =
[
F 1
MN 0 0 0

0 0 F 2
MN F 3

MN

]
, KMN =

K1
MN 0
0 0

K2
MN 0

0 K3
MN

 ,
such that the spectra of Ā1, Ā2, Ā3 and Ā4 defined by the equation below are mutually disjoint (notice

that FMN and KMN preserve the zero blocks of Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ)):

[
In KMN
0 Ip

] [
Ã B̃ũ

C̃ D̃ũ

] [
In 0
FMN Im

]
=


Ā1 Ā

2
1 Ā

3
1 Ā

4
1 B̄1 B̄

2
1

0 Ā2 0 Ā4
2 0 0

0 0 Ā3 Ā
4
3 0 B̄3

0 0 0 Ā4 0 0

0 0 C̄3 C̄
4
3 0 D̄3

0 0 0 C̄4 0 0

 .
Step 2: Find matrices T 1

MN , T 2
MN , T 3

MN , T 4
MN , T 5

MN via the following (constrained) Sylvester

equations:

Ā1T
1
MN − T 1

MN Ā2 = −Ā2
1, Ā2T

4
MN − T 4

MN Ā4 = −Ā4
2,

Ā1T
3
MN − T 3

MN Ā4 = −Ā4
1 − Ā2

1T
4
MN − Ā3

1T
5
MN ;

(20)

Ā1T
2
MN − T 2

MN Ā3 = −Ā3
1, T 2

MN B̄3 = −B̄2
1 ,

Ā3T
5
MN − T 5

MN Ā4 = −Ā4
3, C̄3T

5
MN = −C̄4.

(21)

1 A control system is called prime if it is M-equivalent to m3 independent chains of integrators, see [28] and [27].
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Step 3: Set

TMN =

 I T 1
MN T 2

MN T 3
MN

0 I 0 T 4
MN

0 0 I T 5
MN

0 0 0 I

−1

.

Remark 3.4. It is not surprising that Propositions 3.1 and 3.2 describe results similar to those

of Theorem 2.3 and Theorem 2.6 of [9], as we have shown in [15] that there are direct connections160

between the geometric subspaces (the Wong sequences) of a DAE ∆ : Eẋ = Hx and invariant

subspaces of a control system Λ = (A,B,C,D) ∈ Expl(∆). There are, however, differences between

Propositions 3.1 and 3.2 and results of [9]. In particular, in Theorem 2.6 of [9], one has to solve

generalized Sylvester equations, while in Propositions 3.2 we use (constrained) Sylvester equations.

In addition, our transformations differ from those proposed in the original paper [29] and [27] for165

the MNF and seem to be more transparent and explicit.

Recall that the explicitation of a DACS ∆u is a class of ODECSs with two kinds of inputs of

the form (2). In the following theorems, we will extend the results of Proposition 3.1 and 3.2 to

ODECSs with two kinds of inputs.

Theorem 3.5 (extended Morse triangular form EMTF). For a DACS

Λuvn,m,s,p = (A,Bu, Bv, C,Du),

there exists an extended Morse transformation EMtran bringing Λuv into EMtran(Λuv) = Λ̃ũṽ repre-

sented in the extended Morse triangular form EMTF, that is given by Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ),

where

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=


Ã1 Ã12 Ã13 Ã14 B̃ũ1 B̃ũ12 B̃ṽ1 B̃ṽ12

0 Ã2 0 Ã24 0 0 0 0

0 0 Ã3 Ã34 0 B̃ũ3 0 B̃ṽ3
0 0 0 Ã4 0 0 0 0

0 0 C̃3 C̃34 0 D̃ũ3 0 0

0 0 0 C̃4 0 0 0 0

 . (22)

In the above EMTF, the pair (Ã1, B̃
w̃
1 ) is controllable, where B̃w̃1 = [B̃ũ1 , B̃

ṽ
1 ]; the pair (C̃4, Ã4) is170

observable ; the 4-tuple (Ã3, B̃
w̃
3 , C̃3, D̃

w̃
3 ) is prime, where B̃w̃3 = [B̃ũ3 , B̃

ṽ
3 ], D̃w̃

3 = [D̃ũ
3 , 0].

Theorem 3.6 (extended Morse normal form EMNF). For Λ̃ũṽn,m,s,p = (Ã, B̃ũ, B̃ṽ, C̃, D̃ũ) in the

EMTF, as given by Theorem 3.5, there exists an extended Morse transformation EMtran bringing

Λ̃ũṽ into Λ̄ūv̄ = EMtran(Λ̃ũṽ) represented in the extended Morse normal form EMNF, that is given

by Λ̄ūv̄n,m,s,p = (Ā, B̄ū, B̄v̄, C̄, D̄ū), where

[
Ā B̄ū B̄v̄

C̄ D̄ū 0

]
=


Ā1 0 0 0 B̄ū1 0 B̄v̄1 0

0 Ā2 0 0 0 0 0 0
0 0 Ā3 0 0 B̄ū3 0 B̄v̄3
0 0 0 Ā4 0 0 0 0

0 0 C̄3 0 0 D̄ū3 0 0

0 0 0 C̄4 0 0 0 0

 . (23)

In the above EMNF, the pair (Ā1, B̄
w̄
1 ) is controllable, where B̄w̄1 = [B̄ū1 , B̄

v̄
1 ]; the pair (C̄4, Ā4) is

observable; the 4-tuple (Ā3, B̄
w̄
3 , C̄3, D̄

w̄
3 ) is prime, where B̄w̄3 = [B̄ū3 , B̄

v̄
3 ], D̃w̄

3 = [D̃ū
3 , 0].

The proofs of Theorem 3.5 and Theorem 3.6 are given in Section 6.5.
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4. From the extended Morse normal form EMNF to the feedback canonical form FBCF175

We show that, with a suitable choice of an extended Morse transformation for each subsys-

tem in the EMNF of Theorem 3.6, we can bring the EMNF into the extended Morse canonical

form EMCF. Below the upper indices refer to: c to controllable, nn to non-controllable and non-

observable, p to prime, o to observable. If an ODECS ΛuvEM = (AEM , B
u
EM , B

v
EM , CEM , D

u
EM ) is in

the EMCF, then the matrices AEM , B
u
EM , B

v
EM , CEM , D

u
EM are given by

[
AEM BuEM BvEM
CEM DuEM 0

]
=


Acu 0 0 0 0 0 Bcu 0 0 0

0 Acv 0 0 0 0 0 0 Bcv 0
0 0 Ann 0 0 0 0 0 0 0
0 0 0 Apu 0 0 0 Bpu 0 0
0 0 0 0 Apv 0 0 0 0 Bpv

0 0 0 0 0 Ao 0 0 0 0
0 0 0 Cpu 0 0 0 Dpu 0 0
0 0 0 0 Cpv 0 0 0 0 0
0 0 0 0 0 Co 0 0 0 0

 , (24)

with the matrices and their invariants of the following form:

(i) Acu = diag{Acuε1 , ..., A
cu
εa }, B

cu = diag{Bcuε1 , ..., B
cu
εa }, A

cv = diag{Acvε̄b , ..., A
cv
ε̄b
},

Bcv = diag{Bcvε̄1 , ..., B
cv
ε̄b
}, where

Acuε =
[

0 Iε−1

0 0

]
∈ Rε×ε, Bcuε = [ 0

1 ] ∈ Rε, Acvε̄ =
[

0 Iε̄−1

0 0

]
∈ Rε̄×ε̄, Bcvε̄ = [ 0

1 ] ∈ Rε̄.

The integers ε1, ..., εa ∈ N+ are the controllability indices of (Acu, Bcu), the integers ε̄1, ..., ε̄b ∈

N+ are the controllability indices of (Acv, Bcv).

(ii) Ann ∈ Rn2×n2 is unique up to similarity and can always be put in the real Jordan form.

(iii) Both the 4-tuple (Apu, Bpu, Cpu, Dpu) and the triple (Apv, Bpv, Cpv) are prime, and thus con-

trollable and observable. That is,[
Apu Bpu

Cpu Dpu
]

=

[
Âpu B̂pu 0
Ĉpu 0 0

0 0 Iδ

]
,

where
[
Âpu B̂pu

Ĉpu 0

]
is square and invertible and δ = rank D̂pu ∈ N, and the matrices

Âpu = diag{Âpuσ1
, ..., Âpuσc}, B̂pu = diag{B̂puσ1

, ..., B̂puσc }, Ĉpu = diag{Ĉpuσ1
, ..., Ĉpuσc },

Apv = diag{Apvσ̄1
, ..., Apvσ̄d}, Bpv = diag{Bpvσ̄1

, ..., Bpvσ̄d}, Cpv = diag{Cpvσ̄1
, ..., Cpvσ̄d},

where

Âpuσ =
[

0 Iσ−1

0 0

]
∈ Rσ×σ, B̂puσ = [ 0

1 ] ∈ Rσ×1, Ĉpuσ = [ 1 0 ] ∈ R1×σ,

Apvσ̄ =
[

0 Iσ̄−1

0 0

]
∈ Rσ̄×σ̄, Bpvσ̄ = [ 0

1 ] ∈ Rσ̄×1, Cpvσ̄ = [ 1 0 ] ∈ R1×σ̄.

The integers σ1, ..., σc ∈ N+ are the controllability indices of the pair (Âpu, B̂pu) and they are180

equal to the observability indices of the pair (Ĉpu, Âpu). The integers σ̄1, ..., σ̄d ∈ N+ are the

controllability indices of the pair (Apv, Bpv) and they are equal to the observability indices of

the pair (Cpv, Apv).

(iv) Ao = diag{Aoη1
, ..., Aoηe}, C

o = diag{Coη1
, ..., Coηe}, where

Aoη=
[

0 Iη−1

0 0

]
∈Rη×η, Coη=[ 1 0 ]∈R1×η.

