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GEOMETRIC ANALYSIS OF DIFFERENTIAL-ALGEBRAIC
EQUATIONS VIA LINEAR CONTROL THEORY\ast 

YAHAO CHEN\dagger AND WITOLD RESPONDEK\ddagger 

Abstract. We consider linear differential-algebraic equations (DAEs) of the form E \.x = Hx and
the Kronecker canonical form (KCF) [L. Kronecker, Sitzungsberichte der K\"oniglich Preu{\ss}ischen
Akademie der Wissenschaften zu Berlin, 1890, pp. 1225--1237] of the corresponding matrix pencils
sE - H. We also consider linear control systems and their Morse canonical form (MCF) [A. Morse,
SIAM J. Control, 11 (1973), pp. 446--465; B. P. Molinari, Internat. J. Control, 28 (1978), pp. 493--
510]. For a linear DAE, a procedure called explicitation is proposed, which attaches to any linear
DAE a linear control system defined up to a coordinates change, a feedback transformation, and an
output injection. Then we compare subspaces associated to a DAE in a geometric way with those
associated (also in a geometric way) to a control system, namely, we compare the Wong sequences
of DAEs and invariant subspaces of control systems. We prove that the KCF of linear DAEs and
the MCF of control systems have a perfect correspondence and that their invariants are related. In
this way, we connect the geometric analysis of linear DAEs with the classical geometric linear control
theory. Finally, we propose a concept called internal equivalence for DAEs and discuss its relation
with internal regularity, i.e., the existence and uniqueness of solutions.
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Kronecker canonical form, Morse canonical form, invariant subspaces
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1. Introduction. Consider a linear differential-algebraic equation (DAE) of the
form

\Delta : E \.x = Hx,(1.1)

where x \in X \sim = \BbbR n is called the ``generalized"" state, E \in \BbbR l\times n, and H \in \BbbR l\times n.
Throughout, a linear DAE of the form (1.1) will be denoted by \Delta l,n = (E,H) or,
briefly, \Delta , and the corresponding matrix pencil of \Delta by sE - H, which is a polynomial
matrix of degree one. A DAE \Delta or a matrix pencil sE  - H is called regular if l = n
and | sE  - H| \not \equiv 0.

Terminologies such as ``singular,"" ``implicit,"" and ``generalized"" are frequently
used to describe a DAE due to its difference from an ordinary differential equation
(ODE). Since the structure of DAE \Delta is totally determined by the corresponding
matrix pencil sE - H, it is useful to find a simplified form (a normal form or canonical
form) for sE - H. Under predefined equivalence (see ex-equivalence of Definition 2.1),
canonical forms such as the Weierstrass form (WCF) [25] for regular matrix pencils
and the Kronecker canonical form [11] (for details see KCF in the appendix and [8])
for more general matrix pencils have been proposed. Geometric analysis of linear
and nonlinear DAEs can be found in [12, 13, 14, 16, 17, 21, 22, 23]. We highlight an
important concept called the Wong sequences (Vi and Wi of Definition 4.1) for linear
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104 YAHAO CHEN AND WITOLD RESPONDEK

DAEs, which were first introduced in [26]. Connections between the Wong sequences
with the WCF and the KCF have been recently established in, respectively, [4] and
[6, 7]. In particular, invariant properties for the limits of the Wong sequences (V \ast 

and W \ast in Definition 4.3) were used to obtain a triangular quasi-Kronecker form in
[6, 7]. Moreover, the authors of [6, 7] show that some of the Kronecker indices can
be calculated via the Wong sequences and the remaining ones can be derived from a
modified version of the Wong sequences.

On the other hand, consider a linear time-invariant control system of the following
form:

\Lambda :

\biggl\{ 
\.z = Az +Bu,
y = Cz +Du,

(1.2)

where z \in Z = \BbbR q is the system state, u \in U = \BbbR m represents the input, and
y \in Y = \BbbR p is the output. System matrices A,B,C,D above are constant and of
appropriate sizes. We also consider the prolongation of \Lambda of the following form:

\Lambda :

\left\{   \.z = Az +Bu,
\.u = v,
y = Cz +Du,

\leftrightarrow 
\biggl\{ 

\.z = Az+Bv,
y = Cz,

(1.3)

where

z =

\biggl[ 
z
u

\biggr] 
, A =

\biggl[ 
A B
0 0

\biggr] 
, B =

\biggl[ 
0
Im

\biggr] 
, C =

\bigl[ 
C D

\bigr] 
.

Denote a control system of the form (1.2) by \Lambda q,m,p = (A,B,C,D) or, simply, \Lambda 
and denote the prolonged system (1.3) by \Lambda n,m,p = (A,B,C), or briefly \Lambda , where
n = q + m. Notice that there is a one-to-one correspondence between \scrC \infty -solutions
of (1.2) and (1.3) (or a one-to-one correspondence between \scrC 1-solutions (z(t), u(t)) of
(1.2) and \scrC 1-solutions z(t), given by \scrC 0-controls v(t), of (1.3)). Any control system can
be brought (see [20],[19]) into its Morse canonical form (for details, see the MCF in
the appendix) under the action of a group of transformations consisting of coordinates
changes, feedback transformations, and output injections. The MCF consists of four
decoupled subsystems MCF 1, MCF 2, MCF 3, MCF 4, to which there correspond
four sets of structure invariants (the Morse indices \varepsilon \prime i, \rho 

\prime 
i, \sigma 

\prime 
i, \eta 

\prime 
i in the MCF).

The first aim of the paper is to find a way to relate linear DAEs with linear control
systems and find their geometric connections. In fact, we will show in the next section
that to any linear DAE, we can attach a class of linear control systems defined up
to a coordinates change, a feedback transformation, and an output injection. The
second purpose of the paper is to distinguish two kinds of equivalences in linear
DAEs theory, namely, internal equivalence and external equivalence. We will give
the formal definition of external equivalence in Definition 2.1. Actually, the external
equivalence (also called strict equivalence in [8]) is widely considered in the linear
DAEs literature. For example, the KCF of a DAE is actually a canonical form under
external equivalence, which is simply defined by all linear nonsingular transformations
in the whole ``generalized"" state space of the DAE. However, since solutions of a
DAE exist only on a constrained (invariant) subspace, sometimes we only need to
perform the analysis on that constrained subspace. This point of view motivates us
to introduce the notion of internal equivalence and to find normal forms not on the
whole space but only on that constrained subspace.

The paper is organized as follows. In section 2, we introduce the notation, define
the external equivalence of two DAEs, and define the Morse equivalence of two control
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systems. In section 3, we explain how to associate to any DAE a class of control
systems. In section 4, we describe geometric relations of DAEs and the attached
control systems. In section 5, we show that there exists a perfect correspondence
between the KCF and the MCF and that their invariants have direct relations.
In section 6, we introduce the notion of internal equivalence for DAEs and then
discuss the internal regularity. Section 7 contains the proofs of our results and section
8 contains the conclusions of this paper. Finally, in the appendix we recall two
basic canonical forms: the Kronecker canonical form KCF for DAEs and the Morse
canonical form MCF for control systems.

2. Preliminaries. We use the following notation in the present paper:

\BbbN the set of natural numbers with zero and \BbbN + = \BbbN \setminus \{ 0\} 
\BbbC the set of complex numbers
\BbbR n\times m the set of real valued matrices with n rows and m columns
\BbbR [s] the polynomial ring over \BbbR with indeterminate s
Gl (n,\BbbR ) the group of nonsigular matrices of \BbbR n\times n

rankA the rank of a linear map A
rank \BbbR [s](sE  - H) the rank of a polynomial matrix sE  - H over \BbbR [s]
kerA the kernal of a linear map A
dim A the dimension of a linear space A
ImA the image of a linear map A
A /B the quotient of a vector space A by a subspace B \subseteq A
In the identity matrix of size n\times n for n \in \BbbN +

0n\times m the zero matrix of size n\times m for n,m \in \BbbN +

AT the transpose of a matrix A
A - 1 the inverse of a matrix A
AB \{ Ax | x \in B\} , the image of B under a linear map A
A - 1B \{ x | Ax \in B\} , the preimage of B under a linear map A
A - TB (AT ) - 1B
A \bot \{ x \in \BbbR n | \forall a \in A : xTa=0\} , the orthogonal complement of

a subspace A \subseteq \BbbR n

Consider a DAE \Delta l,n = (E,H), given by (1.1), denoted briefly by \Delta , and the
corresponding matrix pencil sE  - H. A solution, or trajectory, x(t) of \Delta is any \scrC 1-
differentiable map x : \BbbR \rightarrow X satisfying E \.x(t) = Hx(t). A trajectory starting from
a point x(0) = x0 is denoted by x(t, x0).

Definition 2.1 (external equivalence). Two DAEs \Delta l,n = (E,H) and \~\Delta l,n =

( \~E, \~H) are called externally equivalent, briefly, ex-equivalent, if there exist Q \in Gl(l,\BbbR )
and P \in Gl(n,\BbbR ) such that

\~E = QEP - 1 and \~H = QHP - 1.

We denote ex-equivalence of two DAEs as \Delta 
ex\sim \~\Delta and ex-equivalence of the two cor-

responding matrix pencils as sE  - H
ex\sim s \~E  - \~H.

If the ``generalized"" states of \Delta and \~\Delta are x and \~x, respectively, then \~x = Px
is, clearly, just a coordinate transformation. The following remark points out the
relation of the ex-equivalence and solutions of DAEs.

Remark 2.2. Ex-equivalence preserves trajectories; more precisely, if \Delta 
ex\sim \~\Delta via

(Q,P ), then any trajectory x(t) of \Delta satisfying x(0) = x0 is mapped via P into a
trajectory \~x(t) of \~\Delta passing through \~x0 = Px0. Moreover, if x(t) is a trajectory
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106 YAHAO CHEN AND WITOLD RESPONDEK

of \Delta , then E \.x(t)  - Hx(t) = 0 and obviously Q(E \.x(t)  - Hx(t)) = 0, implying that
x(t) is also a trajectory of QE \.x = QHx. The converse, however, is not true: even
if two DAEs have the same trajectories, they are not necessarily ex-equivalent, since
the trajectories of DAEs are contained in a subspace M \ast \subseteq \BbbR n (see Definition 6.1 of
section 6).

Definition 2.3 (Morse equivalence and Morse transformation). Two linear con-
trol systems \Lambda q,m,p = (A,B,C,D) and \~\Lambda q,m,p = ( \~A, \~B, \~C, \~D) are called Morse equiv-

alent, briefly, M-equivalent, denoted by \Lambda 
M\sim \~\Lambda , if there exist Ts \in Gl(q,\BbbR ), Ti \in 

Gl(m,\BbbR ), To \in Gl(p,\BbbR ), F \in \BbbR m\times q, K \in \BbbR q\times p such that\biggl[ 
\~A \~B
\~C \~D

\biggr] 
=

\biggl[ 
Ts TsK
0 To

\biggr] \biggl[ 
A B
C D

\biggr] \biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
.(2.1)

Any 5-tuple Mtran = (Ts, Ti, To, F,K) is called a Morse transformation.

If we consider two control systems without outputs, denoted by \Lambda q,m = (A,B)

and \~\Lambda q,m = ( \~A, \~B), then the Morse equivalence reduces to the feedback equivalence,

i.e., the corresponding system matrices satisfy \~A = Ts(A+BF )T - 1
s and \~B = TsBT - 1

i .

3. Implicitation of linear control systems and explicitation of linear
DAEs. It is easy to see that if for a linear control system \Lambda , given by (1.2), we
require the output y = Cz+Du to be identically zero, then \Lambda can be seen as a DAE.
We call such an output zeroing procedure the implicitation of a control system, which
can be formalized as follows.

Definition 3.1 (implicitation). For a linear control system \Lambda q,m,p=(A,B,C,D)
on Z = \BbbR q with inputs in U = \BbbR m and outputs in Y = \BbbR p, by setting the output y
of \Lambda to be zero, that is,

Impl(\Lambda ) :

\biggl\{ 
\.z = Az +Bu,
0 = Cz +Du,

we define the following DAE \Delta Impl with ``generalized"" states (z, u) \in \BbbR q+m:

\Delta Impl :

\biggl[ 
Iq 0
0 0

\biggr] \biggl[ 
\.z
\.u

\biggr] 
=

\biggl[ 
A B
C D

\biggr] \biggl[ 
z
u

\biggr] 
.(3.1)

We call the procedure of output zeroing above the implicitation procedure, and the DAE
given by ( 3.1) will be called the implicitation of \Lambda and denoted by \Delta Impl

q+p,q+m = Impl(\Lambda )

or, briefly, \Delta Impl = Impl(\Lambda ).

The converse procedure, of associating a control system to a given DAE, is less
straightforward, since the variables are expressed implicitly in DAEs. Below we show
a way to attach a class of control systems to any given DAE.

\bullet Consider a DAE \Delta l,n = (E,H), given by (1.1). Denote rankE = q, and
define p = l  - q and m = n - q. Choose a map

P =

\biggl[ 
P1

P2

\biggr] 
\in Gl(n,\BbbR ),

where P1 \in \BbbR q\times n, P2 \in \BbbR m\times n such that kerP1 = kerE.
\bullet Define coordinates transformation\biggl[ 

z
u

\biggr] 
=

\biggl[ 
P1x
P2x

\biggr] 
=

\biggl[ 
P1

P2

\biggr] 
x = Px.
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Then from kerP1 = kerE, we have EP - 1 =
\bigl[ 
E0 0

\bigr] 
, where E0 \in \BbbR l\times q.

Moreover, since P is invertible, it follows that rankE0 = rankE = q. Thus
via P , \Delta is ex-equivalent to\bigl[ 

E0 0
\bigr] \biggl[ \.z

\.u

\biggr] 
= H0

\biggl[ 
z
u

\biggr] 
,

where H0 = HP - 1. The variables z are states (dynamical variables, their
derivatives \.z are present) and u are controls (enter statically into the system).

