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Torque observation of WRSM with model
uncertainties for EV applications

Yahao Chen, Malek Ghanes Member, IEEE, Arezki Fekik and Abdelmalek Maloum

Abstract—In this paper, a torque observation method based
on linear parameter varying (LPV) approach is proposed for
a wound rotor synchronous machine (WRSM) used in Electric
Vehicle (EV) car (mainly used in Renault ZOE car). The machine
is modelled with the consideration of model uncertainties in
both the magnetic behavior and the machine resistance. The
uncertainties of the magnetic behavior come mainly from the
saturation effect of the inductance and are viewed as extra
state variables of the system. Then by treating the derivatives of
the magnetic uncertainties as states and disturbance variables,
the machine model in state space form is formulated as an
LPV system or an equivalent nonlinear time-dependent system.
State observability and unknown input observability are studied.
Finally, a robust LPV observer is designed to estimate the
flux and eventually the torque of the machine. Both simulation
and experimental results are illustrated on a benchmark of EV
propulsion to show the effectiveness of the proposed observer.

Index Terms—Wound rotor synchronous machine (WRSM),
observability and observation, LPV observer, torque and flux
estimation, uncertainties estimation, EV applications

I. INTRODUCTION

FOR safety and control reasons, the propulsion of electric
vehicles (EVs/HEVs) is halted if the difference between

the measured torque and the reference (accelerator pedal)
exceeds a minimum threshold set by the manufacturers. Tradi-
tional torque measurement using mechanical sensors is costly
and bulky. Therefore, torque information is often obtained
through data prediction systems, which can limit accuracy.
To improve torque estimation accuracy and reduce costs,
software-based sensor methods that do not require mechan-
ical sensors for permanent magnet synchronous machines
(PMSMs) have been developed in e.g., [1], [2], [3]. A sen-
sorless torque estimation method for brushless DC motors
using back electromotive force (BEMF) and observer tech-
niques to achieve accurate torque estimation is proposed in
[4]. Similarly, another approach presents a sensorless torque
estimation method for induction motors using a Luenberger
observer [5]. This method is based on a mathematical model
of the induction motor and allows for robust torque esti-
mation despite varying operating conditions. The methods
proposed in [1], [2], [3] take into account magnetic satu-
ration and magnet demagnetization to ensure better torque
estimation accuracy. These methods have been tested on a
low-power test bench (1.5-3 kW) with a PMSM, and the
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results were satisfactory. Indeed, the difference between the
estimated torque and the requested torque (accelerator pedal)
is below the set minimum threshold. However, when these
methods were tested on the full-power test bench BEMEVE
(https://renault-chair.ec-nantes.fr/bemeve), with a wound rotor
synchronous motor (similar to those used in early generations
of the ZOE EV), the torque estimator did not show suffi-
cient robustness to variations of magnetic uncertainties [6].
Additionally, variations in stator resistance and speed were
not considered.

In this paper, we propose a new torque observer that
takes into account variations in magnetic uncertainties. The
proposed LPV observer is distinguished by its ability to handle
variations in magnetic uncertainties, stator resistances, and
motor speed, thereby improving the accuracy and robustness
of torque estimation. The originality of our approach lies in its
consideration of a wide range of uncertainties and parameter
variations, enabling more precise and robust torque estimation,
essential for demanding EV applications. A rigorous obser-
vation methodology, including observability study, observer
design, and stability analysis, is proposed. This approach is
supported by experimental tests on a real-power test bench
BEMEVE.

For the theoretical contributions, we first showcase the state
and unknown-input observability of our machine WRSM by
its nonlinear time-varying control system model. Subsequently,
we propose a robust observer based on a linear parameter-
varying (LPV) formulation. Over the past decades, the control
and observation of LPV systems have been extensively studied
both theoretically and in practical applications, as detailed in
the survey by Hoffmann and Werner [7]. Notably, several
works have demonstrated the effectiveness of LPV system
formulations for EV applications, including [8]–[12]. Our
approach differentiates itself by employing a torque observer
with a Kalman-like structure [13] and utilizing polytopic
synthesis [14]. Consequently, the gain scheduling is achieved
through a finite number of quadratic matrix inequalities. We
propose a straightforward algorithm that transforms these bi-
linear matrix inequalities (BMIs) into linear matrix inequalities
(LMIs), which are then solved iteratively.