The integers η1, ..., ηe ∈ N+ are the observability indices of the pair (Co, Ao).
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Theorem 4.1 (extended Morse canonical form EMCF). For any

Λuv = Λuvn,m,s,p = (A,Bu, Bv, C,Du),

there exists an extended Morse transformation EMtran bringing Λuv into

ΛuvEM = (AEM , B
u
EM , B

v
EM , CEM , D

u
EM ) = EMtran(Λuv),

represented by the extended Morse canonical form EMCF.185

The proof will be given in Section 6.6. Throughout if we only consider the differential equation of

(2) (meaning (2) without the output y), we denote it as Λuvn,m,s = (A,Bu, Bv). Now we introduce

the driving variables v-reduction and implicitation (compare [15]) to reduce the driving variables v

and implicit the EMCF to a DACS.

Definition 4.2 (v-reduction and implicitation). For a control system Λuz
2

and its prolongation

Λuv, given by (10) and (11), respectively, the inverse operation of prolongation will be called the

v-reduction, that is, the v-reduction of Λuv is Λuz
2

. For an ODECS Λuz
2

, the implicitation of Λuz
2

is a DACS Impl(Λuz
2

) constructed by setting the output y = 0, that is,

Impl(Λuz
2

) :

I 0

0 0

ż1

ż2

 =

H1 H2

H3 H4

z1

z2

+

L1

L2

u.
Remark 4.3. If ∆u = Impl(Λuz

2

), where Λuz
2

is the v-reduction of Λuv, then Λuv ∈ Expl(∆u).190

Then with the help of the above v-reduction and implicitation procedure, we can regard the

feedback canonical form FBCF for DACSs of the form ∆u
l,n,m = (E,H,L) given in [24] as a corollary

of Theorem 4.1. In the following, in order to save space and simplify notations, we denote

Ki = [ 0 Ii−1 ] ∈ R(i−1)×i, Li = [ Ii−1 0 ] ∈ R(i−1)×i, Ni =
[

0 0
Ii−1 0

]
∈ Ri×i, ei = [ 0

1 ] ∈ Ri,

where β = (β1, . . . , βk), |β| = β1 + · · ·+ βk, and

Nβ = diag {Nβ1
, . . . , Nβk} ∈ R|β|×|β| Kβ = diag {Kβ1

, . . . ,Kβk} ∈ R(|β|−k)×|β|,

Lβ = diag {Lβ1 , . . . , Lβk} ∈ R(|β|−k)×|β|, Eβ = diag {eβ1 , . . . , eβk} ∈ R|β|×k,

Theorem 4.4 (feedback canonical form of DACSs [24]). Any DACS ∆u
l,n,m = (E,H,L) is ex-fb-

equivalent to the following feedback canonical form FBCF:

I|ε′| 0 0 0 0 0

0 Lε̄′ 0 0 0 0
0 0 Inρ 0 0 0

0 0 0 KT
σ′ 0 0

0 0 0 0 Nσ̄′ 0

0 0 0 0 0 LT
η′

 ,

NT
ε′ 0 0 0 0 0

0 Kε̄′ 0 0 0 0
0 0 Aρ 0 0 0

0 0 0 LT
σ′ 0 0

0 0 0 0 I|σ̄′| 0

0 0 0 0 0 KT
η′

 ,
 Eε′ 0 0

0 0 0
0 0 0
0 Eσ′ 0
0 0 0
0 0 0


 ,

where ε′ = (ε′1, . . . , ε
′
a′) ∈ (N+)a

′
, ε̄′ = (ε̄′1, . . . , ε̄

′
b′) ∈ (N+)b

′
, σ′ = (σ′1, . . . , σ

′
c′) ∈ (N+)c

′
, σ̄′ =

(σ̄′1, . . . , σ̄
′
d′) ∈ (N+)d

′
, η′ = (η′1, . . . , η

′
e′) ∈ (N+)e

′
are multi-indices and the matrix Aρ is given up

to similarity ( and can always be put into real Jordan form).

Remark 4.5. (i) The above theorem of the FBCF of DACSs is a corollary of Theorem 4.1. Indeed,

for any DACS ∆u = (E,H,L), we can construct an ODECS Λuv ∈ Expl(∆u). Then, by Theorem195
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4.1, we have Λuv
EM∼ EMCF. It is not hard to see that the FBCF is the implicitation of the v-

reduction (see Definition 4.2) of the EMCF. A crucial observation is that EMCF ∈ Expl(FBCF)

(see Remark 4.3). Thus, by Theorem 2.9, we conclude ∆u ex−fb∼ FBCF (since Λuv
EM∼ EMCF).

(ii) There exists a perfect correspondence between the six subsystems of the EMCF and their

counterparts of the FBCF. Morse specifically,

(Acu, Bcu)↔ (I|ε′|, N
T
ε′ , Eε′), (Acv, Bcv)↔ (Lε̄′ ,Kε̄′ , 0), Ann ↔ (Inρ , Aρ),

(Apu, Bpu, Cpu, Dpu)↔ (KT
σ′ , L

T
σ′ , Eσ′), (Apv, Bpv, Cpv)↔ (Nσ̄′ , I|σ̄′|, 0), (Co, Ao)↔ (LTη′ ,K

T
η′ , 0).

(iii) Since the FBCF is the implicitation of the v-reduction of the EMCF, it is easy to observe

that the indices of the FBCF and EMCF have the following relations: a = a′ and εk = ε′k for200

k = 1, . . . , a; b = b′ and ε̄k = ε̄′k for k = 1, . . . , b; n2 = nρ and Ann ≈ Aρ ( similar matrices);

c+ δ = c′ and σ′1 = σ′2 = · · · = σ′δ = 1, σ′δ+1 = σ1 + 1, σ′δ+2 = σ2 + 1, . . ., σ′δ+c = σc + 1; moreover,

d = d′ and σ̄k = σ̄′k for k = 1, . . . , d; e = e′ and ηk + 1 = η′k for k = 1, . . . , e.

In an algorithm below, we summarize how to construct the FBCF for a given DACS ∆u
l,n,m =

(E,H,L) based on the explicitation procedure.

Algorithm 4.6 the construction of the FBCF for linear DACSs via the explicitation

Initialization: Consider a DACS ∆u
l,n.m = (E,H,L) with E ∈ Rl×n, H ∈ Rl×n, L ∈ Rl×m.

Step 1: Construct an ODECS Λuv such that Λuv ∈ Expl(∆u) by Definition 2.2:

1: Find Q such that E1 of QE =
[
E1
0

]
is of full row rank, denote QH =

[
H1

H2

]
, QL =

[
L1

L2

]
;

2: Set A = E†1H1, Bu = E†1L1, C = H2, Du = L2 and find Bv such that ImBv = kerE1 = kerE;

3: Set Λuv = (A,Bu, Bv, C,Dv), then we have Λuv ∈ Expl(∆u).

Step 2: Find EMtran such that Λ̃ũṽ = EMtran(Λuv) is in the EMTF by Theorem 3.5:

4: Calculate the subspaces V∗, U∗u , W∗, Y∗ for Λw = Λuv by Lemma 7.4;

5: Construct Ts, To by (17) and Tw by (37);

6: Find KMT = T−1
s KTo and FMT = T−1

i FTs by (30) and (31);

7: Set Tx = Ts, Ty = To, Fw = FMT , Kw = KMT and Mtrans = (Tx, Tw, Ty, Fw,Kw), then we have

Λ̃w̃ = Mtrans(Λ
w) is in the MTF, i.e., ∃ EMtran: Λ̃ũṽ = EMtran(Λuv) is in the EMTF.

Step 3: Find EMtran such that Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF by Theorem 3.6:

8: Construct FMN , KMN , TMN for λ̃w̃ by the MNF Algorithm 3.3.

9: Set Mtran = (TMN , Iu, Iy, FMN ,KMN ), then we have Λ̄w̄ = Mtran(Λ̃w̃) is in the MNF, i.e.,

∃ EMtran such that Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF.

Step 4: By the procedure shown in the proof of Theorem 4.1, bring Λ̄ūv̄ into the EMCF.

Step 5: By Definition 4.2, find the implicitation of the v-reduction of Λ̄ūv̄, denoted by ∆̄ū.

Result: ∆̄ū is in the FBCF and ∆u ex−fb∼ ∆̄ū.

205
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5. Example

In this section, we illustrate the construction of Algorithm 4.6 by an example taken from [9].

Consider the following mathematical model of an electrical circuit (see Fig. 1.1 of [9]), which is a

DACS of the form Eẋ = Hx+ Lu:

0 0 0 0 L 0 0 0 0 0 0 0 0 0
0 0 −Ca Ca 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


ẋ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 −1 0 0 0 0 0 0 0 0 0 0 0


x+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

 [ IV ] ,

where u = [I, V ]T is the control vector, L,Ca,R,RG, RF are real scalars (all assumed to be nonzero).

In [9], only the matrix pencil sE − H is transformed into a quasi-Kronecker form. Below, we will

transform 2 the whole DACS into its FBCF via Algorithm 4.6.

Step 1: Find an ODECS Λuv ∈ Expl(∆u), which we take as

Λuv :



ẋ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/Ca 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


x+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


u+



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


v

y =



0 −1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 −1 0 0 0 0 0 0 0 0 0 0 0

x+


0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

u.
Step 2: Calculate the subspaces V∗, U∗w, U∗v , W∗, Y∗ of Λw = (A,Bw, C,Dw) by Lemma 7.4 of the

Appendix. They are W∗ = X = R14, Y∗ = Y = R11 and

V∗=Im



RG 0 0 0 0
RG 0 0 0 0

RF+RG 0 0 0 0
0 R 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 −1 1
−1 −1 0 1 −1


, U∗w=Im



0 0 0
0 0 0

R∗RG 0 0
R∗RG 0 0

R∗(RF+RG) 0 0
0 0 0
0 0 0
R 0 0
R 0 0

RF+RG 0 0
0 1 0
0 0 1
R −1 1

−(R+RF+RG) 1 −1


, U∗v =Im



R∗RG 0 0
R∗RG 0 0

R∗(RF+RG) 0 0
0 0 0
0 0 0
R 0 0
R 0 0

RF+RG 0 0
0 1 0
0 0 1
R −1 1

−(R+RF+RG) 1 −1


.