\bullet Since rankE0 = q, there exists Q0 \in Gl(l,\BbbR ) such that Q0E0 = [E
1
0
0
], where

E1
0 \in Gl(q,\BbbR ). Thus via (Q0, P ), \Delta is ex-equivalent to\biggl[ 

E1
0 0
0 0

\biggr] \biggl[ 
\.z
\.u

\biggr] 
=

\biggl[ 
A0 B0

C0 D0

\biggr] \biggl[ 
z
u

\biggr] 
,

where Q0H0 = [A0 B0

C0 D0
], A0 \in \BbbR q\times q, B0 \in \BbbR q\times m, C0 \in \BbbR p\times q, D0 \in \BbbR p\times m.

\bullet Finally, via Q1 = [ (E
1
0)

 - 1 0
0 Ip

], we bring the above DAE into\biggl[ 
Iq 0
0 0

\biggr] \biggl[ 
\.z
\.u

\biggr] 
=

\biggl[ 
A B
C D

\biggr] \biggl[ 
z
u

\biggr] 
,(3.2)

where A = (E1
0)

 - 1A0, B = (E1
0)

 - 1B0, C = C0, D = D0.
\bullet Therefore, the DAE \Delta is ex-equivalent (via P and Q = Q1Q0) to (3.2) and
the latter is the control system

\Lambda :

\biggl\{ 
\.z= Az +Bu,
y= Cz +Du,

together with the constraint y = 0, that is, \Delta 
ex\sim \Delta Impl = Impl(\Lambda ).

Let us give a few comments on the above construction:
(i) The map P = [ P1

P2
] defines state variables z = P1x as coordinates on the state

space Z = \BbbR n/ kerE isomorphic to \BbbR q and control variables u = P2x as coordinates
on U \sim = kerE \sim = \BbbR m. The output variables y are coordinates on Y \sim = \BbbR l/ImE \sim = \BbbR p

and define the output map via y = Cz +Du.
(ii) Choose other coordinates (z\prime , u\prime ) given by z\prime = P \prime 

1x and u\prime = P \prime 
2x such that

kerP \prime 
1 = kerE = kerP1; then \biggl\{ 

z\prime = Tsz,
u\prime = F \prime z + Tiu,

(3.3)

where Ts \in Gl(q,\BbbR ) and F \prime \in \BbbR m\times q, Ti \in Gl(m,\BbbR ). Clearly, z\prime = Tsz is another set
of coordinates on the state space \BbbR n/ kerE and u\prime = F \prime z + Tiu is a state feedback
transformation.

(iii) The output y takes values in the quotient space \BbbR l/ImE. Since y = Cz +
Du = 0, we can add y to the dynamics without changing solutions of the system on
the subspace \{ y = 0\} . Together with a state transformation z\prime = Tsz and an output
transformation y\prime = Toy, it results in a triangular transformation (output injection)
of the system \biggl[ 

\.z\prime 

y\prime 

\biggr] 
=

\biggl[ 
Ts K \prime 

0 To

\biggr] \biggl[ 
\.z
y

\biggr] 
=

\biggl[ 
Ts K \prime 

0 To

\biggr] \biggl[ 
A B
C D

\biggr] \biggl[ 
z
u

\biggr] 
,(3.4)

where K \prime \in \BbbR q\times p, To \in Gl(p,\BbbR ).
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108 YAHAO CHEN AND WITOLD RESPONDEK

Definition 3.2 (explicitation). Given a DAE \Delta l,n = (E,H), there always exist
Q \in Gl(l,\BbbR ) and P \in Gl(n,\BbbR ) such that QEP - 1 = [ Iq 0

0 0
]. The control system

\Lambda , given by \Lambda q,m,p = (A,B,C,D), where QHP - 1 = [A B
C D ], is called the (Q,P )-

explicitation of \Delta . The class of all (Q,P )-explicitations, corresponding to all Q \in 
Gl(l,\BbbR ) and P \in Gl(n,\BbbR ), will be called the explicitation class of \Delta and denoted by
Expl(\Delta ). If a particular control system \Lambda belongs to the explicitation class Expl(\Delta )
of \Delta , we will write \Lambda \in Expl(\Delta ).

Remark 3.3. The implicitation Impl(\Lambda ) of a given control system \Lambda is a unique
DAE \Delta Impl, given by (3.1). The explicitation Expl(\Delta ) of a given DAE \Delta is, however,
a control system defined up to a coordinates change, a feedback transformation, and
an output injection, that is, a class of control systems.

Theorem 3.4. (i) Consider a DAE \Delta = (E,H) and a control system \Lambda =

(A,B,C,D). Then \Lambda \in Expl(\Delta ) if and only if \Delta 
ex\sim \Delta Impl, where \Delta Impl = Impl(\Lambda ).

More precisely, \Lambda is the (Q,P )-explicitation of \Delta if and only if \Delta 
ex\sim \Delta Impl via (Q,P ).

(ii) Given two DAEs \Delta = (E,H) and \~\Delta = ( \~E, \~H), choose two control systems

\Lambda \in Expl(\Delta ) and \~\Lambda \in Expl( \~\Delta ). Then \Delta 
ex\sim \~\Delta if and only if \Lambda 

M\sim \~\Lambda .
(iii) Consider two control systems \Lambda = (A,B,C,D) and \~\Lambda = ( \~A, \~B, \~C, \~D). Then

\Lambda 
M\sim \~\Lambda if and only if \Delta Impl ex\sim \~\Delta Impl, where \Delta Impl = Impl(\Lambda ) and \~\Delta Impl = Impl(\~\Lambda ).

The proof is given in section 7.1.

Remark 3.5. Theorem 3.4 describes relations of DAEs and control systems, which
we illustrate in Figure 1. We conclude that Morse equivalent control systems (and
only such) give, via implicitation, ex-equivalent DAEs. Furthermore, explicitation is
a universal procedure of producing control systems from a DAE and ex-equivalent
DAEs produce Morse equivalent control systems.

\Delta 

\Lambda \in Expl(\Delta )

\~\Delta 

\Delta Impl = Impl(\Lambda )

Ex-equivalence \~\Lambda \in Expl( \~\Delta ) Ex-equivalence

\~\Delta Impl = Impl(\~\Lambda )

Explicitation

Ex-equivalence

Explicitation

Morse equivalence

Implicitation

Ex-equivalence

Implicitation

Fig. 1. Explicitation of DAEs and implicitation of control systems.

4. Geometric connections between DAEs and control systems. The
Wong sequences [26] of a DAE are defined as follows.

Definition 4.1. For a DAE \Delta l,n = (E,H), its Wong sequences are defined by

V0 = \BbbR n, Vi+1 = H - 1EVi, i \in \BbbN ,(4.1)

W0 = \{ 0\} , Wi+1 = E - 1HWi, i \in \BbbN .(4.2)
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Remark 4.2. The Wong sequences Vi and Wi satisfy

V0 \supsetneq V1 \supsetneq \cdot \cdot \cdot \supsetneq Vk\ast = Vk\ast +j = V \ast = H - 1EV \ast \supseteq kerH, j \in \BbbN ,
W0 \subseteq kerE = W1 \subsetneq \cdot \cdot \cdot \subsetneq Wl\ast = Wl\ast +j = W \ast = E - 1HW \ast , j \in \BbbN .(4.3)

Definition 4.3. For a DAE \Delta l,n = (E,H), define V \ast as the largest subspace
of \BbbR n such that V \ast = H - 1EV \ast and W \ast as the smallest subspace of \BbbR n such that
W \ast = E - 1HW \ast .

Using the same symbols V \ast and W \ast as those for the limits of Wong sequences
(see Remark 4.2) is justified by the following.

Proposition 4.4. (i) For a DAE \Delta l,n = (E,H), the subspaces V \ast and W \ast ,
given by Definition 4.3, exist and are given, respectively, by

V \ast = Vk\ast and W \ast = Wl\ast ,

where k\ast is the smallest integer such that Vk\ast = Vk\ast +1 and l\ast is the smallest integer
such that Wl\ast = Wl\ast +1.

(ii) V \ast is also the largest subspace such that HV \ast \subseteq EV \ast ; however, W \ast is not
necessarily the smallest subspace such that EW \ast \subseteq HW \ast .

The proof is given in section 7.2. We now review the notions of invariant subspaces
in linear control theory. We consider two cases depending on whether the control
system is strictly proper or not (D is zero or not). We will use bold notation for the
strictly proper case D = 0, since throughout it applies to the prolongation system
(1.3), which we denote by bold symbols.

Definition 4.5. For a control system \Lambda n,m,p = (A,B,C), a subspace \bfscrV \subseteq \BbbR n

is called an (A,B)-controlled invariant subspace if \bfscrV satisfies

A\bfscrV \subseteq \bfscrV + ImB

and a subspace \bfscrW \subseteq \BbbR n is called a (C,A)-conditioned invariant subspace if \bfscrW 
satisfies

A(\bfscrW \cap kerC) \subseteq \bfscrW .

Denote by \bfscrV \ast the largest (A,B)-controlled invariant subspace contained in kerC and
by \bfscrW \ast the smallest (C,A)-conditioned invariant subspace containing ImB.

The following fundamental lemma shows that \bfscrV \ast , \bfscrW \ast exist and they can be
calculated via the sequences of subspaces \bfscrV i, \bfscrW i given below.

Lemma 4.6 (see [27], [1]). Initialize \bfscrV 0 = \BbbR n and, for i \in \BbbN , define inductively

\bfscrV i+1 = kerC \cap A - 1(\bfscrV i + ImB).(4.4)

Initialize \bfscrW 0 = 0 and, for i \in \BbbN , define inductively

\bfscrW i+1 = A(\bfscrW i \cap kerC) + ImB.(4.5)

Then there exist k\ast \leq n and l\ast \leq n such that

\bfscrV 0 \supseteq kerC = \bfscrV 1 \supsetneq \cdot \cdot \cdot \supsetneq \bfscrV \bfk \ast = \bfscrV \bfk \ast +j = \bfscrV \ast = kerC \cap A - 1(\bfscrV \ast + ImB), j \in \BbbN ,
\bfscrW 0 \subseteq ImB=\bfscrW 1 \subsetneq \cdot \cdot \cdot \subsetneq \bfscrW \bfl \ast = \bfscrW \bfl \ast +j = \bfscrW \ast = A(\bfscrW \ast \cap kerC) + ImB, j \in \BbbN .
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110 YAHAO CHEN AND WITOLD RESPONDEK

Note that k\ast and l\ast of Lemma 4.6 and k\ast and l\ast of Remark 4.2 are, in general,
not the same (except for some cases described later (see Theorem 4.10) in which they
coincide). It is well-known (see, e.g., [28], [27], [1]) that \bfscrV is an (A,B)-controlled
invariant subspace if and only if there exists F \in \BbbR m\times n such that (A+BF)\bfscrV \subseteq \bfscrV and
\bfscrW is a (C,A)-conditioned invariant subspace if and only if there exists K \in \BbbR n\times p

such that (A + KC)\bfscrW \subseteq \bfscrW . For a control system which is not strictly proper
(D is not zero), following Definitions 1--4 of [19], we use a generalization of that
characterization of invariant subspaces.

Definition 4.7. For \Lambda q,m,p = (A,B,C,D), a subspace \scrV \subseteq \BbbR q is called a null-
output (A,B)-controlled invariant subspace if there exists F \in \BbbR m\times q such that

(A+BF )\scrV \subseteq \scrV and (C +DF )\scrV = 0,

and for any such \scrV , the subspace \scrU \subseteq \BbbR m given by

\scrU = (B - 1\scrV ) \cap kerD

is called a null-output (A,B)-controlled invariant input subspace. Denote by \scrV \ast (resp.
\scrU \ast ) the largest null-output (A,B)-controlled invariant subspace (resp., input sub-
space).

A subspace \scrW \subseteq \BbbR q is called an unknown-input (C,A)-conditioned invariant sub-
space if there exists K \in \BbbR q\times p such that

(A+KC)\scrW + (B +KD)U = \scrW ,

and for any such \scrW , the subspace \scrY \subseteq \BbbR p given by

\scrY = C\scrW +DU ,

where U = \BbbR m, is called an unknown-input (C,A)-conditioned invariant output sub-
space. Denote by \scrW \ast (resp., \scrY \ast ) the smallest unknown-input (C,A)-conditioned in-
variant subspace (resp., output subspace).

The following lemma shows that \scrV \ast , \scrU \ast , \scrW \ast , \scrY \ast exist and provides a calculable
algorithm to find them.

Lemma 4.8 (see [18]). Initialize \scrV 0 = \BbbR q, and for i \in \BbbN , define inductively

\scrV i+1 =

\biggl[ 
A
C

\biggr]  - 1\biggl( \biggl[ 
I
0

\biggr] 
\scrV i + Im

\biggl[ 
B
D

\biggr] \biggr) 
(4.6)

and \scrU i \subseteq U , where U = \BbbR m, for i \in \BbbN are given by

\scrU i =

\biggl[ 
B
D

\biggr]  - 1 \biggl[ \scrV i

0

\biggr] 
.(4.7)

Then \scrV \ast = \scrV q and \scrU \ast = \scrU q.
Initialize \scrW 0 = \{ 0\} , and for i \in \BbbN , define inductively

\scrW i+1 =
\bigl[ 
A B

\bigr] \biggl( \biggl[ \scrW i

U

\biggr] 
\cap ker

\bigl[ 
C D

\bigr] \biggr) 
(4.8)

and \scrY i \subseteq Y , where Y = \BbbR p, for i \in \BbbN are given by

\scrY i =
\bigl[ 
C D

\bigr] \biggl[ \scrW i

U

\biggr] 
.(4.9)

Then \scrW \ast = \scrW q and \scrY \ast = \scrY q.

Remark 4.9. (i) Lemma 4.8 generalizes the results of Lemma 4.6 and, if D = 0,
Lemma 4.8 reduces to Lemma 4.6. Note that if D is invertible, then \scrV \ast = \scrV i = \BbbR q

and \scrW \ast = \scrW i = 0 for all i \geq 0.
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(ii) Even if \Lambda is not strictly proper (if D \not = 0), the prolonged system \Lambda always is
and thus throughout we will use \scrV \ast , \scrU \ast , \scrW \ast , and \scrY \ast for \Lambda , and \bfscrV \ast and \bfscrW \ast for \Lambda .