The remainder of the article is structured as follows:
Section II presents the mathematical model of the WRSM.
Section III describes the state and unknown input observability.
Section IV details the robust LPV state observer design.
Section V provides the simulation results. The experimental
results and discussion, demonstrating the accuracy and robust-
ness of the proposed method, are presented in Section VI.
Finally, Section VII concludes the article and outlines future
research perspectives.

https://renault-chair.ec-nantes.fr/bemeve


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

II. MATHEMATICAL MODEL OF WRSM

The dynamics for the flux of a WRSM in the rotor reference
frame (d− q frame) are given by



dλd

dt
= vd − (Rs +∆Rs)id + ωeλq

dλq

dt
= vq − (Rs +∆Rs)iq − ωeλd

dλf

dt
= vf − (Rf +∆Rf )if ,

(1)

where the lower indices d, q and f indicate the d, q-frame
and the excitation-frame, respectively; λd, λq, λq , vd, vq, vf
and id, iq, if , are the flux, the voltages and and currents,
respectively; Rs and Rf are the resistances of the stator and of
the excitation circuit, and ∆Rs and ∆Rf are differences from
the measured resistances and the real ones, which are assumed
to be some unknown but bounded variables; ωe is the stator
electrical angular velocity, which is assumed to be known
from measurement or estimation. By considering the model
uncertainties caused by e.g., nonlinear magnetic saturation,
imprecise system identifications, the relation of the rotor and
stator flux with the current can be represented by



λd = Ldid +Mf if +∆Ldid +∆Mf if︸ ︷︷ ︸
gd

λq = Lqiq +∆Lqiq︸ ︷︷ ︸
gq

λf = Mf id + Lf if +∆Mf id +∆Lf if︸ ︷︷ ︸
gf

,

where Ld, Lq, Lf are inductance of the machine, Mf denotes
the d-axis-field mutual inductance. ∆Ld,∆Lq,∆Lf ,∆Mf

are magnet model uncertainties of inductance and they are
not assumed to be constants. All those uncertainties form
compactly as gd, gq and gf representing, respectively, the
deviations between real and assumed flux in d, q and f -axis.
The electromagnetic torque of the machine has a direct relation
with the flux in d− q frame:

Te =
3

2
(p)(λdiq − λqid), (2)

where p is the number of pole pair of the machine. Thus
to obtain the real value of the flux λd and λq in order to
estimate the torque Te, it is essential to estimate the values of
the unknown variables gd and gq (note that the value of gf is
not necessarily needed for the torque estimation).

The flux-current relation can be rewritten in a more compact
matrix form:λd

λq

λf

 = H

idiq
if

+

gdgq
gf

 , H =

Ld 0 Mf

0 Lq 0
Mf 0 Lf

 . (3)

By substituting (3) into (1), we get a current model of the
WRSM as follows

H · d

dt

idiq
if

+

ġdġq
ġf


=

 vd − (Rs +∆Rs)id + ωe(Lqiq + gq)
vq − (Rs +∆Rs)iq − ωe(Ldid +Mf if + gd)

vf − (Rf +∆Rf )if

 ,

(4)

where ġd, ġq, ġf are time derivatives of gd, gq, gf , respectively.
It is assumed in [1] or in its following works [3], [6] that those
magnetic uncertainties gd and gq are static (i.e., ġd = ġq = 0)
or slowing-varying variables (i.e., g̈d = g̈q = 0). In the present
paper, we do not make such assumptions. Instead we regard
the higher order time derivatives of the magnetic uncertainties
as external disturbances injected to the system, namely, we
denote ġdġq

ġf

 =

cdcq
cf

 ,

ċdċq
ċf

 =

dddq
df

 . (5)

The angular velocity ωe can be obtained or estimated in real
time by angular position/rate sensors or using high-frequency
injection methods [15]–[17]. Then based on different views
of the time-varying variable ωe = ωe(t), the mathematical
model of the machine can be formulated into either a linear
parameter varying (LPV) system or a nonlinear system. It can
be observed from (4) that the right-hand-side of the equation
depends affinely on the current variables id, iq, if and the only
nonlinearities come from the bi-linearity of ωe and the current
variables. By treating ωe as a varying parameter instead of a
time-varying variable, the combination of (4) and (5) gives an
LPV system in the form

Σ(ωe) :

{
ẋ = A(ωe)x+Bu+∆Ax+ Ed

y = Cx,
(6)

where x = (id, iq, if , gd, gq, cd, cq, cf ) ∈ R8 are states, u =
(vd, vq, vf ) ∈ R3 are known inputs and d = (dd, dq, df ) ∈ R3