By the proof of Theorem 3.5 and Proposition 3.1, we can choose the following transformation

2The calculations of the invariant subspaces and the transformation matrices in the example are implemented by

Matlab and the source code are available on the webpage of the first author.
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matrices: Ty = I11, KMT = 014×11,

Ts=



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0

−RF+RG
RG

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1/RG 0 0 0 0 0 0 1 0 0 0 0 0 0
−1/RG 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 −1
R 0 0 0 0 0 1 0 0 0 0

−1/RG 0 0 0 0 0 0 0 0 0 1 −1 1 0

1/RG 0 0 −1
R 0 0 0 0 0 0 −1 1 0 1


, Tw=



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 −(RF+RG)/RG 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 −1/RG 0 0 0 0 1 0 0 0 0 0 0
0 0 −1/RG 0 0 0 0 0 1 0 0 0 0 0
0 0 −(RF+RG)/R∗RG 0 0 0 0 0 0 1 0 0 0 0
0 0 −1/RG 0 0 0 0 0 0 0 1 −1 1 0
0 0 (R+RF+RG)/(R∗RG) 0 0 0 0 0 0 0 −1 1 0 1


,

FMT =



0 0 0 0 1 0 0 0 0 0 0 0 0 0
(RF+RG)/RG 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/(Ca∗R∗RG) 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 1/(Ca∗R) 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/(Ca∗R∗RG) 0 0 0 0 0 0 0 0 0 1/(Ca∗R) −1/(Ca∗R) 0 0


.

Then the Morse transformation Mtrans(Ts, Tw, Ty, FMT ,KMT ) brings Λw into Λ̃w̃ = (Ã, B̃w̃, C̃, D̃w̃),

which is in the EMTF, where[
Ã B̃w̃

C̃ D̃w̃

]
=

[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

[
Ã1 Ã13 0 B̃ṽ1 B̃ṽ12

0 Ã3 0 0 B̃ṽ3
0 C̃3 D̃ũ3 0 0

]
=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1/(Ca∗RG) 0 0 −1/Ca 1/Ca 0 0 0 0 0 0 0 1/Ca 0 0 0 (RF+RG)/RG 0 0 0 1 0 0 0 0 0 0 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 0 0 0 0 0 0 0 −1/R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1/(Ca∗R) 0 0 0 0 0 0 0 1/R 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 RG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



.

Step 3: By MNF Algorithm 3.3, set

KMN =



0 0 0 0 0 0 0 0 0 0 0
−1/(Ca∗RG) 0 0 0 −1/Ca 1/(Ca∗RG) 0 1/Ca −1/Ca 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


, FMN = 014×14.

Then find T 2
MN via the following constrained Sylvester equation,

Ā1T
2
MN − T 2

MN Ā3 = −Ā1, T 2
MN B̄

w̄
3 = −B̄w̄12,

where Ā = Ã+KMN C̃, B̄w̄ = B̃w̃ +KMN D̃
w̃. The above equation is solvable and the solution is

T 2
MN =

[
0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
.

Thus the Morse transformation Mtran = (TMN , I14, I11, FMN ,KMN ), where TMN =
[
I T 2

MN

0 I

]
,
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brings Λ̃w̃ into Λ̄w̄ = (Ā, B̄w̄, C̄, D̄w̄), which is in the EMNF, where[
Ā B̄w̄

C̄ D̄w̄

]
=

[
Ā B̄ū B̄v̄

C̄ D̄ū 0

]
=

[
Ā11 0 0 B̄v̄11 0

0 Ā33 0 0 B̄v̄32
0 C̄13 D̄ū12 0 0

]
=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1/(Ca∗RG) 0 0 −1/Ca 1/Ca 0 0 0 0 0 0 0 0 0 0 0 (RF+RG)/RG 0 0 0 0 0 0 0 0 0 0 0

1/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1/(Ca∗R) 0 0 0 0 0 0 0 −1/R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1/(Ca∗R) 0 0 0 0 0 0 0 1/R 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 RG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



.

210

Step 4: Transform each subsystem of Λ̄w̄ into its canonical form as in Theorem 4.1 to obtain

EMCF :

[
Acv 0 0 Bcv 0

0 Apv 0 0 Bpv
0 0 Dpu 0 0
0 C̄pv 0 0 0

]
=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

The EMCF indices are ε̄1 = 2, ε̄2 = 2, ε̄3 = 1, δ = 2, σ̄1 = σ̄2 =, . . . ,= σ̄9 = 1. Note that n2, a, c, e

are all zeros and we have 3 subsystems only.

Step 5: Using the v-reduction and implicitation of Definition 4.2, we get the following DACS

from the above EMCF:

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ż =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

 z +



0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

 ũ,

where z and ũ is the new “generalized” state and the new input, respectively. Obviously, the above

DACS is in the FBCF with indices ε̄′1 = 2, ε̄′2 = 2, ε̄′3 = 1, σ′1 = σ′2 = 1, σ̄′1 = σ̄′2 =, . . . ,= σ̄′9 = 1.

Moreover, a′ = nρ = e′ = 0, c′ = δ = 2.215
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6. Proofs of the results

6.1. Proofs of Proposition 2.3, Proposition 2.4 and Theorem 2.9

Proof of Proposition 2.3. If. Suppose that Λuv and Λ̃uṽ are equivalent via a transformation given

by (9). First, Im B̃ṽ
(9)
= ImBvT−1

v = kerE1 = kerE implies that B̃ṽ is another choice such that

Im B̃ṽ = kerE. Observe that

Λ̃uṽ :

 ẋ= Ãx+ B̃uu+ B̃ṽ ṽ
(9)
=(A+KC +BvFv)x+ (Bu +KDu +BvR)u+BvT−1

v ṽ

ỹ= C̃x+ D̃uu
(9)
= TyCx+ TyD

uu.

Then pre-multiply the differential part of Λ̃uṽ by E1, to get (notice that A = E†1H1, Bu = E†1L1,

ImBv = kerE1 and C = H2, Du = L2) E1ẋ = (H1 + E1KH2)x+ (L1 + E1KL2)u

ỹ = TyH2x+ TyL2u.

Thus Λ̃uṽ is an (Il, ṽ)-explicitation of the following DACS:[
E1
0

]
ẋ =

[
H1+E1KH2

TyH2

]
x+

[
L1+E1KL2

TyL2

]
u.

Since the above DACS can be transformed from ∆u via Q̃ = Q′Q, where Q′ =
[
Iq E1K
0 Ty

]
, it proves

that Λ̃uṽ is a (Q̃, ṽ)-explicitation of ∆u corresponding to the choice of invertible matrix Q̃. Finally,

by E1Ã = H1 +E1KH2, E1B̃
u = L1 +E1KL2, we get Ã = Ẽ†1(H1 +KH2) and B̃u = Ẽ†1(L1 +KL2)220

for another choice of right inverse Ẽ†1 of E1.

Only if. Suppose that Λ̃uṽ ∈ Expl(∆u) via Q̃, Ẽ†1 and B̃ṽ. First, by Im B̃ṽ = kerE = ImBv,

there exists an invertible matrix T−1
v such that B̃ṽ = BvT−1

v . Moreover, since E†1 is a right inverse of

E1 if and only if any solution ẋ of E1ẋ = w is given by E†1w, we have E1E
†
1(H1x+L1u) = H1x+L1u

and E1Ẽ
†
1(H1x+L1u) = H1x+L1u. It follows that E1(Ẽ†1−E

†
1)(H1x+L1u) = 0, so (Ẽ†1−E

†
1)H1 ∈

kerE1, (Ẽ†1 − E
†
1)L1 ∈ kerE1. Since kerE1 = ImBv, it follows that (Ẽ†1 − E

†
1)H1 = BvFv and

(Ẽ†1 − E
†
1)L1 = BvR for suitable Fv and R. Furthermore, since Q is such that E1 of QE =

[
E1
0

]
is

of full row rank, it follows that any other Q̃, such that Ẽ1 of Q̃E =
[
Ẽ1
0

]
is full row rank, must be

of the form Q̃ = Q′Q, where Q′ =
[
Q1 Q2

0 Q4

]
. Thus via Q̃, ∆u is ex-equivalent to

Q′
[
E1
0

]
ẋ = Q′

[
H1

H2

]
+Q′

[
L1

L2

]
u⇒

[
Q1E1

0

]
ẋ =

[
Q1H1+Q2H2

Q4H2

]
+
[
Q1L1+Q2L2

Q4L2

]
u.

We obtain the following equations, using Ẽ†1 and B̃ṽ, and based on the right-hand side of the above:
ẋ = (Ẽ†1H1 + Ẽ†1Q

−1
1 Q2H2)x+ (Ẽ†1L1 + Ẽ†1Q

−1
1 Q2L2)u+ B̃ṽv

= (E†1H1 +BvFv + E†1Q
−1
1 Q2C)x+ (E†1H1 +BvR+ E†1Q

−1
1 Q2D

u)u+BvT−1
v ṽ

0 = Q4H2 +Q4L2 = Q4Cx+Q4D
u.

Thus the explicitation of ∆u via Q̃, Ẽ†1 and B̃ṽ is

Λ̃uṽ :

 ẋ = Ax+K(Cx+Duu) +Bv(Fvx+Ru+ T−1
v ṽ) = Ãx+ B̃uu+ B̃ṽ ṽ

ỹ = TyCx+ TyD
uu = C̃x+ D̃uu.

where K = E†1Q
−1
1 Q2, Ty = Q4. Now we can see that Λuv and Λ̃uṽ are equivalent via transformations
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listed in (9).

Proof of Proposition 2.4. Consider equation (5) of the (Q, v)-explicitation procedure. Since Q-

transformations preserve solutions of ∆u, equation (5) resulting from a Q-transformation of ∆u
225

has the same solutions as ∆u. Thus we need to prove that equations (5) and (8) have correspond-

ing solutions for any choices of E†1 and Bv. Moreover, the second equation 0 = H2x + L2u of (5)

coincides with 0 = Cx + Duu of (8) (since C = H2 and Du = L2). So we only need to prove that

(x(t), u(t)) with x(t) ∈ C1 and u(t) ∈ C0 is a solution of (5a) if and only if there exists v(t) ∈ C0

such that (x(t), u(t), v(t)) is a solution of (7) independently of the choice of E†1, defining A = E†1H230

and Bu = E†1L1, and of the choice of Bv satisfying ImBv = kerE1.