Throughout the paper, for ease of notation, we will write Vi(\Delta ) to indicate that
Vi is calculated for \Delta , similarly for \scrV i(\Lambda ), \bfscrV i(\Lambda ), and all other subspaces.

Theorem 4.10 (geometric subspaces relations). Given a DAE \Delta l,n=(E,H), a
(Q,P )-explicitation \Lambda =(A,B,C,D) \in Expl(\Delta ), and the prolongation \Lambda =(A,B,C)
of \Lambda , consider the limits of the Wong sequences V \ast and W \ast of \Delta and of \Delta Impl =
Impl(\Lambda ), given by Definition 4.3, the invariant subspaces \scrV \ast and \scrW \ast of \Lambda , given by
Definition 4.7, and the invariant subspaces \bfscrV \ast and \bfscrW \ast of \Lambda , given by Definition 4.5.
Then the following holds:

(i) PV \ast (\Delta ) = V \ast (\Delta Impl) = \bfscrV \ast (\Lambda ) =

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ \scrV \ast (\Lambda )
0

\biggr] 
,

(ii) PW \ast (\Delta ) = W \ast (\Delta Impl) = \bfscrW \ast (\Lambda ) =

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW \ast (\Lambda )
0

\biggr] 
.

The proof is given in section 7.3.

Remark 4.11. The limits V \ast and W \ast of the Wong sequences coincide for \Delta and \~\Delta 
that are ex-equivalent via (P,Q), where P = In and Q is arbitrary, and do not depend
on Q. On the other hand, the system \Lambda , being a (Q,P )-explicitation of \Delta , depends
on both P and Q (and so does its prolongation \Lambda ) but the invariant subspaces \scrV \ast (\Lambda )
and \scrW \ast (\Lambda ) depend on P only.

5. Relations between the Kronecker invariants and the Morse invari-
ants. In this section, we discuss relations of the Kronecker invariants and the Morse
invariants (see the appendix). An early result discussing these two sets of invariants
goes back to [10], where it is observed that the controllability indices of the pair (A,B)
and the Kronecker column indices of the matrix pencil sE  - H, where E = [I, 0] and
H = [A,B], coincide, which can be seen as a special case of the result in this section.
Also in [15], it is shown that the Morse indices of the triple (A,B,C) have direct
relations with the Kronecker indices of the matrix pencil (called the restricted matrix
pencil; see [9]) N(sI  - A)K, where the rows of N span the annihilator of ImB and
the colunms of K span kerC.

It is known (see the appendix) that any DAE can be transformed into its KCF
which is completely determined by the Kronecker invariants \varepsilon 1, . . . , \varepsilon a, \rho 1, . . . , \rho b,
\sigma 1, . . . , \sigma c, \eta 1, . . . , \eta d, the numbers a, b, c, d of blocks, and the (\lambda \rho 1

, . . . , \lambda \rho b
)-structure

(by the latter we mean the eigenvalues, together with the dimensions \rho 1, . . . , \rho b of
the corresponding blocks). The Kronecker invariants (except for \rho i's and the corre-
sponding eigenvalues \lambda \rho i

's) can be computed using the Wong sequences as follows.
For a DAE \Delta = (E,H), consider the Wong sequences Vi and Wi of Definition 4.1,

and define Ki = Wi \cap V \ast and \^Ki = (EVi - 1)
\bot \cap (HW \ast )\bot for i \in \BbbN +.

Lemma 5.1 (see [6], [7]). For the KCF of \Delta , we have

(i) a = dim (K1), d = dim ( \^K1), and\biggl\{ 
\varepsilon j = 0
\varepsilon j = i

for
for

1 \leq j \leq a - \omega 0,
a - \omega i - 1 + 1 \leq j \leq a - \omega i,

(5.1) \biggl\{ 
\eta j = 0
\eta j = i

for
for

1 \leq j \leq d - \^\omega 0,
d - \^\omega i - 1 + 1 \leq j \leq d - \^\omega i,

(5.2)

where \omega i = dim (Ki+2) - dim (Ki+1) and \^\omega i = dim ( \^Ki+2) - dim ( \^Ki+1), i \in \BbbN .
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(ii) Define an integer \nu by

\nu = min\{ i \in \BbbN | V \ast + Wi = V \ast + Wi+1\} .(5.3)

Then either \nu = 0, implying that the nilpotent part N(s) is absent, or \nu > 0, in which
case c = \pi 0 and

\sigma j = i for c - \pi i - 1 + 1 \leq j \leq c - \pi i, i = 1, 2, . . . , \nu ,(5.4)

where \pi i = dim (Wi+1 + V \ast )  - dim (Wi + V \ast ) for i = 0, 1, 2, . . . , \nu (in the case of
\pi i - 1 = \pi i, the respective index range is empty).

Any control system \Lambda = (A,B,C,D) can be transformed via a Morse transforma-
tion into its Morse canonical form MCF, which is determined by the Morse indices
\varepsilon \prime 1, . . . , \varepsilon 

\prime 
a\prime , \rho \prime 1, . . . , \rho 

\prime 
b\prime , \sigma 

\prime 
1, . . . , \sigma 

\prime 
c\prime , \eta 

\prime 
1, . . . , \eta 

\prime 
d\prime , the (\lambda \rho \prime 

1
, .., \lambda \rho \prime 

b\prime 
)-structure and the num-

bers a\prime , b\prime , c\prime , d\prime \in \BbbN of blocks. The following results can be deduced from the results
on the Morse indices in [20], [19]. For \Lambda = (A,B,C,D), consider the subspaces \scrV i,
\scrW i, \scrU i, \scrY i as in Lemma 4.8, and define \scrR i = \scrW i \cap \scrV \ast and \^\scrR i = (\scrV i)

\bot \cap (\scrW \ast )\bot for
i \in \BbbN .

Lemma 5.2. For the MCF of \Lambda , we have
(i) a\prime = dim (\scrU \ast ), d\prime = dim (\scrY \ast ), and\biggl\{ 

\varepsilon \prime j = 0
\varepsilon \prime j = i

for
for

1 \leq j \leq a\prime  - \omega \prime 
0,

a\prime  - \omega \prime 
i - 1 + 1 \leq j \leq a\prime  - \omega \prime 

i,
(5.5)

\biggl\{ 
\eta \prime j = 0
\eta \prime j = i

for
for

1 \leq j \leq d\prime  - \^\omega \prime 
0,

d\prime  - \^\omega \prime 
i - 1 + 1 \leq j \leq d\prime  - \^\omega \prime ,

(5.6)

where \omega \prime 
i = dim (\scrR i+1) - dim (\scrR i) and \^\omega \prime 

i = dim ( \^\scrR i+1) - dim ( \^\scrR i), i \in \BbbN .
(ii) Define an integer \nu \prime by

\nu \prime = min\{ i \in \BbbN | \scrV \ast +\scrW i = \scrV \ast +\scrW i+1\} .

Then c\prime = dim (U ) - dim (\scrU \ast ), \delta = c\prime  - \pi \prime 
0 and\biggl\{ 

\sigma \prime 
j = 0 for 1 \leq j \leq \delta ,

\sigma \prime 
j = i for c\prime  - \pi \prime 

i - 1 + 1 \leq j \leq c\prime  - \pi \prime 
i, i = 1, 2, . . . , \nu \prime ,

(5.7)

where \pi \prime 
i = dim (\scrW i+1+\scrV \ast ) - dim (\scrW i+\scrV \ast ) for i = 0, 1, 2, . . . , \nu \prime (in case of \pi \prime 

i - 1 = \pi \prime 
i

the respective index range is empty).

Note that for \Lambda = (A,B,C,D), the integer \delta in (5.7) is \delta = rankD. If \delta = 0,
then c\prime = \pi \prime 

0 and the first row of (5.7) is absent, which implies that all \sigma \prime 
j \not = 0. Formal

similarities between the statements of Lemmata 5.1 and 5.2 suggest possible relations
between the Kronecker and the Morse invariants.

Theorem 5.3 (invariants relations). For a DAE \Delta l,n = (E,H), consider its
Kronecker invariants

(\varepsilon 1, . . . , \varepsilon a), (\rho 1, . . . , \rho b), (\sigma 1, . . . , \sigma c), (\eta 1, . . . , \eta d), (\lambda \rho 1 , . . . , \lambda \rho b
) with a, b, c, d \in \BbbN ,

of the KCF, and for a control system \Lambda q,m,p = (A,B,C,D) \in Expl(\Delta ), consider its
Morse invariants

(\varepsilon \prime 1, . . . , \varepsilon 
\prime 
a\prime ), (\rho \prime 1, . . . , \rho 

\prime 
b\prime ), (\sigma \prime 

1, . . . , \sigma 
\prime 
c\prime ), (\eta \prime 

1, . . . , \eta 
\prime 
d\prime ), (\lambda \rho \prime 1

, .., \lambda \rho \prime 
b\prime 
) with a\prime , b\prime , c\prime , d\prime \in \BbbN ,

of the MCF. Then the following holds:
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(i) a = a\prime , \varepsilon 1 = \varepsilon \prime 1, . . . , \varepsilon a = \varepsilon \prime a\prime , and d = d\prime , \eta 1 = \eta \prime 1, . . . , \eta d = \eta \prime d\prime .
(ii) N(s) of the KCF is present if and only if the subsystem MCF 3 of the MCF

is present. Moreover, if they are present, then their invariants satisfy

c = c\prime , \sigma 1 = \sigma \prime 
1 + 1, . . . , \sigma c = \sigma \prime 

c\prime + 1.

(iii) The invariant factors of J(s) in the KCF of \Delta coincide with those of MCF 2

in the MCF of \Lambda . Furthermore, the corresponding invariants satisfy

b = b\prime , \rho 1 = \rho \prime 1, . . . , \rho b = \rho \prime b\prime , \lambda \rho 1
= \lambda \rho \prime 

1
, . . . , \lambda \rho b

= \lambda \rho \prime 
b\prime 
.

The proof is given in section 7.4. Notice that in item (ii) of Theorem 5.3, the
invariants \sigma i and \sigma \prime 

i do not coincide but differ by one; the reason is that the nilpotent
indices1 \sigma 1, . . . , \sigma c of N(s) cannot be zero (the minimum nilpotent index is 1 and if
\sigma i is 1, then N(s) contains the 1 \times 1 matrix pencil 0 \cdot s  - 1), but the controllability
and observability indices \sigma \prime 

1, . . . , \sigma 
\prime 
c\prime of MCF 3 can be zero (if \sigma \prime 

i = 0, then the output
y3 of MCF 3 contains the static relation y3i = u3

i ). It is easy to see from Theorem 5.3
that, given a DAE, there exists a perfect correspondence between the KCF of the
DAE and the MCF of its explicitation systems. More specifically, the four parts
of the KCF correspond to the four subsystems of the MCF: the bidiagonal pencil
L(s) to the controllable but unobservable part MCF 1, the Jordan pencil J(s) to the
uncontrollable and unobservable part MCF 2, the nilpotent pencil N(s) to the prime
part MCF 3, and the pencil Lp(s) to the observable but uncontrollable part MCF 4.

Now we describe connections between the quasi-Weierstrass form for a regular
DAE [4] and the Morse normal form [19] for its explicitation system; we also show
that the notion of consistency and differential projectors [24] in DAE theory could
also be calculated through some objects from control systems.

Remark 5.4. It is shown in [4] that, for a regular DAE \Delta n,n = (E,H), set \^P =

[\^V \^W ] - 1 and \^Q = [E \^V E \^W ] - 1, where \^V and \^W are full column rank matrices such
that Im \^V = V \ast (\Delta ) and Im \^W = W \ast (\Delta ), and then via ( \^Q, \^P ), \Delta is ex-equivalent to
its quasi-Weierstrass form:

\^Q(sE  - H) \^P - 1 =

\biggl[ 
sIn1  - J 0

0 sN  - In2

\biggr] 
for some matrix J and where N is a nilpotent matrix, dimV \ast = n1, and dimW \ast = n2.
Then define (see Definition 2.4 of [24])

\Pi (E,H) := \^P - 1

\biggl[ 
In1

0
0 0

\biggr] 
\^P , \Pi diff

(E,H) :=
\^Q - 1

\biggl[ 
In1

0
0 0

\biggr] 
\^P ,

where \Pi (E,H) and \Pi diff
(E,H) are called the consistency and differential projectors of \Delta ,

respectively. Now let \Lambda n,m,m = (A,B,C,D) be a (Q,P )-explicitation of \Delta , which
implies that

Q (sE  - H)P - 1 =

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] 
.

1Note that for a regular DAE, the index of the DAE is usually defined by the nilpotent index
of N(s) in its Weierstrass form (see, e.g., [5]), which is clearly the maximal value of the indices \sigma i

using the notation of the present paper.
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Set Ts = [V W ] - 1, Ti = Im, To = Ip, where V and W are full column rank matrices
such that ImV = \scrV \ast (\Lambda ) and ImW = \scrW \ast (\Lambda ), respectively; then there exists F and
K, such that via Ts, Ti, To, F,K, \Lambda is M-equivalent to its Morse normal form:\biggl[ 

Ts TsK
0 To

\biggr] \biggl[ 
sI  - A  - B
 - C  - D

\biggr] \biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
=

\left[  sIn1
 - A2 0 0
0 sIn2 - m  - A3  - B3

0  - C3 D3

\right]  ,

where (A3, B3, C3, D3) is prime. It is clear that the two blocks of the quasi-Weierstrass
form have a one-to-one correspondence with those of the Morse normal form, i.e.,

sIn1  - J with sIn1  - A2 and sN  - In2 with [ sIn2 - m - A3  - B3

 - C3 D3 ]. We can also deduce that

\^Q \sim =
\biggl[ 
Ts TsK
0 To

\biggr] 
Q and \^P - 1 = P - 1

\biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
,

where ``\sim ="" stands for equality, up to a rows permutation. The dimensions n1 =\sum b
i=1 \rho i =

\sum b\prime 

i=1 \rho 
\prime 
i and n2 =

\sum c
i=1 \sigma i = c\prime +

\sum c\prime 

i=1 \sigma 
\prime 
i, where \rho 1, . . . , \rho b and \sigma 1, . . . , \sigma c

are the KCF invariants of \Delta and \rho \prime 1, . . . , \rho 
\prime 
b\prime and \sigma \prime 

1, . . . , \sigma 
\prime 
c\prime are the MCF invariants

of \Lambda . Since the projectors \Pi (E,H) and \Pi diff
(E,H) depend only on \^Q and \^P constructed

with the help of the subspaces V \ast and W \ast of \Delta , we conclude that they can also be
calculated via the Morse transformations constructed with the help of the subspaces
\scrV \ast and \scrW \ast of \Lambda \in Expl(\Delta ).