are unknown disturbances. Denote Lδ := M2
f − LdLf , the

system matrices are given by, respectively,

A(ωe) =

RsLf
Lδ

−LfLqωe

Lδ

−RfMf
Lδ

0
−Lfωe

Lδ

Lf
Lδ

0
−Mf
Lδ

−ωeLd
Lq

−Rs
Lq

−ωeMf
Lq

−ωe
Lq

0 0 −1
Lq

0

−RsMf
Lδ

MfLqωe

Lδ

RfLd
Lδ

0
Mfωe

Lδ

−Mf
Lδ

0
Ld
Lδ

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

B =

 −Lf
Lδ

0
Mf
Lδ

0 0 0 0 0

0 1
Lq

0 0 0 0 0 0

Mf
Lδ

0
−Ld
Lδ

0 0 0 0 0

T

, C =
[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]
,

E =


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , ∆A =


∆RsLf

Lδ
0

−∆RfMf
Lδ

0 0 0 0 0

0 −∆Rs
Lq

0 0 0 0 0 0

−∆RsMf
Lδ

0
∆RfLd

Lδ
0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 .
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Remark 1. Generally, the model uncertainties arising from
variations in resistance, ∆Rs and ∆Rs, can be viewed as
slow-varying parameters in the system matrix or as external
disturbances. However, here we do not regard them as varying
parameters like ωe. This exclusion stems from the challenge
of accurately determining the bounds of these variations,
which are necessary for robust LPV observer design. While
both ∆Rs and ∆Rs are bounded, determining their values
or bounds precisely is difficult. There are two reasons why
these uncertainties are not treated as external disturbances
d. Firstly, an examination of ∆A and B reveals that the
resistance uncertainties and the known inputs u affect the
system in similar directions. In cases where input voltages
are sufficiently large, they can compensate for any adverse
effects caused by ∆Rs and ∆Rs. Secondly, the primary
objective of the LPV observer design below is to bolster
robust performance against magnetic uncertainties rather than
resistance uncertainties.

In practical systems, the angular velocity of the machine
operates within a limited range due to physical constraints.
Therefore, it is reasonable to assume that the parameter ωe is
bounded, meaning it falls within a specified range, i.e.,

ωe ∈ [ωe, ω̄e],

where ω̄e = max(ωe) and ωe = min(ωe) are constants.
System (6) is called a polytopic LPV system [7], [18] because
the system matrix A dependents affinely on the varying
parameter ωe, i.e.,

A(ωe) ∈ Co{A(ωe), A(ω̄e)},

where Co{·} denotes a convex hull of matrices. More specif-
ically, we can write

A(ωe) = α(ωe)A(ωe) + (1− α(ωe))A(ω̄e),

where

0 ≤ α(ωe) =
ω̄e − ωe

ω̄e − ωe

≤ 1. (7)

Apart from the angular velocity, due to the physical operation
limits and the reasons that the currents of the machine has
already been regulated via a PI controller, we make the
following boundness assumptions on the variables x, the
resistance uncertainties ∆Rs, ∆Rf (or, equivalently, ∆A) and
the acceleration ω̇e.
Assumption 1. There exist positive scalars l1, l2, τ such that

||∆A|| < l1, ||x|| < l2, ||ω̇e|| < τ.

If the angular velocity ωe is viewed as a known input variable,
then system (6) can be seen as a nonlinear system

Σ :

{
ẋ = f(x, ωe,∆Rs,∆Rf ) +Bu+ Ed

y = h(x),
(8)

where f(x, ωe,∆Rs,∆Rf ) = (A(ωe) + ∆A)x, h(x) = Cx.
This nonlinear system model will be used for checking the
state and unknown inputs/disturbance observability. Then a
robust LPV observer will be built on system (6).

III. STATE AND UNKNOWN INPUT OBSERVABILITY

We adopt the classical definition of state observability for
nonlinear systems in e.g., [19], [20]. Denote a solution of
Σ starting from an initial point x0 under some ωe, u, d by
x(t, x0;ωe, u, d).

Definition 1 (State observability). The system Σ is called
locally state observable if there exists an open dense subset
V ⊆ Rn and a time scalar T > 0 such that for any two
states x1 ∈ V and x2 ∈ V , the corresponding outputs with
x1 and x2 as initial points satisfies that y(t, x1;ωe, u, d) ̸=
y(t, x2;ωe, u, d) implies x(t, x1;ωe, u, d) ̸= x(t, x2;ωe, u, d)
for all t ∈ [0, T ) and for all admissible u, d, ωe.

Roughly speaking, the state observability is a property for
the reconstruction of the state variables x via the data from the
measurable outputs y and its time derivatives ẏ, ÿ, . . . when
assuming the inputs ωe, u and d (and their time derivatives)
are known. However, the disturbance d, a priori, is not given,
to know if it is possible to use the available information y to
recover d, we need to check its unknown input observability,
the latter concept is closely related to the left-invertibility of
nonlinear control systems [20]–[22].

Definition 2 (Left-invertibility and unknown input observabil-
ity). The system Σ is called locally left-invertible with respect
to inputs d and outputs y if there exists an open dense subset
V ⊆ Rn and a time scalar T > 0 such that for any initial
point x0 ∈ V and two admissible inputs d1(t) and d2(t), the
corresponding outputs with d1 and d2 as inputs satisfies that
y(t, x0;ωe, u, d

1) ̸= y(t, x0;ωe, u, d
2) implies d1(t) ̸= d2(t)

for all t ∈ [0, T ) and for all admissible u, ωe. The system Σ is
called locally unknown input observable for d if it is locally
left-invertible without knowing the initial value x0.

The input-observability characterizes the property of recov-
ering the unknown inputs d by y, ẏ, ÿ, ... (possible need the
help of u, ωe and their derivatives) without the knowledge of
x0. The criteria for checking the state or unknown input ob-
servability relies on the calculation of the time derivative array
for the outputs y. Denote Lfh(x, ωe) :=

∂h(x,ωe)
∂x f(x, ωe). For

system Σ, given by (8), we have

ẏ = Lfh(x, ωe) + LBh · u+ LEh · d,

where

Lfh(x, ωe) = C(A(ωe) + ∆A)x, LBh = CB, LEh = 0.