If. Suppose that (x(t), u(t), v(t)) is a solution of (7). Then we have ẋ(t) = Ax(t) + Buu(t) +

Bvv(t). Pre-multiplying the last equation by E1, we conclude (recall that A = E†1H1 , Bu = E†1L1,

kerE1 = ImBv) that E1ẋ(t) = H1x(t) + L1u(t), which proves that (x(t), u(t)) is a solution of (5a).

Only if. Suppose that (x(t), u(t)) is a solution of (5a). Rewrite E1ẋ as [E1
1 E

2
1 ]
[
ẋ1
ẋ2

]
, where

E1
1 ∈ Rq×q and x = [ x1

x2
]. Then, without loss of generality, we assume that the matrix E1

1 is invertible

(if not, we permute the components of x such that the first q columns of E1 are independent). Thus,

a choice of the right inverse of E1 is E†1 =
[

(E1
1)−1

0

]
(since [E1

1 E
2
1 ]
[

(E1
1)−1

0

]
= Iq), which gives the

matrices A, Bu, Bv of (7) to be, respectively,

A := E†1H1 =
[

(E1
1)−1H1

0

]
, Bu := E†1L1 =

[
(E1

1)−1L1

0

]
, Bv :=

[
−(E1

1)−1E2
1

Is

]
.

Let v(t) = ẋ2(t), then v ∈ C0 and it is clear that if (x(t), u(t)) = ((x1(t), x2(t)), u(t)) is a solution of

(5a), then (x(t), u(t), v(t)) solves (7) with (A,Bu, Bv) as above, since

[E1
1 E

2
1 ]
[
ẋ1(t)
ẋ2(t)

]
= H1x1(t) + L1u(t)⇒ ẋ1(t) = (E1

1)−1H1x(t) + (E1
1)−1L1u(t)− (E1

1)−1E2
1 ẋ2(t).

Notice that if we choose another right inverse Ẽ†1 of E1 and another matrix B̃v such that Im B̃v =

kerE1, then by Proposition 2.3, equation (7) becomes

ẋ = Ãx+ B̃uu+ B̃ṽ ṽ ⇔ ẋ = Ax+Buu+Bv(Fvx+Ru+ T−1
v ṽ).

We thus conclude that there exists ṽ(t) = −TvFvx(t)− TvRu(t) + Tvv(t) = −TvFvx(t)− TvRu(t) +235

Tvẋ2(t) such that (x(t), u(t), ṽ(t)) solves equation (7). Therefore, ∆u has corresponding solutions

with any (Q, v)-explicitation independently of the choice of Q, E†1 and Bv.

Proof of Theorem 2.9. Without loss of generality, we assume that the system matrices of ∆u =

(E,H,L) and ∆̃ũ = (Ẽ, H̃, L̃) are of the following form:

E =
[
Iq 0
0 0

]
, H =

[
H1

H2

]
, L =

[
L1

L2

]
, Ẽ =

[
Iq̃ 0
0 0

]
, H̃ =

[
H̃1

H̃2

]
, L =

[
L̃1

L̃2

]
,

where H1 ∈ Rq×n, L1 ∈ Rq×m, H̃1 ∈ Rq̃×n, L̃1 ∈ Rq̃×m, q = rankE, q̃ = rank Ẽ. Since if not, we

can always find Q, Q̃ ∈ Gl(l,R), P, P̃ ∈ Gl(n,R) such that

(QEP−1, QHP−1, QL) and (Q̃ẼP̃−1, Q̃H̃P̃−1, Q̃L̃)

are of the above desired form and it is easily seen that the ex-fb-equivalence of (E,H,L) and (Ẽ, H̃, L̃)
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is equivalent to (implied by and implying) that of (QEP−1, QHP−1, QL) and (Q̃ẼP̃−1, Q̃H̃P̃−1, Q̃L̃).

Thus we can use the above system matrices to represent ∆u and ∆̃ũ in the remaining part of proof.240

By the assumptions that Λuv ∈ Expl(∆u) and Λ̃ũṽ ∈ Expl(∆̃ũ), we have[
A Bu Bv

C Du 0

]
=

[
H1 L1 0
0 0 In−q
H2 L2 0

]
,
[
Ã B̃ũ B̃ṽ

C̃ D̃ũ 0

]
=

[
H̃1 L̃1 0
0 0 In−q̃
H̃2 L̃2 0

]
. (25)

We have chosen Λuv and Λ̃ũṽ as above for convenience, any other choice based on the explicitation

procedure could have been made. Since any two ODECSs in an explicitation class are EM-equivalent,

the choice of a (Q, v)-explicitation makes no difference when proving EM-equivalence. Therefore,

we will use the system matrices in (25) for the following proof.

If. Suppose Λuv
EM∼ Λ̃ũṽ. Then there exist transformation matrices Tx, Tu, Tv, Ty, Fu, Fv, R, K

such that (14) holds. Substituting the system matrices of (25) into (14), we have[
H̃1 L̃1 0
0 0 In−q
H̃2 L̃2 0

]
=
[
Tx TxK
0 Ty

] [H1 L1 0
0 0 In−q̃
H2 L2 0

][
T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv+RFu)T−1
x RT−1

u T−1
v

]
. (26)

Represent Tx=
[
T 1
x T

2
x

T 3
x T

4
x

]
, where T 1

x ∈ Rq×q. By B̃ṽ =TxB
vT−1

v , we get [ 0
I ]=

[
T 1
x T

2
x

T 3
x T

4
x

]
[ 0
I ]T−1

v , hence245

it can be deduced that q = q̃ and T 2
x = 0. Moreover, T 4

xT
−1
v = I implies that T 4

x is invertible. Thus

by the invertibility of Tx, we have T 1
x is invertible as well.

Subsequently, premultiply equation (26) by
[

(T 1
x )−1 0 0
0 0 Il−q

]
and we get[

(T 1
x )−1 0
0 Il−q

] [
H̃1 L̃1 0

H̃2 L̃2 0

]
=
[
Iq K1

0 Ty

] [
H1 L1 0
H2 L2 0

] [ T−1
x 0 0

FuT
−1
x T−1

u 0

(Fv+RFu)T−1
x RT−1

u T−1
v

]
,

where K1 = [ Iq (T 1
x )
−1
T 2
x ]K. It follows that[

H̃1 L̃1

H̃2 L̃2

]
=
[
T 1
x T

1
xK1

0 Ty

] [
H1 L1

H2 L2

] [ T−1
x 0

FuT
−1
x T−1

u

]
.

Thus ∆u ex−fb∼ ∆̃ũ via

Q =
[
T 1
x T

1
xK1

0 Ty

]
, P = Tx, F = Fu, G = T−1

u .

Only if. Suppose ∆u ex−fb∼ ∆̃ũ. Then there exist invertible matrices Q, P , and matrices F , G

of appropriate sizes such that equation (4) holds. Represent Q =
[
Q1 Q2

Q3 Q4

]
, where Q1 ∈ Rq×q, and

P−1 =
[
P1 P2

P3 P4

]
, where P1 ∈ Rq×q. Then by

Ẽ = QEP−1 ⇒
[
Iq̃ 0
0 0

]
=
[
Q1 Q2

Q3 Q4

] [
Iq 0
0 0

] [
P1 P2

P3 P4

]
,

we immediately get q = q̃ and Q1P1 = I, Q1P2 = 0, Q3P1 = 0, which implies that Q1, P1 are

invertible matrices, P2 = 0, and Q3 = 0. Thus by the invertibility of Q and P , we have Q4 and P4

are invertible matrices as well. Then by equation (4), we get[
H̃1 L̃1

H̃2 L̃2

]
=
[
Q1 Q2

0 Q4

] [
H1 L1

H2 L2

] [
P−1 0
FP−1 G

]
,

which implies that the following equation holds:[
H̃1 L̃1 0
0 0 In−q
H̃2 L̃2 0

]
=

[
Q1 0 Q2

X P−1
4 0

0 0 Q4

] [
H1 L1 0
0 0 In−q̃
H2 L2 0

] [
P−1 0 0
FP−1 G 0
Y Z P4

]
,
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where X = −P−1
4 P3P

−1
1 , Y = (P3P

−1
1 H1 + P3P

−1
1 L1F )P−1, Z = P3P

−1
1 L1G. So Λuv

EM∼ Λ̃ũṽ via

Tx = P, Tu = G−1, Tv = P−1
4 , Ty = Q4,

Fu = F, Fv = P3P
−1
1 H1, R = P3P

−1
1 L1, K =

[
P1Q2

P3Q2

]
.

6.2. Proof of Proposition 2.10

Proof. Without loss of generality, we may assume that ∆u
l,n,m = (E,H,L) is of the following form:[

Iq 0
0 0

] [
ẋ1
ẋ2

]
=
[
H1 H2

H3 H4

]
[ x1
x2

] +
[
L1

L2

]
u,

where q = rankE and H1 ∈ Rq×q, H2 ∈ Rq×(n−q), H3 ∈ Rp×q, H4 ∈ Rp×(n−q), L1 ∈ Rq×m,250

L2 ∈ Rp×m, where p = l − q. Since if not, we can always find Q ∈ Gl(l,R), P ∈ Gl(n,R) such that

∆̃ũ = (QEP−1, QHP−1, QL) is of the above form. Then, it is not hard to check that Vi(∆̃ũ) =

PVi(∆u), Wi(∆̃
ũ) = PWi(∆

u), Ŵi(∆̃
ũ) = P Ŵi(∆

u). Moreover, for two ODECSs Λw = Λuv ∈

Expl(∆u), Λ̃w̃ = Λ̃ũṽ ∈ Expl(∆̃ũ), we can verify that Vi(Λ̃w̃) = PVi(Λw), Wi(Λ̃
w̃) = PWi(Λ

w),

Ŵi(Λ̃
w̃) = PŴi(Λ

w). Therefore, in order to show that the relations of the subspaces (as claimed in255

Proposition 2.10) hold, replacing ∆u by ∆̃ũ makes no difference and thus we will assume that ∆u is

of the above form in what follows.