6. Internal equivalence and regularity of DAEs. An important difference
between DAEs and ODEs is that DAEs are not always solvable and solutions of
DAEs exist on a subspace of the ``generalized"" state space only, due to the presence
of algebraic constrains. In the following, we show that the existence and uniqueness
of solutions of DAEs can be clearly explained using the explicitation procedure and
the notion of internal equivalence (see Definition 6.8 below).

Definition 6.1. A linear subspace M of \BbbR n is called an invariant subspace of
\Delta l,n = (E,H) if for any x0 \in M , there exists a solution x(t, x0) of \Delta such that
x(0, x0) = x0 and x(t, x0) \in M for all t \in \BbbR . An invariant subspace M \ast of \Delta l,n =
(E,H) is called the maximal invariant subspace if for any other invariant subspace
M of \BbbR n, we have M \subseteq M \ast .

Remark 6.2. (i) Note that due to the existence of free variables among the ``gen-
eralized"" states, solutions of \Delta are not unique. Thus it is possible that one solution
of \Delta starting at x0 \in M stays in M but other solutions starting at x0 may escape
from M (either immediately or after a finite time).

(ii) Our notion of the largest invariant subspace M \ast coincides with the notion of
consistency space in the linear DAEs literature (see, e.g., [24]), which is the subspace
where the solutions of the DAE exist.

It is clear that the sum M1+M2 of two invariant subspaces of \Delta is also invariant.
Therefore, M \ast exists and is, actually, the sum of all invariant subspaces. Given an
invariant subspace M of \Delta l,n, for any x0 \in M , there exists a solution x(t) such
that x(0) = x0. It is natural to restrict \Delta to M (keeping only those solutions that
stay in M and eliminating all others), in particular, to the largest invariant subspace
M \ast . Moreover, we would like the restriction to be as simple as possible. We achieve
the above goals by introducing, respectively, the notion of restriction and that of
reduction. We will define the restriction of a DAE \Delta to a linear subspace R (invariant
or not) as follows.
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Definition 6.3 (restriction). Consider a linear DAE \Delta l,n = (E,H). Let R be
a subspace of \BbbR n. The restriction of \Delta to R, called R-restriction of \Delta and denoted
\Delta | R, is a linear DAE \Delta | R = (E| R, H| R), where E| R and H| R are, respectively, the
restrictions of the linear maps2 E and H to the linear subspace R.

Throughout, we consider general DAEs \Delta l,n = (E,H) with no assumptions on
the ranks of E and H. In particular, if the map [E H] is no full row rank, then \Delta l,n

contains redundant equations. But even if we assume that [E H] is of full row rank,
then this property, in general, is no longer true for the restricted map [E| R HR], which
may contain redundant equations. To get rid of redundant equations (in particular,
of trivial algebraic equations 0 = 0), we propose the notion of full row rank reduction.

Definition 6.4 (reduction). For a DAE \Delta l,n = (E,H) on X \sim = \BbbR n, assume
rank [E H] = l\ast \leq l. Then there exists Q \in Gl(l,\BbbR ) such that

Q
\bigl[ 
E H

\bigr] 
=

\biggl[ 
Ered Hred

0 0

\biggr] 
,

where rank [Ered Hred] = l\ast and the full row rank reduction, briefly, reduction, of
\Delta l,n, denoted by \Delta red, is a DAE \Delta red

l\ast ,n = \Delta red = (Ered, Hred) on X \sim = \BbbR n.

Remark 6.5. Clearly, the choice of Q is not unique and thus the reduction of \Delta is
not unique either. Nevertheless, since Q preserves the solutions, each reduction \Delta red

has the same solutions as the original DAE \Delta .

For an invariant subspace M , we consider the M -restriction \Delta | M of \Delta , and then
we construct a reduction of \Delta | M and denote it by \Delta | redM = (E| redM , H| redM ). Notice
that the order matters: to construct \Delta | redM , we first restrict and then reduce, while
reducing first and then restricting will, in general, give not \Delta | redM (which does not
have redundant equations) but another DAE \Delta red| M (which may still have redundant

equations). As an example, consider a DAE \Delta : [
1 1
2 1
0 0
2 2

][ \.x1
\.x2
] = [

1 1
2 2
0 1
2 2

][ x1
x2

] and an invariant

subspace M = X1 = span\{ [ 10 ]\} of \Delta ; then \Delta | redM is q \.x1 = qx1 (where q \not = 0 can be
any indicating that the reduction is not unique) and thus has no redundant equations,

while a DAE \Delta red| M : [
1
2
0
] \.x1 = [

1
2
0
]x1 has clearly redundant equations.

Proposition 6.6. Consider a linear DAE \Delta l,n = (E,H). Let M be a subspace
of \BbbR n. The following statements are equivalent:

(i) M is an invariant subspace of \Delta l,n.
(ii) HM \subseteq EM .
(iii) For a (and thus any) reduction \Delta | redM = (E| redM , H| redM ) of \Delta | M , the map E| redM

is of full row rank, i.e., rankE| redM = rank [E| redM H| redM ].

Proof. (i)\leftrightarrow (ii) Theorem 4 of [3], for B = 0, implies that M is an invariant
subspace if and only if HM \subseteq EM .

(ii)\leftrightarrow (iii) For \Delta l,n = (E,H), choose a full column rank matrix P1 \in \BbbR n\times n1 such
that ImP1 = EM , where n1 = dimM . Find any P2 \in \BbbR n\times n2 such that the matrix
[P1 P2] is invertible, where n2 = n  - n1. Choose new coordinates z = Px, where
P = [P1 P2]

 - 1; then we have

2For an r-dimensional subspace R \subseteq \BbbR n, choose a basis q1, . . . , qn of \BbbR n such that q1, . . . , qr is
a basis of R. The matrix E \in \BbbR l\times n, representing a linear map in that basis, is E = [E1 E2], where
E1 \in \BbbR l\times k, and then the restriction of E to R is E| R = E1.
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\Delta : EP - 1P \.x = HP - 1Px \Rightarrow [E1 E2]

\biggl[ 
\.z1
\.z2

\biggr] 
= [H1 H2]

\biggl[ 
z1
z2

\biggr] 
,

where E1 = EP1, E2 = EP2, H1 = HP1, H2 = HP2, and z = (z1, z2). Now by
Definition 6.3, the M -restriction of \Delta is

\Delta | M : E1 \.z1 = H1z1.

Find Q \in Gl(l,\BbbR ) such that QE1 = [ \~E1
0
], where \~E1 is of full row rank, then denote

QH1 = [
\~H1
\=H1

]. By HM \subseteq EM , we can deduce that \=H1 = 0 (since QHM \subseteq QEM \Rightarrow 
Im[

\~H1
\=H1

] \subseteq Im[ \~E1
0
]). Thus a reduction of \Delta | M , according to Definition 6.4, is \Delta | redM =

(E| redM , H| redM ) = ( \~E1, \~H1). Clearly E| redM is of full row rank.

Define \Lambda | (\scrV \ast ,\scrU \ast ) as the control system \Lambda = (A,B,C,D) restricted to \scrV \ast (which
is well-defined because \scrV \ast can be made invariant by a suitable feedback) and with
controls u restricted to \scrU \ast = (B - 1\scrV \ast )\cap kerD. The output y = Cx+Du of \Lambda becomes
y = 0 and \Lambda | red(\scrV \ast ,\scrU \ast ) is, by its construction, the system \Lambda | (\scrV \ast ,\scrU \ast ) without the redundant
trivial output constraint y = 0.

Proposition 6.7. For a DAE \Delta l,n = (E,H), consider its maximal invariant
subspace M \ast and the subspace V \ast in Definition 4.3. Then we have as follows:

(i) M \ast =V \ast .
(ii) Let \Lambda \in Expl(\Delta ) and \Lambda \ast \in Expl(\Delta | redM\ast ). Then \Lambda | red(\scrV \ast ,\scrU \ast ) and \Lambda \ast are explicit

control systems without outputs, i.e., the MCF of the two control systems has no
MCF 3 and MCF 4 parts, and \Lambda | red(\scrV \ast ,\scrU \ast ) is feedback equivalent to \Lambda \ast .

The proof is given in section 7.5. By Theorem 4.10, we can relate M \ast of \Delta 
with the corresponding space of the prolongation \Lambda of \Lambda \in Expl(\Delta ), where \Lambda is a
(Q,P )-explicitation. Namely, we have PM \ast = \bfscrV \ast (\Lambda ). Using the reduction of M \ast -
restriction and the ex-equivalence of DAEs, we define the internal equivalence of two
DAEs as follows.

Definition 6.8. For two DAEs \Delta l,n = (E,H) and \~\Delta \~l,\~n = ( \~E, \~H), let M \ast and
\~M \ast be the maximal invariant subspaces of \Delta and \~\Delta , respectively. Then \Delta and \~\Delta are

called internally equivalent, briefly, in-equivalent, if \Delta | redM\ast and \~\Delta | red\~M\ast are ex-equivalent

and we will denote the in-equivalence of two DAEs as \Delta 
in\sim \~\Delta .

Any \Lambda \ast \in Expl(\Delta | redM\ast ) is an explicit system without outputs (see Proposition
6.7(ii)) and denote the dimensions of its state space and input space by n\ast and m\ast ,
respectively, and its corresponding matrices by A\ast , B\ast and thus \Lambda \ast 

n\ast ,m\ast = (A\ast , B\ast ).

Theorem 6.9. Let M \ast and \~M \ast be the maximal invariant subspaces of \Delta and \~\Delta ,
respectively. Consider two control systems:

\Lambda \ast = (A\ast , B\ast ) \in Expl
\bigl( 
\Delta | redM\ast 

\bigr) 
, \~\Lambda \ast = ( \~A\ast , \~B\ast ) \in Expl

\Bigl( 
\~\Delta | red\~M\ast 

\Bigr) 
.

Then the following is equivalent:

(i) \Delta 
in\sim \~\Delta ;

(ii) \Lambda \ast and \~\Lambda \ast are feedback equivalent;
(iii) \Delta and \~\Delta have isomorphic trajectories, i.e., there exists a linear and invertible

map S : M \ast \rightarrow \~M \ast transforming any trajectory x(t, x0), where x0 \in M \ast of
\Delta | redM\ast , into a trajectory \~x(t, \~x0), \~x0 \in \~M \ast , of \~\Delta | red\~M\ast , where \~x0 = Sx0, and
vice versa.
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The proof is given in section 7.6. In most of the DAEs literature, regularity of
DAEs is frequently studied and various definitions are proposed. From the point of
view of the existence and uniqueness of solutions, we propose the following definition
of internal regularity of DAEs.

Definition 6.10. \Delta is internally regular if for any point x0 \in M \ast , there exists
only one solution x(t) of \Delta such that x(0) = x0.

Recall that rank \BbbR [s](sE  - H) denotes the rank of the polynomial matrix sE  - H
over the ring \BbbR [s].

Theorem 6.11 (internal regularity). Consider a DAE \Delta l,n = (E,H) and denote
rankE = q. Then the following statements are equivalent:

(i) \Delta is internally regular.
(ii) Any \Lambda \ast \in Expl(\Delta | redM\ast ) has no inputs.
(iii) The MCF of \Lambda \in Expl(\Delta ) has no MCF 1 part.
(iv) rankE = dim EM \ast .
(v) rank \BbbR [s](sE  - H) = q.

(vi) The MCF of \Lambda \ast \in Expl(\Delta | redM\ast ) has the MCF 2 part only.

The proof is given in section 7.7.

Remark 6.12. (i) The above definition of internal regularity is actually equivalent
to the definition of an autonomous DAE in [2]. Both of them mean that the DAE is
not underdetermined (there is no L(s) in the KCF of sE  - H).

(ii) Our notion of internal regularity does not imply that the matrices E and H
are square, since the presence of the overdetermined part KCF 4 (or Lp(s)) is allowed
for \Delta = (E,H).

(iii) If E and H are square (l = n), then \Delta (equivalently, sE  - H) is internally
regular if and only if | sE - H| \not \equiv 0. It means that for the case of square matrices, the
classical notion of regularity and internal regularity coincide.

7. Proofs of the results.

7.1. Proof of Theorem 3.4.

Proof. (i) This result can be easily deduced from Definitions 3.1 and 3.2 and the
explicitation procedure.

(ii) Consider two control systems

\Lambda = (A,B,C,D) \in Expl(\Delta ) and \~\Lambda = ( \~A, \~B, \~C, \~D) \in Expl( \~\Delta ).

Then by (i) of Theorem 3.4, there exist invertible matrices Q, \~Q,P, \~P of appropriate
sizes such that

Q (sE  - H)P - 1 =

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] 
, \~Q

\Bigl( 
s \~E  - \~H

\Bigr) 
\~P - 1 =

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
.(7.1)

``If."" Suppose \Lambda 
M\sim \~\Lambda ; then there exist Morse transformation matrices Ts, Ti, To, F,K

such that \biggl[ 
Ts TsK
0 To

\biggr] \biggl[ 
sI  - A  - B
 - C  - D

\biggr] \biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
=

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
.(7.2)

D
ow

nl
oa

de
d 

03
/2

7/
21

 to
 8

4.
81

.2
21

.8
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

118 YAHAO CHEN AND WITOLD RESPONDEK

By (7.2), we have\biggl[ 
Ts TsK
0 To

\biggr] 
Q

\biggl( 
Q - 1

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] 
P

\biggr) 
P - 1

\biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
= \~Q

\biggl( 
\~Q - 1

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
\~P

\biggr) 
\~P - 1.