Then

ÿ = L2
fh(x, ωe) +

∂Lfh

∂ωe
(x)ω̇e + LBLfh(ωe) · u

+ LELfh · d+ LBh · u̇+ LEh · ḋ,

where

L2
fh(x, ωe) = C(A(ωe) +∆A)2x,

∂Lfh

∂ωe
(x) = C

∂A(ωe)

∂ωe
x,

LBLfh(ωe) = C(A(ωe) + ∆A)B,

LELfh = C(A(ωe) + ∆A)E.
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It can be seen that the Jacobian matrix

O(ωe, ω̇e)=
∂(y, ẏ, ÿ)

∂x
=

 C
C(A(ωe) + ∆A)

C(A(ωe) + ∆A)2 + C ∂A(ωe)
∂ωe

ω̇e



=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

R̃sLf
Lδ

−LfLqωe

Lδ

−R̃fMf
Lδ

0
−Lfωe

Lδ

Lf
Lδ

0
−Mf
Lδ

−ωeLd
Lq

−R̃s
Lq

−ωeMf
Lq

−ωe
Lq

0 0 −1
Lq

0

−R̃sMf
Lδ

MfLqωe

Lδ

R̃fLd
Lδ

0
Mfωe

Lδ

−Mf
Lδ

0
Ld
Lδ

∗ ∗ ∗ A74 A75 A76 A77 A78

∗ ∗ ∗ A84 A85 A86 A87 A88

∗ ∗ ∗ A94 A95 A96 A97 A98


,

where R̃s = Rs + ∆Rs, R̃f = Rf + ∆Rf , A74 =
Lf

Lδ
ω2
e ,

A75 = −L2
f R̃s

L2
δ

ωe−
R̃fM

2
f

L2
δ

ωe− Lf

Lδ
ω̇e, A76 =

R̃sL
2
f

L2
δ

+
R̃fM

2
f

L2
δ

−
Lf

Lδ
ωe, A77 = 0, A78 = − R̃sLfMf

L2
δ

− R̃fMfLd

L2
δ

, A84 = R̃s

L2
q
ωe−

1
Lq

ω̇e, A85 = − 1
Lq

ω2
e , A86 = 0, A87 = R̃s

L2
q

, A88 = 0, A94 =

−Mf

Lδ
ω2
e , A95 =

R̃sMfLf

L2
δ

ωe +
R̃fMfLd

L2
δ

ωe +
Mf

Lδ
ω̇e, A96 =

− R̃sMfLf

L2
δ

− R̃fLdMf

L2
δ

+
Mf

Lδ
ωe, A97 = 0, A98 =

R̃sM
2
f

L2
δ

+
R̃fL

2
d

L2
δ

and the symbol “∗” represents irrelevant terms. The following
results concern with the state and unknown input observability
of the system.

Theorem 1. The system Σ, given by (8), is state observable
for all x ∈ Rn if and only if

|ω̇e| ≠ ω2
e . (9)

Moreover, Σ is left-invertible with respect to the unknown input
d but it is not unknown input observable.

Proof. We can find two matrix-valued functions P (ωe) ∈
R9×9 and Q(ωe) ∈ R8×8, which are invertible for all ωe ∈ R,
such that

Õ(ωe, ω̇e) = P (ωe)O(ωe, ω̇e)Q(ωe)

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 0 0
Lf
Lδ

0
−Mf
Lδ

0 0 0 0 0 0 −1
Lq

0

0 0 0 0 0
−Mf
Lδ

0
Ld
Lδ

0 0 0 ω2
e ω̇e 0 0 0

0 0 0 ω̇e ω2
e 0 0 0

0 0 0 0 0 0 0 0


.

Recall from Corollary 4.11 of [20] that the system Σ is state-
observable if and only if rankO(ωe, ω̇e) = 8. The matrix Õ

(and thus O) is of rank 8 if and only if the matrix
[
ω2

e ω̇e

ω̇e ω2
e

]
is

non-singular. The latter condition is equivalent to (9). Hence
Σ is state observable if and only if (9) holds.

Moreover, it can be seen from the calculations of ẏ and ÿ
that the vector relative degree [20], [23] of Σ with respect to
y and d is (2, 2) since LEh = 0 and LELfh is invertible. So
the system Σ is left-invertible with respect to y and d because
d = (LELfh)

−1(ÿ−L2
fh(x, ωe)− ∂Lfh

∂ωe
(x)ω̇e−LBLfh(ωe) ·

u − LBh · u̇). Thus given the same initial condition x0, any
two different outputs y1(t, x0;ωe, u, d

1) ̸= y2(t, x0;ωe, u, d
2)

must imply d1(t) ̸= d2(t). However, since it is not possible to
express x (and thus x0 and d) as some functions of y, ẏ, u,
u̇, ω, ω̇ if x0 is unknown, we have that y1(t, x0;ωe, u, d

1) ̸=

y2(t, x̃0;ωe, u, d
2) does not necessarily imply d1(t) ̸= d2(t).

Therefore, Σ is not unknown input observable for d.