The following system, denoted Λw = Λuv, is a (Q, v)-explicitation of ∆u,

Λw = Λuv :


[
ẋ1
ẋ2

]
=
[
H1 H2
0 0

]
[ x1
x2

] +
[
L1
0

]
u+

[
0

In−q

]
v

y = H3x1 +H4x2 + L2u.
(27)

Firstly, we calculate Vi(Λw) through equation (45) of the Appendix:

Vi+1(Λw) = [AC ]
−1 (

[ I0 ]Vi(Λw) + Im
[
Bw

Dw
])

=
[
H1 H2
0 0
H3 H4

]−1
([ Vi(Λw)

0

]
+ Im

[
L1 0
0 In−q
L2 0

])
=
[
H1 H2

H3 H4

]−1 ([ [Iq,0]Vi(Λw)
0

]
+ Im

[
L1 0
L2 0

])
= H−1(EVi(Λw) + ImL).

Comparing the above expression with equation (42) of the Appendix, it is easily seen that the sub-

space sequences Vi+1(Λw) and Vi+1(∆u) are calculated in the same way. Since V0(∆u) = V0(Λw) =

Rn, we conclude that Vi(∆u) = Vi(Λw) for i ∈ N.260

Then calculate Wi+1(∆u) via equation (43) of the Appendix:

Wi+1(∆u) = E−1(HWi(∆
u) + ImL) =

[
Iq 0
0 0

]−1 ([H1 H2

H3 H4

]
Wi(∆

u) + Im
[
L1

L2

])
=
[
Iq 0
0 0

]−1
([

H1 H2 L1 0
H3 H4 L2 0

] [
Wi(∆

u)
Uw

])
=
[
H1 H2 L1 0
0 0 0 0

] ([
Wi(∆

u)
Uw

]
∩ ker [H3 H4 L2 0 ]

)
+ Im

[
0

In−q

]
.

In the above formula, according to the special form of E, we directly calculate the preimage. More-

over, we can express [
0

In−q

]
=
[

0 0 0 0
0 0 0 In−q

] ([
Wi(∆

u)
Uw

]
∩ ker [H3 H4 L2 0 ]

)
.

It follows that

Wi+1(∆u) =
[
H1 H2 L1 0
0 0 0 In−q

] ([
Wi(∆

u)
Uw

]
∩ ker [H3 H4 L2 0 ]

)
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= [A Bw ]
([

Wi(∆
u)

Uw

]
∩ ker [C Dw ]

)
.

It is seen from the above equation and (47) of Appendix that the subspace sequencesWi+1(Λw) and

Wi+1(∆u) are calculated in the same way. Since the initial conditions W0(Λw) = W0(∆u) = {0}, we

conclude that Wi+1(Λw) = Wi+1(∆u) for all i ∈ N.

Then from (43) and (44), it is seen that the subspaces sequences Wi and Ŵi are calculated in the

same form, their difference comes from their initial conditions only. Similarly, from (47) and (49),265

it is seen that Wi and Ŵi have different initial conditions but evolve in the same way. Thus, by

Ŵ1(Λw) = Ŵ1(∆u) = kerE = ImBv, we get Ŵi(Λ
w) = Ŵi(∆

u) for all i ∈ N+.

6.3. Proof of Proposition 3.1

Proof. Observe that the transformation matrix Ts decomposes the state space X of Λu into X =

X1⊕X2⊕X3⊕X4, where X1 = V∗∩W∗, X1⊕X2 = V∗, X1⊕X3 =W∗, (V∗ +W∗)⊕X4 = X .

The transformation matrix Ti decomposes the input space Uu into Uu = U1 ⊕U2, where U1 = U∗u ,

U1 ⊕U2 = Uu. The transformation matrix To decomposes the output space Y into Y = Y1 ⊕ Y2,

where Y1 = Y∗, Y1 ⊕ Y2 = Y . Let Λ′ = (A′, B′, C ′, D′) = Mtran(Λu), where Mtran is the Morse

transformation Mtran = (Ts, Ti, To, 0, 0). Then consider the following equation and subspaces:

[
A′ B′

C′ D′

]
=
[
Ts 0
0 To

][
A Bu

C Du

][T−1
s 0

0 T−1
i

]
=



A1
1 A

2
1 A

3
1 A

4
1 B1

1 B2
1

A1
2 A

2
2 A

3
2 A

4
2 B1

2 B2
2

A1
3 A

2
3 A

3
3 A

4
3 B1

3 B2
3

A1
4 A

2
4 A

3
4 A

4
4 B1

4 B2
4

C1
3 C2

3 C3
3 C4

3 D1
3 D

2
3

C1
4 C2

4 C3
4 C4

4 D1
4 D

2
4


,
V∗(Λ′):

[ ∗
∗
0
0

]
,

Uu∗(Λ′):[ ∗0 ],

W∗(Λ′):
[ ∗

0
∗
0

]
,

Y∗(Λ′):[ ∗0 ].

Now, applying (46), for i = n, to both Λ′ and the dual system of Λ′ ( see Appendix), we have[
B′

D′

]
Uu∗ ⊆

[
V∗
0

]
,
[

(C′)T

(D′)T

]
(Y∗)⊥ ⊆

[
(W∗)⊥

0

]
.

It follows that B1
3 , B1

4 , C1
4 , C3

4 , D1
3, D1

4, D4
2 are all zero.

Then applying (45) for i = n, to both Λ′ and its dual system, we have[
A′V∗
C′V∗

]
⊆
[
V∗
0

]
+ Im

[
B′

D′

]
, (28)[

(A′)T (W∗)⊥

(B′)T (W∗)⊥

]
⊆
[

(W∗)⊥
0

]
+ Im

[
(C′)T

(D′)T

]
. (29)

The lower parts of equations (28) and (29) give C ′V∗ ⊆ ImD′ and (B′)T (W∗)⊥ ⊆ Im (D′)T , which

implies that B1
2 and C4

2 are zero. On the other hand, equation (28) gives that

Im

[
A1

3

A1
4

C1
3

]
⊆ Im

[
B2

3

B2
4

D2
3

]
and Im

[
A2

3

A2
4

C2
3

]
⊆ Im

[
B2

3

B2
4

D2
3

]
,

implying that there exist matrices F1 ∈ Rm3×n1 and F2 ∈ Rm3×n2 such that[
A1

3

A1
4

C1
3

]
= −

[
B2

3

B2
4

D2
3

]
F1 and

[
A2

3

A2
4

C2
3

]
= −

[
B2

3

B2
4

D2
3

]
F2. (30)

Then setting F =
[

0 0 0 0
F1 F2 0 0

]
, we have

[
Ts 0
0 To

] [
A Bu

C Du
] [ T−1

s 0

T−1
i F T−1

i

]
=


A1

1+B2
1F1 A

2
1+B2

1F2 A
3
1 A

4
1 B1

1 B2
1

A1
2+B2

2F1 A
2
2+B2

2F1 A
3
2 A

4
2 0 B2

2

0 0 A3
3 A

4
3 0 B2

3

0 0 A3
4 A

4
4 0 B2

4

0 0 C3
3 C4

3 0 D2
3

0 0 0 C4
4 0 0

 .
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Since W∗ is feedback invariant, equation (29) also holds for the above transformed system. Thus

the upper part of (29) becomes

(A′ +B′F )T (W∗(Λ′))⊥ ⊆ (W∗(Λ′))⊥ + Im (C ′)T ,

which gives that (A1
2 +B2

1F1)T = 0,

Im
[

(A3
2)T

(B2
2)T

]
⊆ Im

[
(C3

1 )T

(D2
1)T

]
and Im

[
(A3

4)T

(B2
4)T

]
⊆ Im

[
(C3

3 )T

(D2
3)T

]
.

It follows that there exist K1 ∈ Rn2×p3 and K2 ∈ Rn4×p3 such that[
(A3

2)T

(B2
2)T

]
= −

[
(C3

3 )T

(D2
3)T

]
KT

1 and
[

(A3
4)T

(B2
4)T

]
= −

[
(C3

3 )T

(D2
3)T

]
KT

2 . (31)

Let K =
[

0 KT
1 0 KT

2
0 0 0 0

]T
, which implies that

[
Ts KTo
0 To

]
[A B
C D ]

[
T−1
s 0

T−1
i F T−1

i

]
=


A1

1+B2
1F1 A

2
1+B2

1F2 A
3
1 A4

1 B1
1 B2

1

0 A2
2+B2

2F1 0 A4
2+K1C

4
1 0 0

0 0 A3
3 A4

3 0 B2
3

0 0 0 A4
4+K2C

4
3 0 0

0 0 C3
3 C4

3 0 D2
3

0 0 0 C4
4 0 0

 .
Now it is seen that there exist KMT = T−1

s KTo and FMT = T−1
i FTs such that Λ̃ũ = (Ã, B̃ũ, C̃, D̃ũ)

has the form (18), where [
Ã B̃ũ

C̃ D̃ũ

]
=
[
Ts TsKMT
0 To

] [
A Bu

C Du
] [

Ts
−1 0

FMTTs
−1 Ti

−1

]
.

The system matrices of Λ̃u, see (18), are Ã1 = A1
1 + B2

1F1, Ã2
1 = A2

1, Ã3
1 = A3

1, Ã4
1 = A4

1, B̃1 = B1
1 ,270

B̃2
1 = B2

1 , Ã2 = A2
2 + B2

2F1, Ã4
2 = A4

2 +K1C
4
1 , Ã3 = A3

3, Ã4
3 = A4

3, B̃3 = B2
3 , Ã4 = A4

4 +K2C
4
1 ,

C̃3 = C3
3 , C̃4

3 = C4
3 , D̃3 = D2

3, C̃4 = C4
4 .