Substitute (7.1) into the above equation to have

\~Q - 1

\biggl[ 
Ts TsK
0 T0

\biggr] 
Q (sE  - H)P - 1

\biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
\~P = s \~E  - \~H.

Thus \Delta 
ex\sim \~\Delta via ( \=Q, \=P ), where

\=Q = \~Q - 1

\biggl[ 
Ts TsK
0 T0

\biggr] 
Q and \=P - 1 = P - 1

\biggl[ 
T - 1
s 0

FT - 1
s T - 1

i

\biggr] 
\~P .

``Only if."" Suppose \Delta 
ex\sim \~\Delta ; then there exist invertible matrices \=Q and \=P of

appropriate sizes such that \=Q (sE  - H) \=P - 1 = s \~E  - \~H, which implies that

\=QQ - 1
\bigl( 
Q (sE  - H)P - 1

\bigr) 
P \=P - 1 = \~Q - 1

\Bigl( 
\~Q
\Bigl( 
s \~E  - \~H

\Bigr) 
\~P - 1

\Bigr) 
\~P

(7.1)\Rightarrow \~Q \=QQ - 1

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] 
P \=P - 1 \~P - 1 =

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
.

Denote \~Q \=QQ - 1 = [Q
1 Q2

Q3 Q4 ] and P \=P - 1 \~P - 1 = [ P
1 P 2

P 3 P 4 ], where Qi and P i, for i =

1, 2, 3, 4, are matrices of suitable sizes. Then we get\biggl[ 
Q1 Q2

Q3 Q4

\biggr] \biggl[ 
sI  - A  - B
 - C  - D

\biggr] \biggl[ 
P 1 P 2

P 3 P 4

\biggr] 
=

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
.

Now by the invertibility of \~Q \=QQ - 1 and P \=P - 1 \~P - 1, we get [Q
1 Q2

Q3 Q4 ] and [ P
1 P 2

P 3 P 4 ] are

invertible. By a direct calculation, we get Q3 = 0, P 2 = 0, Q1 = (P 1) - 1, thus Q4

and P 4 are invertible as well. Therefore, \Lambda 
M\sim \~\Lambda via the Morse transformation

Mtran =
\bigl( 
Q1, (P 4) - 1, Q4, P 3Q1, (Q1) - 1Q2

\bigr) 
.

(iii) Given two control systems \Lambda = (A,B,C,D) and \~\Lambda = ( \~A, \~B, \~C, \~D), the corre-
sponding matrix pencils of \Delta Impl = Impl(\Lambda ) and \~\Delta Impl = Impl(\~\Lambda ), by Definition 3.1,

are [ sI - A  - B
 - C  - D ] and [ sI - 

\~A  - \~B

 - \~C  - \~D
], respectively.

``If."" Suppose \Delta Impl ex\sim \~\Delta Impl, that is, there exist invertible matrices Q and P
such that

Q

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] 
P - 1 =

\biggl[ 
sI  - \~A  - \~B

 - \~C  - \~D

\biggr] 
.(7.3)

Denote Q = [Q1 Q2

Q3 Q4
] and P = [ P1 P2

P3 P4
] with matrices Qi and Pi, for i = 1, 2, 3, 4, of

suitable dimensions. Then by (7.3), we get Q3 = 0, P2 = 0, Q1 = (P1)
 - 1. Since Q

and P are invertible, we can conclude that Q4 and P4 are invertible as well. Therefore,

\Lambda 
M\sim \~\Lambda via the Morse transformation Mtran =

\bigl( 
Q1, (P4)

 - 1, Q4, P3Q1, (Q1)
 - 1Q2

\bigr) 
.

``Only if."" Suppose \Lambda 
M\sim \~\Lambda via a Morse transformation Mtran = (Ts, Ti, To, F,K)

(see (2.1)); then we have \Delta Impl ex\sim \~\Delta Impl via (Q,P ), where Q = [ Ts TsK
0 To

] and P - 1 =

[
T - 1
s 0

FT - 1
s T - 1

i

].
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7.2. Proof of Proposition 4.4.

Proof. (i) It can be observed from (4.1) that Vi is nonincreasing. By a dimensional
argument, the sequence Vi gets stabilized at i = k\ast \leq n and it can be directly seen
that Vk\ast = H - 1EVk\ast . We now prove by induction that it is the largest. Choose any
other subspace \^V such that \^V = H - 1E \^V and consider (4.1). For i = 0, \^V \subseteq V0.

Suppose \^V \subseteq Vi, then H - 1E \^V \subseteq H - 1EVi (since taking the image and preimage

preserves inclusion), thus \^V = H - 1E \^V \subseteq H - 1EVi = Vi+1. Therefore, \^V \subseteq Vi for

i \in \BbbN , i.e., \^V \subseteq Vk\ast , it follows that Vk\ast is the largest subspace of \BbbR n such that
Vk\ast = H - 1EVk\ast .

Now consider (4.2), observe that the sequence Wi is nondecreasing, and by a
dimensional argument, Wi gets stabilized at i = l\ast \leq n. It can be directly seen that
Wl\ast = E - 1HWl\ast . We then prove that any other subspace \^W such that \^W = E - 1H \^W
contains W \ast . For i = 0, W0 \subseteq \^W ; if Wi \subseteq \^W , then E - 1HWi \subseteq E - 1H \^W , so
Wi+1 = E - 1HWi \subseteq E - 1H \^W = \^W , that is, Wi \subseteq \^W for i \in \BbbN , which gives Wl\ast \subseteq \^W
and Wl\ast is the smallest subspace of \BbbR n such that Wl\ast = E - 1HWl\ast .

(ii) By Definition 4.3, V \ast satisfies V \ast = H - 1EV \ast , thus it is seen that HV \ast \subseteq 
EV \ast . We then prove, by induction, that V \ast is the largest satisfying that property.
Choose any other subspace \^V which satisfies H \^V \subseteq E \^V , and consider (4.1), for

i = 0, so \^V \subseteq V0. Suppose \^V \subseteq Vi, then \^V \subseteq H - 1E \^V \subseteq H - 1EVi = Vi+1, thus
\^V \subseteq H - 1EVi = Vi+1, therefore \^V \subseteq Vi for i \in \BbbN , i.e., \^V \subseteq Vk\ast , which implies

V \ast = Vk\ast is the largest subspace such that HV \ast \subseteq EV \ast 

Obviously, \{ 0\} is the smallest subspace satisfying H\{ 0\} \subseteq E\{ 0\} , but W \ast is not
always \{ 0\} , so we prove that W \ast is not necessarily the smallest subspace such that
EW \ast \subseteq HW \ast .

7.3. Proof of Theorem 4.10.

Proof. Observe that, by Definitions 2.1 and 4.1, if two DAEs \Delta and \~\Delta are ex-
equivalent via (Q,P ), then direct calculations of the Wong sequences of \Delta and \~\Delta give
that Vi( \~\Delta ) = PVi(\Delta ) and Wi( \~\Delta ) = PWi(\Delta ). As \Lambda is a (Q,P )-explicitation of \Delta , by

Theorem 3.4(i), we have \Delta 
ex\sim \Delta Impl via (Q,P ), where \Delta Impl = Impl(\Lambda ). Thus we

have

Vi

\bigl( 
\Delta Impl

\bigr) 
= PVi(\Delta ), Wi

\bigl( 
\Delta Impl

\bigr) 
= PWi(\Delta ).(7.4)

Notice that

\Delta Impl
l,n =

\biggl( \biggl[ 
Iq 0
0 0

\biggr] 
,

\biggl[ 
A B
C D

\biggr] \biggr) 
, \Lambda n,m,p = (A,B,C) =

\biggl( \biggl[ 
A B
0 0

\biggr] 
,

\biggl[ 
0
Im

\biggr] 
,
\bigl[ 
C D

\bigr] \biggr) 
,

where m = n - q and p = l  - q. The proof of (i) will be done in three steps.
Step 1. First we show that for i \in \BbbN ,

Vi

\bigl( 
\Delta Impl

\bigr) 
= \bfscrV i(\Lambda ).(7.5)

Calculate \bfscrV i+1 (\Lambda ) using (4.4), to get

\bfscrV i+1 (\Lambda ) = ker
\bigl[ 
C D

\bigr] 
\cap 
\biggl[ 
A B
0 0

\biggr]  - 1\biggl( 
\bfscrV i (\Lambda ) + Im

\biggl[ 
0
Im

\biggr] \biggr) 
.(7.6)

Equation (7.6) can be written as

\bfscrV i+1 (\Lambda ) =
\bigl\{ 
\~v | 
\bigl[ 
A B

\bigr] 
\~v \in 

\bigl[ 
Iq 0

\bigr] 
\bfscrV i (\Lambda ) ,

\bigl[ 
C D

\bigr] 
\~v = 0

\bigr\} 
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or, equivalently,

\bfscrV i+1 (\Lambda ) =

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ 
Iq 0
0 0

\biggr] 
\bfscrV i (\Lambda ) .(7.7)

Now, observe that the inductive formula (7.7) for \bfscrV i+1(\Lambda ) coincides with the inductive
formula (4.1) for the Wong sequence Vi+1(\Delta 

Impl). Since V0(\Delta 
Impl) = \bfscrV 0(\Lambda ) = \BbbR n,

we conclude that Vi(\Delta 
Impl) = \bfscrV i(\Lambda ) for all i \in \BbbN .

Step 2. We then prove that for i \in \BbbN ,

Vi+1(\Delta 
Impl) =

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ \scrV i(\Lambda )
0

\biggr] 
.(7.8)

By calculating \scrV i+1(\Lambda ) via (4.6), we get

\scrV i+1(\Lambda ) =

\biggl[ 
A
C

\biggr]  - 1\biggl( \biggl[ 
I
0

\biggr] 
\scrV i(\Lambda ) + Im

\biggl[ 
B
D

\biggr] \biggr) 
.

We can rewrite the above equation as

\scrV i+1(\Lambda ) =
\bigl[ 
Iq 0q\times m 0

\bigr] 
ker

\biggl[ 
A B \=Vi

C D 0

\biggr] 
,(7.9)

where \=Vi is a matrix with independent columns such that Im \=Vi = \scrV i(\Lambda ).
From basic knowledge of linear algebra, for two matrices M \in \BbbR l\times n and N \in 

\BbbR l\times m, the preimage M - 1ImN = [In, 0] ker [M,N ]. With this formula, calculate
Vi+1(\Delta 

Impl) via (4.1), to get

Vi+1

\bigl( 
\Delta Impl

\bigr) 
=

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ 
Iq 0
0 0

\biggr] 
=

\biggl[ 
Iq 0 0
0 Im 0

\biggr] 
ker

\biggl[ 
A B
C D

\biggl[ 
Iq 0
0 0

\biggr] 
Vi

\biggr] 
,

(7.10)

where Vi is a matrix with independent columns such that ImVi = Vi(\Delta ).
In order to show that (7.8) holds, we will first prove inductively that for all i \in \BbbN ,\biggl[ 

\scrV i(\Lambda )
0

\biggr] 
=

\biggl[ 
Iq 0
0 0

\biggr] 
Vi

\bigl( 
\Delta Impl

\bigr) 
.(7.11)

For i = 0, [ \scrV 0(\Lambda )
0

] = [ \BbbR 
q

0 ] = [ Iq 0
0 0

]V0(\Delta 
Impl). Suppose that for i = k \in \BbbN , (7.11) holds

or, equivalently, Im [ \=Vk
0
] = Im [ Iq 0

0 0
]Vk. Then we have\biggl[ 

\scrV k+1(\Lambda )
0

\biggr] 
(7.9)
=

\biggl[ 
Iq 0
0 0

\biggr] \biggl[ 
Iq 0 0
0 Im 0

\biggr] 
\mathrm{k}\mathrm{e}\mathrm{r}

\biggl[ 
A B
C D

\biggl[ 
Iq 0
0 0

\biggr] 
Vk

\biggr] 
(7.10)
=

\biggl[ 
Iq 0
0 0

\biggr] 
Vk+1

\Bigl( 
\Delta Impl

\Bigr) 
.

Therefore, (7.11) holds for all i \in \BbbN .
Consequently, we have for i \in \BbbN ,

Vi+1

\bigl( 
\Delta Impl

\bigr) (4.1)
=

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ 
Iq 0
0 0

\biggr] 
Vi

\bigl( 
\Delta Impl

\bigr) (7.11)
=

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ \scrV i(\Lambda )
0

\biggr] 
.

Step 3. Finally, since V \ast and \bfscrV \ast are the limits of the sequences Vi and \bfscrV i, respec-
tively, it follows from (7.5) that V \ast (\Delta Impl) = \bfscrV \ast (\Lambda ). Since V \ast and \scrV \ast are the limits
of Vi and \scrV i, respectively, it follows from (7.8) that V \ast (\Delta Impl) = [A B

C D ] - 1[ \scrV 
\ast (\Lambda )
0

].

Thus by (7.4), we have PV \ast (\Delta ) = V \ast (\Delta Impl) = \bfscrV \ast (\Lambda ) = [A B
C D ] - 1[ \scrV 

\ast (\Lambda )
0

].
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The proof of (ii) will be done in three steps.
Step 1. First, we show that for i \in \BbbN ,

Wi

\bigl( 
\Delta Impl

\bigr) 
= \bfscrW i(\Lambda ).(7.12)

Calculate \bfscrW i+1(\Lambda ) by (4.5), as

\bfscrW i+1(\bfLambda ) =

\biggl[ 
A B
0 0

\biggr] \biggl( 
\bfscrW i(\bfLambda ) \cap \mathrm{k}\mathrm{e}\mathrm{r}

\bigl[ 
C D

\bigr] 
+ \mathrm{I}\mathrm{m}

\biggl[ 
0
Im

\biggr] \biggr) 
=

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ 
A B
0 0

\biggr] \bigl( 
\bfscrW i(\bfLambda ) \cap \mathrm{k}\mathrm{e}\mathrm{r}

\bigl[ 
C D

\bigr] \bigr) 
=

\Biggl( \biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ 
A B
C D

\biggr] 
\bfscrW i(\bfLambda )

\Biggr) 
\cap 

\Biggl( \biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ 
A B
C D

\biggr] 
\mathrm{k}\mathrm{e}\mathrm{r}
\bigl[ 
C D

\bigr] \Biggr) 
.