Remark 2. (i) The ranks of O(ωe, ω̇e) and LELfh, and thus
the state observability and unknown input observability of Σ,
are not determined by the resistance uncertainties ∆Rs and
∆Rf . However, in order to exactly estimate x(t) or d(t) using
x0, y(t), u(t), ωe(t) and their derivatives, the precise values
of the resistances are necessary. Although the latter data is not
available, we can still design an observer to estimate the state
x(t) with bounded errors if ∆Rs and ∆Rf are assumed to be
bounded.

(ii) Since d(t) are not observable via the outputs y, we will
treat them as unknown disturbances, to minimum its side effect
to a state observer, the robustness of the observer against ex-
ternal disturbances should be addressed during design process.

IV. ROBUST LPV STATE OBSERVER

A. Observer design

Now for the polytopic LPV system Σ(ωe), we seek a
Kalman-like LPV observer in the form

Σ̂(ωe) :

{
˙̂x = A(ωe)x̂+Bu+K(ωe)(y − Cx̂)

ŷ = Ĉx̂,
(10)

where x̂ = (̂id, îq, îf , ĝd, ĝq, ĉd, ĉq, ĉf ) ∈ R8 are the states of
the observer, K(ωe) ∈ R8×3 is the observer gain which will
be designed below and

Ĉ = [ 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 ] ,

which is defined for the robust performance on the estimations
of gd and gq . Define the error e as the difference between the
real states x and the estimated ones x̂,

e := x− x̂.

Then the dynamics of the error and the performance outputs
ye := Ĉx− ŷ are given by{

ė = (A(ωe)−K(ωe)C)e+ Ed+∆Ax

ye = Ĉe.

In order to minimize the effect of the disturbance for the
estimation, our objective to design a robust LPV observer
defined below.

Definition 3. The observer Σ̂(ωe) is called a robust LPV H∞
observer for system Σ(ωe) with performance γ > 0 if

(i) e(t) → 0 as t → ∞ when d = 0 and ∆Rs = ∆Rf = 0.
(ii) sup

ωe∈[ωe,ω̄e]

sup
||d||̸=0

||ye||2
||d||2 ≤ γ.

The following theorem states sufficient conditions for the
existence of a robust LPV H∞ observers for system Σ(ωe).
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Theorem 2. Under Assumption 1, there exists a robust LPV
H∞ observer Σ̂(ωe) for system Σ(ωe) if there exist a matrix-
valued function P (ωe) = PT (ωe) > 0 and a positive scalar
γ > 0 such that ∀ωe ∈ [ωe, ω̄e] :

S(ωe) P (ωe) P (ωe)E ĈT

P (ωe) −Q−1 0 0
ETP (ωe) 0 −γI 0

Ĉ 0 0 −γI

 < 0, (11)

where

S(ωe)=A(ωe)
TP (ωe)+P (ωe)A(ωe)−CTR−1C±τ

∂P (ωe)

∂ωe
,

and Q = QT > 0, R = RT > 0 are constant weighing
matrices to tune. The observer gain is given by K(ωe) =
P−1(ωe)C

TR−1. Moreover, if the resistances uncertainties
∆Rs and ∆Rf are not zero but bounded, then the errors e(t)
are also bounded.

Proof. Consider a Lyapunov function candidate:

V (e, t) = eTP (ωe(t))e.

It follows that

dV (e, t)

dt
= ėTP (ωe)e+ eT Ṗ (ωe)e+ eTP (ωe)ė

= eT (AT (ωe)P (ωe)− CTR−1C)e+ dTETP (ωe)e+

xT (∆A)T e+ eT ω̇e
∂P (ωe)

∂ωe
e+ eTP (ωe)Ed+

eT∆Ax+ eT (P (ωe)A(ωe)− CTR−1C)e

= eT
(
AT (ωe)P (ωe) + P (ωe)A(ωe)− CTR−1C

)
e+

ω̇ee
T

(
∂P (ωe)

∂ωe

)
e+ dTETP (ωe)e+ eTP (ωe)Ed+

xT (∆A)T e+ eT∆Ax− eTCTR−1Ce.

Now if (11) holds, then, by Schur complement, we have[
S(ωe)+P (ωe)QP (ωe) P (ωe)E

ETP (ωe) −γ2I

]
+
[
ĈT

0

]
[ Ĉ 0 ] < 0

That means

eT (S(ωe) + P (ωe)QP (ωe))e+ dTETP (ωe)e+ dTP (ωe)Ee

+ yTe ye − γ2dT d < 0.

As a consequence, we have

f(ωe, ω̇e) :=

eT
(
AT (ωe)P (ωe) + P (ωe)A(ωe)− CTR−1C

)
e+

eT
(
P (ωe)QP (ωe) + ω̇e

∂P (ωe)

∂ωe

)
e+ dTETP (ωe)e+

eTP (ωe)Ed+ yTe ye − γ2dT d < 0.
(12)

It follows that

dV (e, t)

dt
+ yTe ye − γ2dT d+ eTP (ωe)QP (ωe)e+

eTCTR−1Ce− xT (∆A)T e− eT∆Ax = f(ωe, ω̇e) < 0.
(13)

If ∆Rs = ∆Rf = 0, then ∆A = 0 and thus

dV (e, t)

dt
+ yTe ye − γ2dT d < −eTP (ωe)QP (ωe)e

−eTCTR−1Ce < 0.