Now we will show that (Ã1, B̃1) is controllable. By Lemma 4 of [27] applied to Λ̃ũ, we get

Wi(Λ̃
ũ|U∗u) =Wi(Λ̃

ũ) ∩ V∗(Λ̃ũ), (32)

where Wi(Λ̃
ũ|U∗u) denotes the subspace Wi when the input is restricted to U∗u . Use the system

matrices (18) to calculate Wi(Λ̃
ũ|U∗u) and Wi(Λ̃

ũ) ∩ V∗(Λ̃ũ), which gives

Wn(Λ̃ũ|U∗u) = B1 + Ã1B1 + · · ·+ (Ã1)n−1B1
(32)
= Wn(Λ̃ũ) ∩ V∗(Λ̃ũ), (33)

where B1 = Im [ B̃1 0 0 0 ]T . We can see from the above equation that the reachability space of

(Ã1, B̃1) is W∗(Λ̃ũ) ∩ V∗(Λ̃ũ) = X1, which implies that (Ã1, B̃1) is controllable. Since the proof of

the observability of (C̃4, Ã4) is completely dual to the above proof, we omit that part.275

Subsequently, we prove that the system Λ3 = (Ã3, B̃3, C̃3, D̃3), given by (18), is prime. Using

the system matrices of Λ̃ũ to calculate W∗(Λ̃ũ|(U∗u)⊥), we get

W∗(Λ̃ũ|(U∗u)⊥) = R × {0} ×W∗(Λ̃3)× {0} ,

where R denotes a subspace whose explicit form is irrelevant. From W∗(Λ̃ũ) = W∗(Λ̃ũ|U∗u) ⊕

W∗(Λ̃ũ|(U∗u)⊥) and equation (33), we can deduce that W∗(Λ̃3) = X (Λ̃3) = X3(Λ̃ũ). Moreover, by a

direct calculation, we get

Y∗(Λ̃3) = Y (Λ̃3) = C̃3W∗(Λ̃3) + D̃3Uw(Λ̃3), V∗(Λ̃3) = 0, U∗u(Λ̃3) = 0.

Finally, by Theorem 10 of [27], we conclude that Λ̃3 = (Ã3, B̃3, C̃3, D̃3) is prime.
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6.4. Proof of Proposition 3.2

Proof. First, by MNF Algorithm 3.3 and a direct calculation, we have

Ā1 = Ã1 + B̃1F
1
MN , Ā3

1 = Ã3
1 + B̃2

1F
2
MN +K1

MN C̃3 +K1
MN D̃3F

2
MN ,

Ā4 = Ã4 +K3
MN C̃

4
3 , Ā3 = Ã3 +K2

MN C̃3 + B̃3F
2
MN +K2

MN D̃3F
2
MN ,

B̄3 = B̃3 +K2
MN D̃3, Ā4

1 = Ã4
1 + B̃2

1F
3
MN +K1

MN C̃3 +K1
MN D̃3F

3
MN ,

B̄2
1 = B̃2

1 +K1
MN D̃3, Ā4

3 = Ã4
3 + B̃3F

3
MN +K2

MN C̃
4
3 +K2

MN D̃3F
3
MN ,

C̄3 = C̃3 + D̃3F
2
MN , C̄4

3 = C̃4
3 + D̃3F

3
MN .

We will show that we can always assume D̃3 = 0. To this end, we can find a change of coordinates in

the input and output spaces to obtain D̃3 =
[

0 0
0 Iδ

]
. Then by suitable choice of feedback and output

injection transformation, the 5-tuple (B̃2
1 , B̃3, C̃3, C̃

4
3 , D̃3) can be brought into the following form:[

∗ ∗ B̃2
1

∗ ∗ B̃3

C̃3 C̃
4
3 D̃3

]
⇒

 ∗ ∗ B̂2
1 0

∗ ∗ B̂3 0

Ĉ3 Ĉ
4
3 0 0

0 0 0 Iδ

 .
The zero columns of B̂ and the zero rows of Ĉ which correspond to the static relations yi = ui,

1 ≤ i ≤ σ, we will be kept unchanged. Now, by neglecting the zero columns of B̂ and the zero rows

of Ĉ, we may assume that [
∗ ∗ B̃2

1

∗ ∗ B̃3

C̃3 C̃
4
3 D̃3

]
=

[
∗ ∗ B̂2

1

∗ ∗ B̂3

Ĉ3 Ĉ
4
3 0

]
,

i.e., D̃3-matrix is D̂3 = 0.

Now with the assumption D̃3 = 0, we show that the constrained Sylvester equations of (21) can

be reduced to normal Sylvester equations by a suitable choice of FMN and KMN . We claim that

the following matrix equation

B̃2
1 = −T̂ 2

MN B̃3 (34)

is solvable for T̂ 2
MN . This claim can be proved by observing that[

B̃ũ(U∗u)⊥

D̃ũ(U∗u)⊥

]
∩
[
V∗
0

]
= 0. (35)

Note that the above equation is a consequence of the definition of U∗u (see equation (46)). Now by

(35), we have

Im (col [ B̃2
1 0 B̃3 0 D̃3 0 ]) ∩

[
V∗
0

]
= 0.

Since D̃3 is already zero, the above equation implies that (34) is solvable for T̂ 2
MN . Consequently,

substitute (34) into the upper equations of (21) and we get

Ā1T̄
2
MN − T̄ 2

MN Ā3 = −Ā3
1 + Ā1T̂ 2

MN − T̂ 2
MN Ā3, T̄ 2

MN B̄3 = 0, (36)

where T̄ 2
MN = T 2

MN + T̂ 2
MN .

Furthermore, since (Ã3, B̃3, C̃3, D̃3) is prime ( a consequence of Proposition 3.1), we can always

assume B̃3 = [Im3
, 0]T and C̃3 = [Ip3

, 0] (if not, use coordinates transformations such that B̃3 and

C̃3 are of that form), where m3 = rank B̃3 = dim (U∗u)⊥ = p3 = rank C̃3 = dim Y∗ . Then, it is

possible to choose K1
MN , K2

MN , F 2
MN such that the 4-tuple (Ā3

1, Ā3, B̄
2
1 , C̄3) is transformed into the
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following form: [
Ā3

1

Ā3 B̄3

C̃3

]
=

 0 Ā3′
1

0 0 Im3

0 Ā′3 0
Ip3 0

 .
Thus T̄ 2

MN in equation (36) is of the form T̄ 2
MN = [ 0 T̂ 2

MN ] because T̄ 2
MN B̄3 = 0. Hence, solving

T̄ 2
MN via equation (36) is equivalent to solving T̂ 2

MN via

Ā1 [ 0 T̂ 2
MN ]− [ 0 T̂ 2

MN ]
[

0 0
0 Ā′3

]
= [ 0 Â3′

1 ] .

Therefore, the upper part of the constrained Sylvester equations of (21) can be reduced to the above280

normal Sylvester equation. The reduction of the lower part of (21) to a normal Sylvester equation

follows dually from the above result and we will omit that proof.

Moreover, from Proposition 3.1, we have that the pair (Ã1, B̃1) is controllable and the pair

(C̃4, Ã4) is observable. By the standard matrix theory, we can choose FMN and KMN such that the

spectra of Ā1, Ā2, Ā′3 ,and Ā4
4 are mutually disjoint ( that of A2 is fixed but, the three others can be285

made arbitrary). Then there exist unique solutions for T 1
MN , T 2

MN , T 3
MN , T 4

MN , T 5
MN in (20) and

(21). Furthermore, it is not hard to see that the state coordinates transformation matrix TMN brings

Λ̃ũ into Λ̄ū. Feedback transformations preserve controllability, so the controllability of (Ã1, B̃1)

implies the controllability of (Ā1, B̄1); output injection preserves observability, so the observability

of (C̃4, Ã4) implies the observability of (C̄4, Ā4). The fact that the 4-tuple (Ā3, B̄3, C̄3, D̄3) is prime290

is inherited from the fact that (Ã3, B̃3, C̃3, D̃3) is prime since (Ã3, B̃3, C̃3, D̃3)
M∼(Ā3, B̄3, C̄3, D̄3) (see

this property of prime systems in [27]).

6.5. Proofs of Theorem 3.5 and Theorem 3.6

Proof of Theorem 3.5 . Recall Remark 2.8(iii) that there exists an extended Morse transformation

EMtran such that Λ̃ũṽ = EMtran(Λuv) is of the EMTF if and only if there exists a Morse trans-

formation Mtran with a triangular (and not just any) input coordinates transformation bringing

Λwn,m+s,p = (A,Bw, C,Dw) into the MTF. Now we use the result of Proposition 3.1 for Λw with

a more subtle way to construct the input coordinates transformation matrix Tw. More specifically,

set Tx = Ts, Ty = To, Fw = FMT , Kw = KMT as in Proposition 3.1 and define

Tw = [ T 1
u T

3
u T

1
v T

3
v ]−1 ∈ R(m+s)×(m+s), (37)

where T 1
u ∈ R(m+s)×m1 , T 3

u ∈ R(m+s)×m3 , T 1
v ∈ R(m+s)×s1 , T 3

v ∈ R(m+s)×s3 with m1 + m3 = m,

s1 + s3 = s are full rank matrices such that

ImT 1
v = U∗v , ImT 1

v ⊕ ImT 3
v = Uv,

ImT 1
u ⊕ ImT 1

v = U∗uv = U∗w, ImT 1
u ⊕ ImT 3

u ⊕ ImT 1
v ⊕ ImT 3

v = Uuv = Uw,

where U∗v is U∗uv when the input w = [uT vT ]T is restricted to v (i.e., we put u = 0). Notice that Tw

has a triangular form since ImT 1
v ⊕ ImT 3

v = Uv and thus preserves Uu. Now the Morse transforma-295

tion Mtrans = (Tx, Tw, Ty, Fw,Kw) brings Λw into the desired form of (22). Hence, it proves that

there exists an EMtran transforming Λuv into the EMTF. The claims that (Ã1, B̃
w̃
1 ) is controllable,
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(C̃4, Ã4) is observable and (Ã3, B̃
w̃
3 , C̃3, D̃

w̃
3 ) is prime are inherited from the corresponding results of

Proposition 3.1.