Observe that [ Iq 0
0 0

] - 1[A B
C D ] ker[C D ] = [ Iq 0

0 0
] - 1Im [A B

C D ]. Then we have

\bfscrW i+1(\Lambda ) =

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ 
A B
C D

\biggr] 
\bfscrW i(\Lambda ).(7.13)

Notice that the inductive formula (7.13) for \bfscrW i+1(\Lambda ) coincides with the inductive
formula (4.2) for the Wong sequence Wi+1(\Delta 

Impl). Since W0(\Delta 
Impl) = \bfscrW 0(\Lambda ) = \{ 0\} ,

we deduce that Wi(\Delta 
Impl) = \bfscrW i(\Lambda ) for i \in \BbbN .

Step 2. Subsequently, we will prove that for i \in \BbbN ,

\bfscrW i+1(\Lambda ) =

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW i(\Lambda )
0

\biggr] 
.(7.14)

Considering (4.8) for \Lambda , we have\biggl[ 
\scrW i+1(\Lambda )

0

\biggr] 
=

\biggl[ 
A B
0 0

\biggr] \biggl( \biggl[ 
\scrW i(\Lambda )
\BbbR m

\biggr] 
\cap \mathrm{k}\mathrm{e}\mathrm{r}

\bigl[ 
C D

\bigr] \biggr) 
=

\biggl[ 
A B
0 0

\biggr] \Biggl( \Biggl( \biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW i(\Lambda )
0

\biggr] \Biggr) 
\cap \mathrm{k}\mathrm{e}\mathrm{r}

\bigl[ 
C D

\bigr] \Biggr) 
,

which implies that

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW i+1(\Lambda )
0

\biggr] 
=

\biggl[ 
A B
0 0

\biggr] \Biggl( \biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW i(\Lambda )
0

\biggr] 
\cap ker

\bigl[ 
C D

\bigr] \Biggr) 
+ Im

\biggl[ 
0
Im

\biggr] 
.

(7.15)

Observe that the inductive formula (7.15) for [ Iq 0
0 0

] - 1[\scrW i+1(\Lambda )
0

] coincides with the

inductive formula (4.5) for \bfscrW i+1(\Lambda ). Since \bfscrW 1(\Lambda ) = [ Iq 0
0 0

] - 1[\scrW 0(\Lambda )
0

] = Im [ 0
Im ], we

have \bfscrW i+1(\Lambda ) = [ Iq 0
0 0

] - 1[\scrW i(\Lambda )
0

] for all i \in \BbbN .
Step 3. Equation (7.12) and the fact that W \ast and \bfscrW \ast are the limits of Wi and

\bfscrW i, respectively, yield W \ast (\Delta ) = \bfscrW \ast (\Lambda ). Equation (7.14) and the fact that \scrW \ast and
\bfscrW \ast are the limits of \scrW i and \bfscrW i, respectively, yield \bfscrW \ast (\Lambda ) = [ Iq 0

0 0
] - 1[\scrW 

\ast (\Lambda )
0

]. Thus
using (7.4), we prove (ii) of Theorem 4.10.

7.4. Proof of Theorem 5.3. Note that the Kronecker invariants are invariant
under ex-equivalence. By \Delta 

ex\sim \Delta Impl, in our proof we can work with the Kronecker
invariants of \Delta Impl instead of those of \Delta . In what follows, we will use the follow-
ing two lemmata. Denote by \BbbF (\scrV i(\Lambda )) the class of maps F : \BbbR q \rightarrow \BbbR m satisfying
(A+BF )\scrV i+1(\Lambda ) \subset \scrV i(\Lambda ) and (C +DF )\scrV i+1(\Lambda ) = 0.
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Lemma 7.1. Given \Delta l,n = (E,H), its (Q,P )-explicitation \Lambda = (A,B,C,D) \in 
Expl(\Delta ), and \Delta Impl = Impl(\Lambda ), consider the Wong sequences Vi, Wi of both \Delta and
\Delta Impl, given by Definition 4.1, and the subspaces \scrV i, \scrW i of \Lambda , given by Lemma 4.6.
Then for i \in \BbbN , we have

Vi+1(\Delta 
Impl) = PVi+1(\Delta ) =

\biggl[ 
\scrV i+1(\Lambda )
Fi\scrV i+1(\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU i(\Lambda )

\biggr] 
,(7.16)

where Fi \in \BbbF (\scrV i(\Lambda )) and

Wi+1(\Delta 
Impl) = PWi+1(\Delta ) =

\biggl[ 
\scrW i(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] 
.(7.17)

Lemma 7.2 (see [6], [19]). For \Delta = (E,H) and its dual \Delta d = (ET , HT ), consider
the subspaces Vi and Wi, then Wi+1(\Delta 

d) = (EVi(\Delta ))\bot and Vi(\Delta 
d) = (HWi(\Delta ))\bot . For

\Lambda = (A,B,C,D) \in Expl(\Delta ) and the dual \Lambda d of \Lambda , given by \Lambda d = (AT , CT , BT , DT ),
consider the subspaces \scrV i and \scrW i. Then \scrW i(\Lambda 

d) = (\scrV i)
\bot and \scrV i(\Lambda 

d) = (\scrW i(\Lambda ))
\bot .

The proof of Lemma 7.1 is given after the proof of Theorem 5.3.

Proof of Theorem 5.3. (i) Recall Lemma 5.1(i) for \Delta Impl and Lemma 5.2(i) for
\Lambda . For i \in \BbbN +, it holds that

Ki

\bigl( 
\Delta Impl

\bigr) 
= Wi

\bigl( 
\Delta Impl

\bigr) 
\cap V \ast \bigl( \Delta Impl

\bigr) 
Lemma 7.1

=

\biggl( \biggl[ 
\scrW i - 1(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
\cap 
\biggl( \biggl[ 

\scrV \ast (\Lambda )
F \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
=

\biggl[ 
\scrW i - 1(\Lambda ) \cap \scrV \ast (\Lambda )

F \ast (\scrW i - 1(\Lambda ) \cap \scrV \ast (\Lambda ))

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] 
(7.18)

for a suitable F \ast \in \BbbF (\scrV \ast (\Lambda )). Then we have

a
Lemma 5.1(i)

= dim
\bigl( 
K1

\bigl( 
\Delta Impl

\bigr) \bigr) (7.18)
= dim

\biggl( \biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
= dim (\scrU \ast (\Lambda ))

Lemma 5.2(i)
= a\prime .

Moreover, it is seen that for i \in \BbbN ,

\omega i
Lemma 5.1(i)

= dim
\bigl( 
Ki+2

\bigl( 
\Delta Impl

\bigr) \bigr) 
 - dim

\bigl( 
Ki+1

\bigl( 
\Delta Impl

\bigr) \bigr) 
(7.18)
= dim (\scrW i+1(\Lambda ) \cap \scrV \ast (\Lambda )) - dim (\scrW i(\Lambda ) \cap \scrV \ast (\Lambda ))

= dim (\scrR i+1(\Lambda )) - dim (\scrR i(\Lambda ))
Lemma 5.2(i)

= \omega \prime 
i.

Now consider (5.1) and (5.5) and it is sufficient to show\biggl\{ 
\varepsilon j = \varepsilon \prime j = 0
\varepsilon j = \varepsilon \prime j = i

for
for

1 \leq j \leq a - \omega 0 = a\prime  - \omega \prime 
0,

a\prime  - \omega \prime 
i - 1 + 1 = a - \omega i - 1 + 1 \leq j \leq a - \omega i = a\prime  - \omega \prime .

The statement that d = d\prime , \eta i = \eta \prime i can be proved in a similar way using dual objects.
It is not hard to see that for i \in \BbbN +,

\^Ki

\bigl( 
\Delta Impl

\bigr) 
=
\bigl( 
EVi - 1

\bigl( 
\Delta Impl

\bigr) \bigr) \bot \cap (HW \ast \bigl( \Delta Impl
\bigr) 
)\bot 

Lemma 7.2
= Wi(

\bigl( 
\Delta Impl

\bigr) d
) \cap V \ast (

\bigl( 
\Delta Impl

\bigr) d
)

Lemma 7.1
=

\biggl[ 
\scrW i - 1(\Lambda 

d) \cap \scrV \ast (\Lambda d)
\ast 

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda d)

\biggr] 
,
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where (\Delta Impl)d is the dual system of \Delta Impl, which coincides with Impl(\Lambda d). It follows
that

d
Lemma 5.1(i)

= dim
\Bigl( 

\^K1

\bigl( 
\Delta Impl

\bigr) \Bigr) 
= dim

\biggl( \biggl[ 
0

\scrU \ast (\Lambda d)

\biggr] \biggr) 
= dim (\scrY \ast (\Lambda ))

Lemma 5.2(i)
= d\prime .

We can also see that for i \in \BbbN ,

\^\omega i = dim
\Bigl( 

\^Ki+2

\bigl( 
\Delta Impl

\bigr) \Bigr) 
 - dim

\Bigl( 
\^Ki+1

\bigl( 
\Delta Impl

\bigr) \Bigr) 
= dim

\bigl( 
\scrW i+1(\Lambda 

d) \cap \scrV \ast (\Lambda d)
\bigr) 
 - dim

\bigl( 
\scrW i(\Lambda 

d) \cap \scrV \ast (\Lambda d)
\bigr) 

Lemma7.2
= dim

\bigl( 
(\scrV i+1)

\bot \cap (\scrW \ast )\bot 
\bigr) 
 - dim

\bigl( 
(\scrV i)

\bot \cap (\scrW \ast )\bot 
\bigr) 

= dim ( \^\scrR i+1(\Lambda )) - dim ( \^\scrR i(\Lambda )) = \^\omega \prime 
i.

Now it is sufficient to show that\biggl\{ 
\eta j = \eta \prime j = 0
\eta j = \eta \prime j = i

for
for

1 \leq j \leq d - \^\omega 0 = h - \^\omega \prime 
0,

h - \omega \prime 
i - 1 + 1 = d - \^\omega i - 1 + 1 \leq j \leq d - \^\omega i = h - \^\omega \prime .

(ii) Recall Lemma 5.1(ii) for \Delta Impl and Lemma 5.2(ii) for \Lambda . We have for all
i \in \BbbN +,

V \ast \bigl( \Delta Impl
\bigr) 
+ Wi

\bigl( 
\Delta Impl

\bigr) Lemma 7.1
=

\biggl[ 
\scrV \ast (\Lambda )

F \ast \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU i(\Lambda )

\biggr] 
+

\biggl[ 
\scrW i - 1(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] 
=

\biggl[ 
\scrV \ast (\Lambda ) +\scrW i - 1(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] 
.

If \nu = 0, then we have the following result by (5.3):

V \ast \bigl( \Delta Impl
\bigr) 
+ W0

\bigl( 
\Delta Impl

\bigr) 
= V \ast \bigl( \Delta Impl

\bigr) 
+ W1

\bigl( 
\Delta Impl

\bigr) 
\Rightarrow 
\biggl( \biggl[ 

\scrV \ast (\Lambda )
F \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
=

\biggl( \biggl[ 
\scrV \ast (\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
\Rightarrow U (\Lambda ) = \scrU \ast (\Lambda ).

It follows that c\prime = dim (U (\Lambda ))  - dim (\scrU \ast (\Lambda )) = 0. Therefore, in this case, the
MCF 3-part of MCF is absent. As a consequence, if N(s) of KCF is absent, then
MCF 3 of MCF is absent as well. If \nu > 0, from (5.3) we get

\nu = min

\biggl\{ 
i \in \BbbN +

\bigm| \bigm| \bigm| \bigm| \biggl[ \scrV \ast (\Lambda ) +\scrW i - 1(\Lambda )
\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] 
=

\biggl[ 
\scrV \ast (\Lambda ) +\scrW i(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr\} 
= min

\bigl\{ 
i \in \BbbN + | \scrV \ast (\Lambda ) +\scrW i - 1(\Lambda ) = \scrV \ast (\Lambda ) +\scrW i(\Lambda )

\bigr\} 
= \nu \prime + 1.

We have

c = \pi 0 = dim
\bigl( 
V \ast \bigl( \Delta Impl

\bigr) 
+ W1

\bigl( 
\Delta Impl

\bigr) \bigr) 
 - dim

\bigl( 
V \ast \bigl( \Delta Impl

\bigr) 
+ W0

\bigl( 
\Delta Impl

\bigr) \bigr) 
Lemma 7.1

= dim

\biggl( \biggl[ 
\scrV \ast (\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
 - dim

\biggl( \biggl[ 
\scrV \ast (\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

\scrU (\Lambda )

\biggr] \biggr) 
= dim (U (\Lambda )) - dim (\scrU (\Lambda )) = c\prime .

We also have for i \in \BbbN +,
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\pi i = dim
\bigl( 
V \ast \bigl( \Delta Impl

\bigr) 
+ Wi+1

\bigl( 
\Delta Impl

\bigr) \bigr) 
 - dim

\bigl( 
V \ast \bigl( \Delta Impl

\bigr) 
+ Wi

\bigl( 
\Delta Impl

\bigr) \bigr) 
= dim

\biggl( \biggl[ 
\scrV \ast (\Lambda ) +\scrW i(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
 - dim

\biggl( \biggl[ 
\scrV \ast (\Lambda ) +\scrW i - 1(\Lambda )

\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
= dim (\scrW i(\Lambda ) + \scrV \ast (\Lambda )) - dim (\scrW i - 1(\Lambda ) + \scrV \ast (\Lambda )) = \pi \prime 

i - 1.