Then it follows by classical robust control theory [24] that con-
ditions (i) and (ii) of Definition 3 are satisfied, so Σ̂(ωe) is a ro-
bust LPV observer. Moreover, consider the case that ∆Rs and
∆Rf are nonzero. Recall from Assumption 1 that ||∆A|| < l1
and ||x|| < l2. Since P (ωe)QP (ωe) + CTR−1C > 0, there
exists λ > 0 such that ||P (ωe)QP (ωe) + CTR−1C|| > λ.
Then by (13) with d = 0, we have

dV (e, t)

dt
< −λ||e||2 + l1l2||e||.

Thus e(t) remains bounded as for ||e(t)|| > l1l2
λ , we have

dV (e,t)
dt < 0.

B. Polytopic LPV synthesis

In order use the above results to find an observer gain
K(ωe), we need to render the infinite set of LMIs in (11) to a
finite set of LMIs (or BMIs). There are different approaches for
LPV synthesis as shown in the survey [7] and the references
therein. Since our LPV system Σ(ωe) is polytopic and only
the system matrix A depends on ωe, we will use the polytopic
synthesis [14], [18]. Denote

A1 = A(ωe) and A2 = A(ω̄e).

Corollary 1. Under Assumption 1, there exists a robust
LPV H∞ observer if there exist two positive-definite constant
matrices P1 = PT

1 > 0, P2 = PT
2 > 0 and a positive scalar

γ > 0 such that ∀i, j = 1, 2:AT
i Pi+PiAi−CTR−1C+τ̃(Pi−Pj) Pi PiE ĈT

Pi −Q−1 0 0

ETPi 0 −γI 0

Ĉ 0 0 −γI

<0,

(14a)
(A1−A2)

T (P1−P2)+(P1−P2)(A1−A2)+(P1−P2)Q(P1−P2)≥0,

(14b)

where τ̃ = τ
ω̄e−ωe

, Q = QT > 0 and R = RT > 0 are tuning
matrices. The observer gain K(ωe) = P−1(ωe)C

TR−1,
where P (ωe) = α(ωe)P1 + (1 − α(ωe))P2 and α is given
by (7).

Proof. Observe that f(ωe, ω̇e) of (12) is a quadratic function
of ωe. By Lemma 3.1 of [14], ∀ωe ∈ [ωe, ω̄e] and ∀|ω̇e| <
τ̃(ω̄e − ωe) : f(ωe) < 0 if

∂2f(ωe, ω̇e)

∂ω2
e

=

(
∂α(ωe)

∂ωe

)2
∂2f

∂α2
≥ 0, (15)

together with ∀ωe ∈ {ωe, ω̄e} and ∀ω̇e ∈ {−τ̃(ω̄e −
ωe), τ̃(ω̄e − ωe)}:

f(ωe, ω̇e) < 0. (16)

Observe that
∂2f

∂α2
= eT ((A1 −A2)

T (P1 − P2) + (P1 − P2)(A1 −A2)+

(P1 − P2)Q(P1 − P2))e,
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thus (14b) implies (15). Moreover, by using Schur comple-
ment and ∂P (ωe)

∂ωe
= 1

ω̄e−ωe
(P1 − P2), it is seen that (14a)

guarantees (16) holds at the corners of the ranges for ωe

and ω̇e. Therefore, with the same arguments in the proof of
Theorem 2, we can conclude that K(ωe) = P−1(ωe)C

TR−1

with P (ωe) = αP1 + (1 − α)P2 is the observer gain for a
robust LPV observer.

Note that the constraint (14b) is not an LMI but a BMI
which depends quadratically on the unknowns and it is a non-
convex optimization problem if one wants to minimize γ. It is
not possible to transform simultaneously both (14a) and (14b)
into LMIs by Schur complement or changing of variables. To
solve this problem, one may use e.g. the methods in [25], [26].
Here we propose a simple solution with possible conservatism
but easy for calculation and realization.
Step 1: Minimize γ > 0 under the LMIs constraints (14a) and

(A1−A2)
T (P1−P2)+(P1−P2)(A1−A2)+L0 ≥ 0, L0 > 0.

Denote the resulting P1 and P2 as P10 and P20.
Step 2: If L0 ≤ (P10 − P20)Q(P10 − P20), then stop and return to P10

and P20. Otherwise, set k = 1 and go to Step 3.
Step 3: Minimize γ > 0 under the LMIs constraints (14a) and

(A1 −A2)
T (P1 − P2) + (P1 − P2)(A1 −A2) + Lk ≥ 0,

Lk−1 − Lk > 0.

Denote the resulting P1 and P2 as P1k and P2k .
Step 4: If Lk ≤ (P1k − P2k)Q(P1k − P2k), then stop and return to P1k

and P2k . Otherwise, set k = k + 1 and go to Step 3.