Proof of Theorem 3.6. There exists an EMtran such that Λ̄ūv̄ = EMtran(Λ̃ũṽ) is in the EMNF if300

and only if there exists a Morse transformation Mtran with a triangular input transformation matrix

Tw bringing the system Λ̃w̃, given in MTF, into the MNF. Then as shown in Proposition 3.2, the

input coordinates transformation matrix of the Morse transformation, which brings the MTF into

the MNF, is the identity matrix, thus triangular, as we need. Therefore, with the transformation

matrices shown in Proposition 3.2, we can always bring Λ̃w̃ into the EMNF. Moreover, the claims305

that (Ā1, B̄
w̄
1 ) is controllable, (C̄4, Ā4) is observable, (Ā3, B̄

w̄
3 , C̄3, D̄

w̄
3 ) is prime follow from the

corresponding results of Proposition 3.2.

6.6. Proof of Theorem 4.1

Proof. By Theorem 3.6, for a given ODECS Λuvn,m,s,p = (A,Bu, Bv, C,Du), there exists an extended

Morse transformation EMtran such that EMtran(Λuv) is in the EMNF. Therefore, the starting310

point of this proof is the EMNF given by (23). Since the system represented in the EMNF is

already decoupled into four independent subsystems, we only need to transform each subsystem into

its corresponding canonical form.

(i) We will prove that any controllable Λuvn,m,s = (A,Bu, Bv) can be transformed into the

Brunovský canonical form with indices (ε1, . . . , εm) and (ε̄1, . . . , ε̄s), then the transformation from

(Ā1, B̄
u
1 , B̄

v
1 ) to

([
Acu 0

0 Acv
]
,
[
Bcu

0

]
,
[

0
Bcv
])

is straightforward to see. Since Λuv = (A,Bu, Bv) is

a control system without output, in view of the extended Morse equivalence of Definition 2.7, we

just need to prove that there exist transformation matrices Tx, Tu, Tv, Fu, Fv, R such that the

transformed system matrices(
Tx (A+BuFu +Bv (Fv +RFu))T−1

x , Tx (Bu +BvR)T−1
u , TxB

vT−1
v

)
are in the Brunovský canonical form (notice a triangular form of input transformation acting on

[Bu Bv]). First, from the classical linear system theory (see, e.g., [11]), using only a state coordinates

transformation and state feedback, i.e., choosing suitable Tx, Fv, Fu, and setting Tu = Im, Tv = Is,

R = 0, we can transform Λuv into the following form: ẋji = xj+1
i , 1 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

ẋκii = b1iu1 + · · ·+ bmi um + b̄1i v1 + · · ·+ b̄sivs, 1 ≤ i ≤ m+ s.
(38)

Moreover, without loss of generality, we assume rankBw = m + s (if not, we can always permute

the variables of u and v such that the first m1 columns of Bu and the first s1 columns of Bv are

independent, where m1 = rankBu and s1 = rankBv, then we will work with the matrices with

these independent columns only, the remaining ones being zero by suitable transformations Tu and

Tv). Thus the matrix Γ = [Γu Γv], where Γu = (bli) and Γv = (b̄l̄i), where 1 ≤ i ≤ m+ s, 1 ≤ l ≤ m
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and 1 ≤ l̄ ≤ s, is invertible. Then we suppose that the controllability indices κi satisfy

κ1 ≥ κ2 ≥ · · · ≥ κm+s ≥ 1.

Note that in the case of the Brunovský form for classical ODECS (with one kind of inputs), we

could use Tw = Γ as an input coordinates transformation matrix. However, ∆uv has two kinds of

inputs and the input coordinates transformation matrix should have a triangular form (see Remark

2.8(ii)). In order to have such an input coordinates transformation matrix, we implement the

following procedure.

Step i = 1: two cases are possible: either for all 1 ≤ j ≤ s, we have b̄j1 = 0 or there exists 1 ≤ j ≤ s

such that b̄j1 6= 0. In the first case, by the invertibility of Γ, there exists 1 ≤ j ≤ m such that bj1 6= 0.

We assume b11 6= 0 (if not, we permute the uj ’s), set `1 = 1, ε1 = κ1, and ¯̀
1 = 0 and define ũ1 = b11u1 + · · ·+ bm1 um

ũj = uj , 2 ≤ j ≤ m
, ṽj = vj , 1 ≤ j ≤ s,

the system becomes (we delete ”tildes” over uj and vj)
ẋji = xj+1

i , 1 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

ẋε11 = u1,

ẋκii = b1iu1 + · · ·+ bmi um + b̄1i v1 + · · ·+ b̄sivs, 2 ≤ i ≤ m+ s.

In the second case, assume b̄11 6= 0 (if not, we permute the vj ’s), set ¯̀
1 = 1, ε̄1 = κ1, and `1 = 0, and

define  ṽ1 = b11u1 + · · ·+ bm1 um + b̄11v1 + · · ·+ b̄m1 vs,

ṽi = vi, 2 ≤ i ≤ s,

and we get  ˙̄xκ1
1 = ṽ1,

ẋκii = b̃1iu1 + · · ·+ b̃mi um + ˜̄b1i ṽ1 + ˜̄b2i ṽ2 + · · ·+ ˜̄bsi ṽs, 2 ≤ i ≤ m+ s.

Set  x̄j1 = xj1, 1 ≤ j ≤ ε̄1,

x̃ji = xji − ˜̄b1ix
κ1−κi+j
1 , 2 ≤ i ≤ m+ s, 1 ≤ j ≤ κi,

to get (we delete ”tildes” over xi, vj , bi and b̄i)
ẋji = xj+1

i , 1 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

˙̄xε̄11 = v1,

ẋκii = b1iu1 + · · ·+ bmi um + 0 + b̄2i v2 + · · ·+ b̄sivs, 2 ≤ i ≤ m+ s.

Step i = k + 1: Assume that after k steps, we have defined `k and εi, for 1 ≤ i ≤ `k, as well as ¯̀
k

and ε̄i for 1 ≤ i ≤ ¯̀
k, such that `k + ¯̀

k = k, and the system reads ( the term “0” is to indicate that

28



v1, . . . , v¯̀
k

are missing)

ẋji = xj+1
i , 1 ≤ i ≤ `k, 1 ≤ j ≤ εi − 1,

ẋεii = ui, 1 ≤ i ≤ `k,
˙̄xji = x̄j+1

i , 1 ≤ i ≤ ¯̀
k, 1 ≤ j ≤ ε̄i − 1,

˙̄xε̄i1 = vi, 1 ≤ i ≤ ¯̀
k,

ẋji = xj+1
i , k + 1 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

ẋκii = b1iu1 + · · ·+ bmi um + 0 + b̄
¯̀
k+1
i v¯̀

k+1 + · · ·+ b̄sivs, k + 1 ≤ i ≤ m+ s.

Then two cases are possible, either for all ¯̀
k + 1 ≤ j ≤ s, we have b̄jk+1 = 0 or there exists

¯̀
k + 1 ≤ j ≤ s such that b̄jk+1 6= 0. In the first case, set `k+1 = `k + 1, ε`k+1

= κk+1, ¯̀
k+1 = ¯̀

k and

set 
ũj = b1k+1u1 + · · ·+ bmk+1um, j = `k+1,

ũj = uj , `k+1 + 1 ≤ j ≤ m,

ṽj = vj , 1 ≤ j ≤ s,

which is well-defined because, by controllability, at least one bjk+1 6= 0, for j > `k. We get (we delete

”tildes” over xi, uj and vj)

ẋji = xj+1
i , 1 ≤ i ≤ `k+1, 1 ≤ j ≤ εi − 1,

ẋεii = ui, 1 ≤ i ≤ `k+1

˙̄xji = x̄j+1
i , 1 ≤ i ≤ ¯̀

k+1 = ¯̀
k, 1 ≤ j ≤ ε̄i − 1,

˙̄xε̄i1 = vi, 1 ≤ i ≤ ¯̀
k+1 = ¯̀

k,

ẋji = xj+1
i , k + 2 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

ẋκii = b1iu1 + · · ·+ bmi um + 0 + b̄
¯̀
k+1
i v¯̀

k+1 + · · ·+ b̄sivs, k + 2 ≤ i ≤ m+ s.

In the second case, assume b̄
¯̀
k+1
k+1 6= 0 (if not, we permute the vj ’s), set ¯̀

k+1 = ¯̀
k + 1, ε̄¯̀

k+1
= κk+1,

and `k+1 = `k, and define ṽj = b1k+1u1 + · · ·+ bmk+1um + b
¯̀
k+1
k+1 v¯̀

k+1 + · · ·+ b̄sk+1vs, j = ¯̀
k+1,

ṽj = vj , j 6= `k+1,

we get  ˙̄x
κk+1

k+1 = ṽ¯̀
k+1

,

ẋκii = b̃1iu1 + · · ·+ b̃mi um + ˜̄b1i ṽ1 + ˜̄b2i ṽ2 + · · ·+ ˜̄bsi ṽs, k + 1 ≤ i ≤ m+ s.

Set  x̃ji = xji − ˜̄b
¯̀
k+1

i x
κk+1−κi+j
k+1 , k + 2 ≤ i ≤ m+ s, 1 ≤ j ≤ κ̄i

x̄ji = xjk+1, i = ¯̀
k+1, 1 ≤ j ≤ ε̄¯̀

k+1
,
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to get (we delete ”tildes” over xi, vj , bi, b̄i)

ẋji = xj+1
i , 1 ≤ i ≤ `k+1 = `k, 1 ≤ j ≤ εi − 1,

ẋεii = ui, 1 ≤ i ≤ `k+1 = `k,

˙̄xji = x̄j+1
i , 1 ≤ i ≤ ¯̀

k+1, 1 ≤ j ≤ ε̄i − 1,

˙̄xε̄i1 = vi, 1 ≤ i ≤ ¯̀
k+1,

ẋji = xj+1
i , k + 2 ≤ i ≤ m+ s, 1 ≤ j ≤ κi − 1,

ẋκii = b1iu1 + · · ·+ bmi um + 0 + b̄
¯̀
k+1+1
i v¯̀

k+1+1 + · · ·+ b̄sivs, k + 2 ≤ i ≤ m+ s.