Now substituting c = c\prime , \pi i = \pi \prime 
i - 1, and \nu = \nu \prime + 1 into (5.4), we can rewrite (5.4) as\biggl\{ 

\sigma j=0 for 1 \leq j \leq c - \pi 1 = c\prime  - \pi \prime 
0 = \delta ,

\sigma j= i for c\prime  - \pi \prime 
i - 2 + 1=c - \pi i - 1 + 1 \leq j \leq c - \pi i=c\prime  - \pi \prime 

i - 1, i=2, . . . , \nu \prime + 1.

Replacing i by i - 1, we get

\sigma j = i - 1 for c\prime  - \pi \prime 
i - 1 + 1 \leq j \leq c\prime  - \pi \prime 

i, i = 1, 2, . . . , \nu \prime .

Finally, comparing the above expression of \sigma j with that for \sigma \prime 
j of (5.7), it is not hard

to see that \sigma j + 1 = \sigma \prime 
j for j = 1, . . . , c.

(iii) We only show that the invariant factors of MCF 2 of \Lambda coincide with the
invariant factors of the real Jordan pencil J(s) of \Delta Impl; then the equalities d = d\prime ,
\eta 1 = \eta \prime 1, . . . , \eta d = \eta \prime d\prime , and \lambda \rho 1

= \lambda \rho \prime 
1
, . . . , \lambda \rho b

= \lambda \rho \prime 
b\prime 

are immediately satisfied. First,

let two subspaces X2 \subseteq V \ast (\Delta Impl) and Z2 \subseteq \scrV \ast (\Lambda ) be such that

X2\oplus 
\bigl( 
V \ast \bigl( \Delta Impl

\bigr) 
\cap W \ast \bigl( \Delta Impl

\bigr) \bigr) 
= V \ast \bigl( \Delta Impl

\bigr) 
, Z2\oplus (\scrV \ast (\Lambda ) \cap \scrW \ast (\Lambda )) = \scrV \ast (\Lambda ).

The above construction gives \Delta Impl| X2
\sim = KCF 2 and \Lambda | Z2

\sim = MCF 2, where KCF 2

corresponds to the Jordan pencil J(s). Use Lemma 7.1 to conclude that

X2 \oplus 
\bigl( 
V \ast (\Delta Impl) \cap W \ast (\Delta Impl)

\bigr) 
= V \ast (\Delta Impl)

implies

X2 \oplus 
\biggl( \biggl( \biggl[ 

\scrW \ast (\Lambda )
\ast 

\biggr] 
+

\biggl[ 
0

U (\Lambda )

\biggr] \biggr) 
\cap 
\biggl( \biggl[ 

\scrV \ast (\Lambda )
F \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) \biggr) 
=

\biggl( \biggl[ 
\scrV \ast (\Lambda )

F \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
\Rightarrow X2 \oplus 

\biggl( \biggl[ 
\scrW \ast (\Lambda ) \cap \scrV \ast (\Lambda )

F \prime (\scrW \ast (\Lambda ) \cap \scrV \ast (\Lambda ))

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
=

\biggl( \biggl[ 
\scrV \ast (\Lambda )

F \ast \scrV \ast (\Lambda )

\biggr] 
+

\biggl[ 
0

\scrU \ast (\Lambda )

\biggr] \biggr) 
,

where F \in \BbbF (\scrV \ast (\Lambda )), F \prime \in \BbbF (\scrW \ast (\Lambda )\cap \scrV \ast (\Lambda )). Since Z2\oplus (\scrV \ast (\Lambda ) \cap \scrW \ast (\Lambda )) = \scrV \ast (\Lambda ),

we have X2 = [ Z2

F \prime \prime Z2
], where F \prime \prime \in \BbbF (Z2). Then, it follows that\biggl[ 

sI  - A  - B
 - C  - D

\biggr] \bigm| \bigm| \bigm| \bigm| 
X2

=

\biggl[ 
sI  - A  - B
 - C  - D

\biggr] \biggl[ 
Z2

F \prime \prime Z2

\biggr] 
=

\biggl[ 
(sI  - (A+BF \prime \prime ))Z2

(C +DF \prime \prime )Z2

\biggr] 
=

\biggl[ 
(sI  - (A+BF \prime \prime ))Z2

0

\biggr] 
.

Now it is known from Lemma 4.1 of [20] that (A+BF \prime \prime )| Z2 does not depend on the
choice of F \prime \prime . Thus the invariant factors of (sI  - (A+BF \prime \prime ))Z2 coincide with the
invariant factors of MCF 2 for \Lambda . Finally, from the above equation, it is easy to see
that the invariant factors of J(s) in KCF of \Delta coincide with those of MCF 2 of \Lambda .

Proof of Lemma 7.1. We first show that (7.16) holds. Let independent vectors

v1 = [
v1
1

v2
1

], . . . , v\alpha = [
v1
\alpha 

v2
\alpha 

] \in \BbbR n form a basis of

PVi+1(\Delta )
(7.4)
= Vi+1

\bigl( 
\Delta Impl

\bigr) (7.8)
=

\biggl[ 
A B
C D

\biggr]  - 1 \biggl[ \scrV i(\Lambda )
0

\biggr] 
,
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where v1j \in \BbbR q, v2j \in \BbbR m, j = 1, 2, . . . , \alpha (implying that dim (Vi+1(\Delta 
Impl)) = \alpha ).

Now without loss of generality, assume v1j \not = 0 for j = 1, . . . , \kappa and v1j = 0 for

j = \kappa +1, . . . , \alpha , where \kappa < \alpha is the number of nonzero vectors v1j . Then from (7.11),

it can be deduced that v1j for j = 1, . . . , \kappa form a basis of \scrV i+1(\Lambda ). Moreover, from

(7.8), it is not hard to see that v2j for j = \kappa + 1, . . . , \alpha form a basis of \scrU i(\Lambda ). Let

Fi \in \BbbR m\times \kappa be such that Fiv
1
j = v2j for j = 1, . . . , \kappa (such Fi exists); then v1, . . . , v\alpha 

form a basis of [
\scrV i+1(\Lambda )

Fi\scrV i+1(\Lambda )
]+ [ 0

\scrU i(\Lambda ) ]. Therefore, [
\scrV i+1(\Lambda )

Fi\scrV i+1(\Lambda )
]+ [ 0

\scrU i(\Lambda ) ] = [A B
C D ] - 1[ \scrV i(\Lambda )

0
],

because both spaces have the same basis v1, . . . , v\alpha . We now prove that for any choice
of Fi, we have Fi \in \BbbF (\scrV i(\Lambda )). Premultiply the above equation by [A B

C D ] on the left to
obtain \biggl[ 

(A+BFi)\scrV i+1(\Lambda )
(C +DFi)\scrV i+1(\Lambda )

\biggr] 
+

\biggl[ 
B\scrU i(\Lambda )
D\scrU i(\Lambda )

\biggr] 
\subseteq 
\biggl[ 
\scrV i(\Lambda )
0

\biggr] 
.

Moreover, we get [ B\scrU i(\Lambda )
D\scrU i(\Lambda )

] \subseteq [ \scrV i(\Lambda )
0

] by (4.7). Thus it is easy to see that (A +

BFi)\scrV i+1(\Lambda ) \subseteq \scrV i and (C +DFi)\scrV i+1(\Lambda ) = 0.
Subsequently, we show that (7.17) holds. By (7.12) and (7.14), it follows that for

i \in \BbbN ,

Wi+1(\Delta 
Impl) =

\biggl[ 
Iq 0
0 0

\biggr]  - 1 \biggl[ \scrW i(\Lambda )
0

\biggr] 
.(7.19)

Then by (7.4), we have Wi+1(\Delta 
Impl) = PWi+1(\Delta ) and we complete the proof of (7.17)

by calculating explicitly the right-hand side of (7.19).

7.5. Proof of Proposition 6.7.

Proof. (i) By Proposition 6.6, M is an invariant subspace if and only if HM \subseteq 
EM . Therefore, M \ast is the largest subspace such that HM \ast \subseteq EM \ast ; then by
Proposition 4.4(ii), we have M \ast = V \ast .

(ii) By Proposition 6.6, for \Delta | redM\ast = (E| redM\ast , H| redM\ast ), the matrix E| redM\ast is of full
row rank. Thus from the explicitation procedure, it is straightforward to see that
\Lambda \ast \in Expl(\Delta | redM\ast ) is a control system without outputs. Note that, by the definitions

of reduction and restriction, if two DAEs \Delta 
ex\sim \~\Delta , then \Delta | redM\ast 

ex\sim \~\Delta | red\~M\ast . Denote the

four parts of the KCF of \Delta as KCF k, k = 1, . . . , 4, and the corresponding matrix
pencil of each part is

L(s) for KCF 1, J(s) for KCF 2, N(s) for KCF 3, Lp(s) for KCF 4.

By \Delta 
ex\sim KCF, we have

\Delta | redM\ast 
ex\sim KCF| red\~M\ast =

\bigl( 
KCF 1,KCF 2

\bigr) 
.(7.20)

Moreover, it is clear that if two control systems \Lambda 
M\sim \~\Lambda , then \Lambda | red(\scrV \ast ,\scrU \ast )

M\sim \~\Lambda | red
(\~\scrV \ast , \~\scrU \ast )

.

Since \Lambda is always M-equivalent to its MCF, we have

\Lambda 
\bigm| \bigm| \bigm| red(\scrV \ast ,\scrU \ast )

M\sim MCF
\bigm| \bigm| \bigm| red
(\~\scrV \ast , \~\scrU \ast )

=
\bigl( 
MCF 1,MCF 2

\bigr) 
.(7.21)

It is seen that \Lambda | red(\scrV \ast ,\scrU \ast ) is a control system without outputs. From the one-to-one cor-
respondence of the KCF and MCF discussed in section 5, it is straightforward to see
that

\bigl( 
MCF 1,MCF 2

\bigr) 
\in Expl(KCF 1,KCF 2). Now combining the last observation
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with the relations of (7.20) and (7.21), and using the results of Theorem 3.4, we can
deduce that \Lambda | red(\scrV \ast ,\scrU \ast ) \in Expl(\Delta | redM\ast ). Since \Lambda \ast \in Expl(\Delta | redM\ast ), by Theorem 3.4(ii) we

have \Lambda | red(\scrV \ast ,\scrU \ast )

M\sim \Lambda \ast . Finally, since \Lambda \ast and \Lambda | red(\scrV \ast ,\scrU \ast ) are two control systems without
outputs, their Morse equivalence reduces to their feedback equivalence.

7.6. Proof of Theorem 6.9.

Proof. (i)\leftrightarrow (ii) By Definition 6.8, we have \Delta 
in\sim \~\Delta if and only if \Delta | redM\ast 

ex\sim \~\Delta | redM\ast .

Consider \Lambda \ast \in Expl(\Delta | redM\ast ) and \~\Lambda \ast \in Expl( \~\Delta | red\~M\ast ); then by Theorem 3.4(ii), it follows

that \Delta | redM\ast 
ex\sim \~\Delta | redM\ast if and only if \Lambda \ast M\sim \~\Lambda \ast . By Proposition 6.7(ii), \Lambda \ast and \~\Lambda \ast are two

control systems without outputs, which implies that their Morse equivalence reduces
to their feedback equivalence.

(ii)\leftrightarrow (iii) We first prove that two DAEs \Delta \ast = Impl(\Lambda \ast ) and \~\Delta \ast = Impl(\~\Lambda \ast )
have isomorphic trajectories if and only if \Lambda \ast and \~\Lambda \ast are feedback equivalent. Let
(z(t), u(t)) and (\~z(t), \~u(t)) denote trajectories of \Delta \ast and \~\Delta \ast , respectively. Suppose
\Lambda \ast and \~\Lambda \ast are feedback equivalent; then there exist matrices Ts \in Gl(n\ast ,\BbbR ), Ti \in 
Gl(m\ast ,\BbbR ), F \in \BbbR m\ast \times n\ast 

such that \~A\ast = Ts(A
\ast +B\ast F )T - 1

s , \~B\ast = TsBT - 1
i . Since \Lambda \ast 

has no output, its implicitation (see Definition 3.1) is

\Delta \ast :
\bigl[ 
I 0

\bigr] \biggl[ \.z
\.u

\biggr] 
=
\bigl[ 
A\ast B\ast \bigr] \biggl[ z

u

\biggr] 
.

For \~\Lambda \ast , its implicitation is

\~\Delta \ast :
\bigl[ 
I 0

\bigr] \biggl[ \.\~z
\.\~u

\biggr] 
=
\bigl[ 
\~A\ast \~B\ast \bigr] \biggl[ \~z

\~u

\biggr] 
\Rightarrow 
\bigl[ 
I 0

\bigr] \biggl[ \.\~z
\.\~u

\biggr] 
= Ts

\bigl[ 
A\ast B\ast \bigr] \biggl[ T - 1

s 0
FT - 1

s T - 1
i

\biggr] \biggl[ 
\~z
\~u

\biggr] 
.

It can be seen that any trajectory (z(t), u(t)) of \Delta \ast satisfying z(0) = z0 and u(0) = u0

is mapped via T = [
T - 1
s 0

FT - 1
s T - 1

i

] - 1 into a trajectory (\~z(t), \~u(t)) of \~\Delta \ast passing through

[ \~z
0

\~u0 ] = T [ z
0

u0 ].

Conversely, suppose that there exists an invertible matrix T = [ T1 T2

T3 T4
] such that

[ \~z(t)
\~u(t)

] = [ T1 T2

T3 T4
][ z(t)

u(t)
]. It follows that (\~z(t), \~u(t)), being a solution of \~\Delta \ast , satisfies

\bigl[ 
I 0

\bigr] \biggl( \.\~z (t)
\.\~u (t)

\biggr) 
=
\bigl[ 
\~A\ast \~B\ast \bigr] \biggl( \~z (t)

\~u (t)

\biggr) 
,

which implies

\bigl[ 
I 0

\bigr] \biggl[ T1 T2

T3 T4

\biggr] \biggl( 
\.z (t)
\.u (t)

\biggr) 
=
\bigl[ 
\~A\ast \~B\ast \bigr] \biggl[ T1 T2

T3 T4

\biggr] \biggl( 
z (t)
u (t)

\biggr) 
.