Remark 3. (i) It is also possible to choose a Lyapunov
function V (e) = eTPe that does not depend on ωe. This
choice simplifies the synthesis of the observer gain since
the quadratic terms in (11) become affine-dependent on ωe

and ∂P
∂ωe

= 0. Consequently, the polytopic LPV synthesis
method described in [18] can be applied, resulting in only
two LMI constraints for ωe = ωe and ωe = ω̄e. However, this
method is more conservative compared to the one presented
in Corollary 1 as the Lyapunov function is not parameter-
dependent.

(ii) As our system has only one varying parameter ωe, it
is also convenient to apply the girding-based LPV synthesis
[7], [27], [28]. The idea is to define a grid G for [ωe, ω̄e], then
minimize γ under the LMIs defined by (11) with all ωe ∈ G.
Then check if the obtained P1 and P2 satisfy (11) under a
denser grid. If it fails, increase the density of G and resolve the
LMIs. The girding-based method is easy to be implemented
but such a method does not provide any rigorous guarantees
for global convergence and performance [7].

C. Discussions and comparisons with existing results

Recall the results in [1] that a linear time-varying (LTV)
observer was designed for the torque estimation of PMSMs,
where the observer gain K(t) = P−1(t)CTR−1 is calculated
by solving the time-varying Riccati equation

dP (t)

dt
=−AT (t)P (t)−P (t)A(t)−P (t)QP (t) + CTR−1C,

(17)

where A(t) = A(ωe(t)) is viewed as a time-varying matrix
by incorporating the online estimated value of ωe. We now

Parameters Value
Maximum Power 65 KW
Number of pole pairs (p) 2
Stator winding resistance (Rs) 0.0123 Ω
Stator’s d-axis inductance (Ld) 1700e−6 H
Stator’s q-axis inductance (Lq) 650e−6 H
Self inductance of field winding (Lf ) 1.35 H
Mutual stator-rotor inductance (Mf ) 0.0283H
Moment of inertia 0.022Kg.m2

Coefficient of viscous friction 0.0064Nm.s

TABLE I
WRSM PARAMETERS OF THE FIRST ZOE CAR.

compare the LPV observer proposed in the present paper with
the LTV observer in [1].

• The system model in [1] assumes that the magnetic
uncertainties satisfy ġd = ġq = 0, limiting its observer to
handling only slow-varying uncertainties. The proposed
model Σe in (6) addresses magnetic uncertainties by
treating ġd and ġq as state variables, with g̈d and g̈q
considered as disturbances. This approach accommodates
both slow and fast-varying uncertainties.

• A significant challenge in LTV observer synthesis is veri-
fying the solvability of the time-varying Riccati equation
(17). Even if Σ(ωe(t)) is observable at each point in
time, this does not ensure the solvability of (17), which
requires uniform complete observability [13]. In contrast,
the existence of an LPV observer gain P (ωe) can be pre-
verified through the solvability of the LMIs (14a) and
(14b).

• Another advantage of LPV observer synthesis is the
computational cost. The LPV observer gain is calculated
offline, whereas the LTV observer requires the online
computation of P (t) by solving (17), which is compu-
tationally intensive.

V. SIMULATION RESULTS

A WRSM with the parameters shown in Table I is simulated
in the MATLAB/Simulink environment. The model is based
on the formulation presented in (6), where the dynamics of
the magnetic uncertainties gd and gq are taken into account. A
standard PI field-oriented controller is applied to the machine.
Simulations are conducted to verify the effectiveness of the
proposed method under significant tests involving magnetic
uncertainties ∆Mf and ∆Ld. The first test involves a 14%
variation in Mf , while the second test examines a 5% variation
in Ld.

These tests are realized with low speed (between 500 rpm
and 600 rpm) of the WRSM under different torque commands.
The results displayed in Figures 1 and 3, show the robustness
of the proposed observer under the considered magnetic un-
certainties, the torque is well estimated during the motor mode
(torque command is increasing) and breaking mode decreasing
(torque command is decreasing).

A. Results with magnetic uncertainties on mutual inductance

Figure 1 illustrates the reference torque Tref along with
the estimated torque Test(LPV) using the LPV observer over
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a span of 50 seconds. This analysis includes both static and
dynamic variations in mutual inductance Mf . It is evident that
the LPV observer performs excellently in tracking a piecewise
constant torque reference, which is a common scenario in
real-life driving conditions. Figure 2 presents a comparison
between the LPV and LTV formulations during the initial
10 seconds. Notably, during the dynamic changes occurring
between 3 and 6 seconds, the robust LPV observer precisely
estimates the electromagnetic torque, whereas the LTV method
encounters difficulties in correcting torque estimation errors,
particularly at t = 2 seconds. This issue is likely due to
challenges in solving the time-varying Riccati equation, high-
lighting the reliability of the LPV approach. Additionally, from
2 to 3 seconds, the LPV observer consistently outperforms
the LTV method. The LPV method also demonstrates less
overshoot compared to the LTV method when dealing with
sudden changes, such as the step function at 6 seconds, in
Mf . Overall, both techniques provide commendable estimates
of electromagnetic torque throughout the testing period.