After m + s steps, we have `m+s = m and ¯̀
m+s = s and we get the Brunovský canonical form of

Λuv with indices (ε1, . . . , εm) and (ε̄1, . . . , ε̄s):

ẋji = xj+1
i , 1 ≤ j ≤ εi − 1, 1 ≤ i ≤ `m+s = m,

ẋεii = ui, 1 ≤ i ≤ `m+s = m,

˙̄xji = x̄j+1
i , 1 ≤ j ≤ ε̄i − 1, 1 ≤ i ≤ ¯̀

m+s = s,

˙̄xε̄i1 = vi, 1 ≤ i ≤ ¯̀
m+s = s.

(ii) The Ann-matrix (corresponding to the uncontrollable and unobservable system) is Ann = Ā2.

(iii) First, we can find a Morse transformation M1
tran with a triangular Tw such that

M1
tran

(
Ā3 B̄u3 B̄v3
C̄3 D̄u3

)
=

(
Ap Bup 0 Bvp
Cp 0 0
0 0 Iδ

)
.

Since (Ā3, B̄
w
3 , C̄3, D̄

w
3 ) is prime, by Theorem 10 of [27], (Ap, B

w
p , Cp) enjoys the properties:

V∗(Ap, Bwp , Cp) = 0, U∗w(Ap, B
w
p , Cp) = 0. (39)

W∗(Ap, Bwp , Cp) = Rn3 , Y∗(Ap, Bwp , Cp) = Y . (40)

A little thought (or see Lemma 2 of [27]) and equation (39) give that
[
Ap B

w
p

Cp 0

]
is of full column315

rank. Then by V∗(Ap, Bwp , Cp) = (W∗((Ap)T , (Cp)T , (Bwp )T ))⊥ (see also the results of (50) below)

and equation (40), we have
[
Ap B

w
p

Cp 0

]
is of full row rank. Thus

[
Ap B

w
p

Cp 0

]
is square and invertible.

Moreover, by item (i) of this proof, there exists a Morse transformation M2
tran with triangular

Tw such that the pairs (Âpu, B̂pu) and (Apv, Bpv) below are in the Brunovský form with indices

(σ1, . . . , σc) and (σ̄1, . . . , σ̄d), respectively

M2
tran

(
Ap Bup Bvp
Cp 0

)
=

(
Âpu 0 B̂pu 0

0 Apv 0 Bpv

Ĉu Cv 0

)
.

Then, according to the block-diagonal structure of Âpu and Apv, the matrices Ĉu and Cv above

have the form:

Ĉu =
[
Ĉu1 Ĉu2 · · · Ĉuc

]
, Cv =

[
Cv1 Cv2 · · · Cvd

]
,

where Ĉui ∈ Rp3×σi , 1 ≤ i ≤ c and Cvi ∈ Rp3×σ̄i , 1 ≤ i ≤ d.

Now the diagonal submatrices (Âpui , B̂
pu
i , Ĉui ) of (Âpu, B̂pu, Ĉu), for 1 ≤ i ≤ c, and (Apvi , B

pv
i , C

v
i )

of (Apv, Bpv, Cv), for 1 ≤ i ≤ d, have to satisfy

W∗(Âpui , B̂
pu
i , Ĉui ) = Rσi , W∗(Apvi , B

pv
i , C

v
i ) = Rσ̄i , (41)

since if not, equation (40) does not hold.
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By a direct calculation, we have W1(Âpui , B̂
pu
i , Ĉui ) = Im B̂pui and W1(Apvi , B

pv
i , C

v
i ) = ImBpvi .

Then the subspacesW2(Âpui , B̂
pu
i , Ĉui , 0) andW2(Apvi , B

pv
i , C

v
i , 0) coincide with Im B̂pui and ImBpvi ,

respectively, unless the last columns of Ĉui and Cvi are zero vectors. By similar arguments, we can

deduce that Ĉui , 1 ≤ i ≤ c and Cvi , 1 ≤ i ≤ d have the following form:

Ĉui =
[
ĉui 0 · · · 0

]
, Cvi =

[
cvi 0 · · · 0

]
,

where ĉui ∈ Rp3 and cvi ∈ Rp3 . Furthermore, since the columns of Âpui and Apvi corresponding to ĉui

and cvi are all zero, so by the inveritibility of
[
Ap B

w
p

Cp 0

]
, we see that the following matrix

T−1
y =

[
ĉu1 ĉu2 . . . ĉuc cv1 cv2 . . . cvd

]
is invertible. Finally, using Ty as an output coordinates transformation matrix, we get the following

canonical form for Cp

TyCp = Ty

[
Ĉu Cv

]
=

Ĉpu 0

0 Cpv

 .
(iv) The proof of transforming (Ā4

4, C̄
4
2 ) into (Ao, Co) is omitted since it is well-known in the320

linear control theory.

7. Conclusion

In this paper, on one hand, for linear ODECSs, we modify and simplify the construction of the

MCF given in [27] by proposing the Morse triangular form MTF. On the other hand, a bridge from

the MTF of ODECSs to the FBCF of DACSs is constructed via the explicitation with driving325

variables procedure. It is shown that, after attaching a class of ODECSs with two kinds of inputs to

a DACS, we can find connections between their geometric subspaces and canonical forms. Finally,

an explicit algorithm for constructing transformations from the MTF into the FBCF is proposed

via the explicitation procedure and an example is given to show how our results and algorithms can

be applied to physical systems.330

Appendix

Recall the following geometric subspaces for DACSs (see e.g. [30],[7]) of the form ∆u : Eẋ =

Hx+ Lu.

Definition 7.1. Consider a DACS ∆u
l,n,m = (E,H,L). A subspace V ⊆ Rn is called (H,E; ImL)-

invariant if

HV ⊆ EV + ImL.

A subspace W ⊆ Rn is called restricted (E,H; ImL)-invariant if

W =E−1(HV + ImL).
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Definition 7.2. For a DACS ∆u
l,n,m = (E,H,L), define the augmented Wong sequences as follows:

V0 = Rn, Vi+1 = H−1(EVi + ImL), (42)

W0 = 0, Wi+1 = E−1(HWi + ImL). (43)

Additionally, define the sequence of subspaces Ŵi as follows:

Ŵ1 = kerE, Ŵi+1 = E−1(HŴi + ImL). (44)

Consider an ODECS Λuvn,m,s,p = (A,Bu, Bv, C,D) of the form

Λuv :

 ẋ = Ax+Buu+Bvv

y = Cx+Duu.

The state, input and output space of Λuv will be denoted by X , Uuv and Y , respectively. The input

subspaces of u and v will be denoted by Uu and Uv, respectively. Thus we have Uuv = Uu ⊕ Uv.335

Recall that Λuv can be expressed as a classical ODECS Λwn,m+s,p = (A,Bw, C,Dw) of the form (2).

The input space of Λw is denoted by Uw, and, clearly, Uw = Uuv = Uu ⊕ Uv. We now recall the

invariant subspaces V and W defined in [26] and [27] for Λw (generalizing the classical invariant

subspaces [2, 35, 36] given for Du = 0).

Definition 7.3. For an ODECS Λwn,m+s,p = (A,Bw, C,Dw), a subspace V ⊆ Rn is called a null-

output (A,Bw)-controlled invariant subspace if there exists F ∈ R(m+s)×n such that

(A+BwF )V ⊆ V and (C +DwF )V = 0

and a subspace Uw ⊆ Rs+m is called a null-output (A,Bw)-controlled invariant input subspace if

Uw = (Bw)−1V ∩ kerDw.

Denote by V∗ (respectively U∗w) the largest null-output (A,Bw) controlled invariant subspace (re-340

spectively input subspace).

Correspondingly, a subspace W ⊆ Rn is called an unknown-input (C,A)-conditioned invariant

subspace if there exists K ∈ Rn×p such that

(A+KC)W + (Bw +KDw)Uw =W

and a subspace Y ⊆ Rp is called an unknown-input (C,A)-conditioned invariant output subspace if

Y = CW +DwUw.

Denote by W∗ (respectively Y∗) the smallest unknown-input (C,A)-conditioned invariant subspace

(respectively output subspace).

Lemma 7.4. [26] Initialize V0 = X = Rn and, for i ∈ N, define inductively

Vi+1 = [AC ]
−1 (

[ I0 ]Vi + Im
[
Bw

Dw
])

(45)

and Ui ⊆ U for i ∈ N are given by

Ui =
[
Bw

Dw
]−1 [ Vi

0

]
. (46)
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Then V∗ = Vn and U∗w = Un.

Correspondingly, initialize W0 = {0} and, for i ∈ N, define inductively

Wi+1 = [A Bw ]
([Wi

Uw

]
∩ ker [C Dw ]

)
(47)

and Yi ⊆ Y for i ∈ N are given by

Yi = [C Dw ]
[Wi

Uw

]
. (48)

Additionally, define a sequence Ŵi of subspaces as

Ŵ1 = ImBv, Ŵi+1 = [A Bw ]
([
Ŵi

Uw

]
∩ ker [C Dw ]

)
. (49)

Then W∗ =Wn = Ŵn and Y∗ = Yn.345

Note that when considering the above defined invariant subspaces for the dual system (Λw)d of

Λw, given by (Λw)d = (AT , CT , (Bw)T , (Dw)T ), we have the following results [28],[27]:

V∗(Λw) =
(
W∗((Λw)d)

)⊥
, W∗(Λw) =

(
V∗((Λw)d)

)⊥
,

U∗w(Λw) =
(
Y∗((Λw)d)

)⊥
, Y∗(Λw) =

(
U∗w((Λw)d)

)⊥
.

(50)
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