Since (z(t), u(t)) satisfies \.z(t) = A\ast z(t) +B\ast u(t), it follows that

T1 \.z(t) + T2 \.u(t) = ( \~A\ast T1 + \~B\ast T3)z(t) + ( \~A\ast T2 + \~B\ast T4)u(t)

(7.22)

\Rightarrow T1(A
\ast z(t) +B\ast u(t)) + T2 \.u(t) = ( \~A\ast T1 + \~B\ast T3)z(t) + ( \~A\ast T2 + \~B\ast T4)u(t).

Notice that (7.22) is satisfied for any solution (z(t), u(t)) of \Delta \ast .
Set u(t) \equiv 0 and let (z(t, z0), 0) (where z0 \not = 0) be a solution of \Delta \ast (obviously, such

a solution always exists). By substituting this solution into (7.22) and considering
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it for t = 0, we have T1A
\ast z0 = ( \~A\ast T1 + \~B\ast T3)z

0, where z0 = z(0) can be taken
arbitrary, which implies A\ast = T - 1

1 ( \~A\ast + \~B\ast (T3T
 - 1
1 ))T1.

Fix z(0) = z0 = 0 and set u(t) = ui(t) = [0, . . . , t, . . . , 0]
T
, where t is in the ith

row. Evaluating at t = 0, we have z(0) = 0, u(0) = 0, and \.ui(0) = [0, . . . , 1, . . . , 0]
T
,

and thus by (7.22) we have T2 \.u
i(0) = 0. So taking controls, u1(t), . . . , um\ast 

(t) of that
form, we conclude that T2 = 0. Now it is easy to see from (7.22) that B\ast = T - 1

1
\~B\ast T4.

Thus \Lambda \ast and \~\Lambda \ast are feedback equivalent via Ts = T1, Ti = T - 1
4 , and F = T3T

 - 1
1 .

Therefore, any trajectory of \Delta \ast is transformed via T into a trajectory of \~\Delta \ast if and
only if \Lambda \ast and \~\Lambda \ast are feedback equivalent.

By Theorem 3.4(i), we have

\Delta | redM\ast 
ex\sim \Delta \ast = Impl(\Lambda \ast ) and \~\Delta | red\~M\ast 

ex\sim \~\Delta \ast = Impl(\~\Lambda \ast )

(since \Lambda \ast \in Expl(\Delta | redM\ast ) and \~\Lambda \ast \in Expl( \~\Delta | red\~M\ast )). Moreover, by Remark 2.2, there

exist matrices P \in Gl(n\ast ,\BbbR ) and \~P \in Gl(n\ast ,\BbbR ) such that any trajectory of \Delta | redM\ast is

mapped via P into the corresponding trajectory of \Delta \ast and any trajectory of \~\Delta | red\~M\ast 

is mapped via \~P into the corresponding trajectory of \~\Delta \ast . Now we can conclude that
the linear and invertible map S = PT \~P - 1 sends any trajectory of \Delta | redM\ast into the

corresponding trajectory of \~\Delta | red\~M\ast if and only if \Lambda \ast and \~\Lambda \ast are feedback equivalent.

7.7. Proof of Theorem 6.11.

Proof. (i)\leftrightarrow (ii) Consider a DAE \Delta \ast = Impl(\Lambda \ast ). We have \Delta | redM\ast 
ex\sim \Delta \ast implied

by \Lambda \ast \in Expl(\Delta | redM\ast ) and Theorem 3.4(i). Actually, since \Lambda \ast is defined on M \ast , it

follows from Definition 6.8 that \Delta | redM\ast 
in\sim \Delta \ast = Impl(\Lambda \ast ). Thus by the equivalence of

items (i) and (iii) of Theorem 6.9, the solutions of \Delta passing through x0 \in M \ast are
mapped, via a certain linear isomorphism S, into the solutions of \Delta \ast , which means
that \Delta is internally regular if and only if \Delta \ast has only one solution passing through
any initial point in M \ast . This is true if and only if the input of \Lambda \ast is absent, i.e., \Delta \ast 

is an ODE without free variables. Therefore, \Delta is internally regular if and only if \Lambda \ast 

has no inputs.
(ii)\leftrightarrow (iii)\leftrightarrow (vi) From the proof of Proposition 6.7(ii), we can see that the input is

absent in \Lambda \ast if and only if \Lambda \ast = MCF 2 of \Lambda , that is, MCF 1 is absent in the MCF
of \Lambda .

(i)\leftrightarrow (iv)\leftrightarrow (v): Using V \ast = M \ast and the KCF of \Delta , it is straightforward to see
this equivalence.

8. Conclusions. In this paper, we propose a procedure called explicitation for
DAEs. The explicitation of a DAE is, simply speaking, attaching to the DAE a class of
linear control systems defined up to a coordinates change, a feedback, and an output
injection. We prove that the invariant subspaces of the attached control systems have
direct relations with the limits of the Wong sequences of the DAE. We show that the
Kronecker invariants of the DAE have direct relations with the Morse invariants of
the attached control systems, and as a consequence, the Kronecker canonical form
KCF of the DAE and the Morse canonical from MCF of control systems have a
perfect correspondence. We also propose a notion called internal equivalence for
DAEs and show that the internal equivalence is useful when analyzing the existence
and uniqueness of solutions (internal regularity).

Appendix A.
Kronecker canonical form KCF (see [11], [8], [6]). For any matrix pencil

sE  - H \in \BbbR l\times n[s], there exist matrices Q \in Gl(l,\BbbR ), P \in Gl(n,\BbbR ) and integers
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\varepsilon 1, . . . , \varepsilon a \in \BbbN , \rho 1, . . . , \rho b \in \BbbN +, \sigma 1, . . . , \sigma c \in \BbbN +, \eta 1, . . . , \eta d \in \BbbN with a, b, c, d \in \BbbN such
that

Q(sE  - H)P - 1

= diag
\bigl( 
L\varepsilon 1(s), . . . , L\varepsilon a(s), J\rho 1

(s), . . . , J\rho b
(s), N\sigma 1

(s), . . . , N\sigma c
(s), Lp

\eta 1
(s), . . . , Lp

\eta d
(s)
\bigr) 
,

where (omitting, for simplicity, the index i of \varepsilon i, \rho i, \sigma i, \eta i) the bidiagonal pencils
L\varepsilon (s) \in \BbbR \varepsilon \times (\varepsilon +1)[s], the real Jordan pencils J\rho (s) \in \BbbR \rho \times \rho [s], the nilpotent pencils

N\sigma (s) \in \BbbR \sigma \times \sigma [s], and the pencils Lp
\eta (s) \in \BbbR \eta \times (\eta +1)[s] have the following form:

L\varepsilon (s) =

\Biggl[ 
s  - 1

. . .
. . .
s  - 1

\Biggr] 
, N\sigma (s) =

\left[    
 - 1 s

. . .
. . .
. . . s

 - 1

\right]    , Lp
\eta (s) =

\left[    
 - 1

s
. . .
. . .  - 1

s

\right]    ,

J\rho (s)=

\left[    
s - \lambda \rho  - 1

. . .
. . .
. . .  - 1

s - \lambda \rho 

\right]    \mathrm{o}\mathrm{r} J\rho (s)=

\left[    
S - \Lambda \rho  - I

. . .
. . .
. . .  - I

S - \Lambda \rho 

\right]    , S  - \Lambda \rho =
\Bigl[ 
s - \phi \rho  - \varphi \rho 

\varphi \rho s - \phi \rho 

\Bigr] 
,

where \lambda \rho , \varphi \rho , \phi \rho \in \BbbR . The integers \varepsilon i, \rho i, \sigma i, \eta i are called, respectively, Kronecker
column (minimal) indices, the degrees of the finite elementary divisors, the degrees of
the infinite elementary divisors, and Kronecker row (minimal) indices. In addition, \lambda \rho 

and \varphi \rho + i\phi \rho are the corresponding eigenvalues of J(s). These indices and eigenvalues
are invariant under external equivalence of Definition 2.1. Notice that the above KCF
coincides with the one used in [6], which is slightly different from the ones presented
in [11] and [8]. More specifically, the invariants \epsilon i, \eta i of the KCF of [6] and of this
paper are allowed to be zero (L\epsilon i is a zero column if \epsilon i = 0 and Lp

\eta i
is a zero row if

\eta i = 0). In the KCF of [11], the trivial case 0l\times n is not included, while in [8], there
is an extra zero block in the first entry of the quasi-diagonal form (34) (see page 39,
Volume II, of [8]).

Morse canonical form MCF (see [20], [19]). Any control system \Lambda =
(A,B,C,D) is Morse equivalent to the Morse canonical form MCF shown below:

MCF :

\left\{       
MCF 1 : \.z1 = A1z1 +B1u1,
MCF 2 : \.z2 = A2z2,
MCF 3 : \.z3 = A3z3 +B3u3, y3 = C3z3 +D3u3,
MCF 4 : \.z4 = A4z4, y4 = C4z4.

If a control system \Lambda = (A,B,C,D) is in the MCF, then the matrices A,B,C,D,
together with all invariants, are thus given by

\biggl[ 
A B
C D

\biggr] 
=

\left[        
A1 0 0 0 B1 0
0 A2 0 0 0 0
0 0 A3 0 0 B3

0 0 0 A4 0 0
0 0 C3 0 0 D3

0 0 0 C4 0 0

\right]        ,

(i) with A1 = diag\{ A1
\varepsilon \prime 1
, . . . , A1

\varepsilon \prime 
a\prime 
\} , B1 = diag\{ B1

\varepsilon \prime 1
, . . . , B1

\varepsilon \prime 
a\prime 
\} , where (throughout

we omit, for simplicity, the index i of \varepsilon \prime i, \rho 
\prime 
i, \sigma 

\prime 
i, \eta 

\prime 
i)

A1
\varepsilon \prime =

\biggl[ 
0 I\varepsilon \prime  - 1

0 0

\biggr] 
\in \BbbR \varepsilon \prime \times \varepsilon \prime , B1

\varepsilon \prime =

\biggl[ 
0
1

\biggr] 
\in \BbbR \varepsilon \prime \times 1,
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and the integers \varepsilon \prime 1, . . . , \varepsilon 
\prime 
a\prime \in \BbbN are the controllability indices of (A1, B1);

(ii) A2 = diag\{ A2
\rho \prime 
1
, . . . , A2

\rho \prime 
b\prime 
\} , where A2

\rho \prime is given by

A2
\rho \prime =

\left[    
\lambda \rho \prime 1

. . .
. . .
. . . 1

\lambda \rho \prime 

\right]    or A2
\rho \prime =

\left[    
\Lambda \rho \prime I

. . .
. . .
. . . I

\Lambda \rho \prime 

\right]    , \Lambda \rho \prime =
\Bigl[ 
s - \phi \rho \prime  - \varphi \rho \prime 

\varphi \rho \prime s - \phi \rho \prime 

\Bigr] 
,

where \lambda \rho \prime , \varphi \rho \prime , \phi \rho \prime \in \BbbR ;
(iii) the 4-tuple (A3, B3, C3, D3) is controllable and observable (prime), that is,

\biggl[ 
A3 B3

C3 D3

\biggr] 
=

\left[  \^A3 \^B3 0
\^C3 0 0
0 0 I\delta 

\right]  ,(A.1)

where [
\^A3 \^B3

\^C3 0
] is square and invertible and \delta = rankD3 \in \BbbN , and the matrices

\^A3=diag\{ \^A3
\sigma \prime 
\delta +1

, . . . , \^A3
\sigma \prime 
c\prime 
\} , \^B3=diag\{ \^B3

\sigma \prime 
\delta +1

, . . . , \^B3
\sigma \prime 
c\prime 
\} , \^C3=diag\{ \^C3

\sigma \prime 
\delta +1

, . . . , \^C3
\sigma \prime 
c\prime 
\} ,

where

\^A3
\sigma \prime =

\biggl[ 
0 I\sigma \prime  - 1

0 0

\biggr] 
\in \BbbR \sigma \prime \times \sigma \prime 

, \^B3
\sigma \prime =

\biggl[ 
0
1

\biggr] 
\in \BbbR \sigma \prime \times 1, \^C3

\sigma \prime =
\bigl[ 
1 0

\bigr] 
\in \BbbR 1\times \sigma \prime 

;

the integers \sigma \prime 
1 = \cdot \cdot \cdot = \sigma \prime 

\delta = 0 and \sigma \prime 
\delta +1, . . . , \sigma 

\prime 
c\prime \in \BbbN + are the controllability indices of

the pair ( \^A3, \^B3) and they are equal to the observability indices of the pair ( \^C3, \^A3);
(iv) A4 = diag\{ A4

\eta \prime 
1
, . . . , A4

\eta \prime 
d\prime 
\} , C4 = diag\{ C4

\eta \prime 
1
, . . . , C4

\eta \prime 
d\prime 
\} , where

A4
\eta \prime =

\biggl[ 
0 I\eta \prime  - 1

0 0

\biggr] 
\in \BbbR \eta \prime \times \eta \prime 

, C4
\eta \prime =

\bigl[ 
1 0

\bigr] 
\in \BbbR 1\times \eta \prime 

.

The integers \eta \prime 1, . . . , \eta 
\prime 
d\prime \in \BbbN are the observability indices of the pair (C4, A4).

We call the integers \varepsilon \prime i, \rho 
\prime 
i, \sigma 

\prime 
i, \eta 

\prime 
i the Morse indices of control systems; together

with a\prime , b\prime , c\prime , d\prime , \delta and \lambda \rho \prime \in \BbbR or \lambda \rho \prime = \varphi \rho \prime + j\phi \rho \prime \in \BbbC , with \rho \prime taking all values \rho \prime i,
where j =

\surd 
 - 1, they are all invariant under Morse equivalence.
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