Fig. 1. Simulation results of LPV observer for 50s with variations on Mf .

Fig. 2. Simulation results of LPV and LTV observers for 10s with variations
on Mf .

B. Results with magnetic uncertainties on stator inductance

Figures 3 and 4 showcase the actual torque compared to the
torque estimated by the LPV and LTV methods, with a focus

on variations in the stator’s d-axis inductance Ld. This test is
designed to highlight the effects of high-order derivatives of
inductance variations. To simulate these effects, a sine function
is used to modulate the d-axis inductance uncertainty. During
the first phase of the simulation (from 0 to 4 seconds), the
LTV observer displays significant oscillations. This occurs
because the LTV observer’s design does not account for the
presence of high-order derivatives of uncertainties, and the
sine function introduces non-trivial high-order time derivatives
that contradict this assumption. In contrast, the LPV method
shows robustness against such high-order derivatives, provid-
ing a relatively accurate torque estimation during this period.
Furthermore, the LPV method benefits from a simpler structure
and lower computational costs for gain calculation, resulting
in faster tracking performance. After the initial phase, both
methods deliver satisfactory torque estimations, demonstrating
their effectiveness in capturing the system dynamics.

Fig. 3. Simulation results of LPV observer for 50s with uncertainties on Ld.

Fig. 4. Simulation results of LPV and LTV observers for 10s with uncer-
tainties on Ld.

Remark 4 (Resistances uncertainties). The simulations with
uncertainties in the resistances Rs and Rf have also been con-
ducted. The estimation results show no significant differences
when considering ∆Rs and ∆Rf to be zero or small values.
The possible reasons for this have been explained in Remark 1
above. Specifically, the PI controller may compensate for the
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side effects caused by ∆Rs and ∆Rf , and the torque Te of
(2) has no direct connections with the resistances.

VI. EXPERIMENTAL RESULTS

To assess the simulation results of the proposed observer
based LPV approach, experiments tests are realized on the BE-
MEVE test bench (https://renault-chair.ec-nantes.fr/bemeve),
which is dedicated to test EV motors at 1-scale power level.

Fig. 5. BEMEVE test bench of electric motors for EVs

The tested motor is a WRSM, which is used in the first
generation of ZOE cars with the same parameters used in
simulation (Table I). A first test, which is the same one
considered in simulation, is conducted at significant driving
conditions. A second test is performed to show the interest
of the uncertainties estimation of gd and gq for the torque
observer.

A. Low speed (between 500 and 600 rpm) with different torque
commands:

As in the simulation, this test corresponds to the driver’s de-
mand when pressing the car’s acceleration pedal under a con-
stant speed profile (road profile). The obtained results, shown
in Figs. 6 and 7, are quite similar to those obtained in the
simulation (Figs. 1 and 3). They reveal well-estimated torque
when the torque command is increasing (motor mode) and
decreasing (braking mode), despite the torque measurement
being very noisy. We also notice the excellent performance
of the torque estimation during dynamic phases of driving,
such as rapid acceleration and deceleration. As expected, this
performance is achieved by considering the higher-order time
derivatives of the magnetic uncertainties gd, gq , which are
managed by the proposed observer (9). The currents in the
d − q frame also perform well. As shown in Fig. 7, they
are estimated with high precision, contributing to the accurate
torque estimation.

B. Torque observer without uncertainties estimation:

To highlight the interest of the proposed observer, a test
is conducted with constants speed and torque command. In
this test, the estimated values of uncertainties gd and gq are
not included in the torque estimation (Fig. 8) during intervals
of time [0, 4s] and [10, 14s]. As it can be seen, the torque

estimation, during these intervals of time, doesn’t performs
well, a significant static error estimation appeared. Concerning
the currents in d − q frame, they are well estimated (Fig. 9)
since they don’t depend on uncertainties estimation.
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Fig. 6. Torque estimation results with the consideration of gd, gq .
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Fig. 7. The currents with the consideration of gd, gq .
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Fig. 8. Torque estimation results without considering gd, gq when t ∈ [0, 4s]
and [10, 14s].

https://renault-chair.ec-nantes.fr/bemeve
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Fig. 9. The currents without considering gd, gq .

VII. CONCLUSION

This article proposes a new technique for estimating the
torque of wound rotor synchronous machines (WRSM) used in
electric vehicles, particularly the Renault ZOE. This technique
utilizes a sensorless approach to reduce costs and the conges-
tion, while accounting for magnetic uncertainties and resis-
tance variations. The innovation of this technique, compared
to existing methods, lies in the design of a robust LPV state
observer, ensuring precise torque estimation in both dynamic
and static regimes despite the presence of uncertainties. An
observability study of the WRSM and a rigorous proof of
the observer’s stability and robust performance are provided.
Validated through simulations and experimental tests, this
technique demonstrates increased efficiency and robustness
under real conditions, offering an economical and accurate
solution to enhance the safety and control of electric vehicles.
These results pave the way for future applications in various
types of electric machines used in EVs.
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